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ABSTRACT
Analysis of massive graphs has emerged as an important
area for massively parallel computation. In this paper, it is
shown how the Fresh Breeze trees-of-chunks memory model
may be used to perform breadth-first search of large undi-
rected graphs. Overall, the computation can be expressed as
a data flow process wherein a set of vertices to be searched
is partitioned into a set of sub-domains and processed inde-
pendently by many concurrent tasks.

The main contributions of the paper are listed below.

• We present the first case study demonstrating the power
of the Fresh Breeze program execution model (PXM)
in the exploitation of fine-grain parallelism found in
irregular applications such as graph algorithms.

• We present a novel parallel breadth-first search algo-
rithm which is fully determinate.

• We describe a unique sparse vector representation that
represents the set of adjacencies for each vertex.

• We provide an experimental study and analysis of our
implementation. An estimate is also made of the per-
formance that might be achieved with a massively par-
allel system built according to Fresh Breeze principles.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; F.2.2 [Nonnumerical Algo-
rithms and Problems]: Computations on discrete struc-
tures; G.2.2 [Mathematics of Computing]: Graph The-
ory—Graph algorithms

General Terms
Algorithms, Performance, Theory
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1. INTRODUCTION
Analysis of massive graphs has emerged as an important

area for massively parallel computation. In this paper, it is
shown how the Fresh Breeze tree-based memory model may
be used to perform breadth-first search of large undirected
graphs.

The main contributions of the paper are:

• We present the first case study demonstrating the power
of the Fresh Breeze program execution model in the
exploitation of fine-grain parallelism found in irregular
applications such as graph algorithms.

• This was achieved through the use of a novel paral-
lel breadth-first search algorithm that is fully deter-
minate. By parallelizing each level of the BFS search
into a tree-based dataflow-style merging/sorting net-
work, our algorithm avoids the need for expensive crit-
ical sections or atomic operations as seen in prevalent
implementations [15].

• Furthermore, we chose a unique sparse vector represen-
tation for the set of adjacencies of each vertex. Since
the structure of the sparse vectors mirrors the tree
structure of the Fresh Breeze memory model, each of
such vectors can be readily manipulated and stored us-
ing memory chunks in the Fresh Breeze system. The
tree-structured memory hierarchy of the Fresh Breeze
memory model can then be exploited to efficiently im-
plement the tree-based merge operations.

The memory model and tasking scheme of the Fresh Breeze
program execution model (PXM) are reviewed in Section 2.
Section 3 introduces the graph search problem and breadth-
first search. Our implementation strategy for graph search is
presented in Section 4. We analyze memory usage patterns
in Section 5 and the performance on an envisioned mas-
sively parallel system architecture is estimated in Section
6. Experimental results from simulation runs are reported
in Section 6. Conclusions and Acknowledgements complete
the paper.



2. FRESH BREEZE OVERVIEW
Precise models of the programmer’s view of a computer

system have a history dating back to the 1970s[17]. More-
over, there is at least one computer system, the Burroughs
B6700 [16], that supports a well-conceived PXM encom-
passing multi-tasking, sharing of objects among concurrent
users, and protection from inadvertent or malicious modifi-
cation. Use of such models has disappeared since computer
architecture has been driven by the need to continue run-
ning“legacy”software, and the HPC community has stressed
performance above other qualities such as multi-user opera-
tion, sharing of objects, rational design for multi-threading,
and universal data access. The present challenge to design
usable massively multicore systems can benefit from a well-
designed PXM to guide decisions about system architecture
and software structure.

The Fresh Breeze PXM is a response to this challenge. It
is defined as the combination of a tree-structured, global,
virtual memory model and a tasking model suitable for a
computer system supporting fine-grain task scheduling. It is
a practical form for the heap-based data flow model of Den-
nis [7]. A computer system implementing this PXM is best
equipped with hardware support for the memory and task-
ing model, resulting in elimination of all operating system
execution cycles for memory management and task schedul-
ing. The result is a system able to efficiently distribute large
numbers of independent tasks over the processing cores of a
massively parallel machine.

2.1 Memory Model
The memory model uses trees of fixed-size chunks of mem-

ory to represent all data objects. Chunks are 128 bytes in
the present study; each chunk has a unique identifier, its
handle, that serves to locate the chunk within the storage
system, and is a globally valid means of reference to the
chunk. Chunks may contain handles, permitting construc-
tion of trees of chunks to represent data objects. Chunks
are created and filled with data, but are frozen before be-
ing shared with concurrent tasks. This policy eliminates
data consistency issues and simplifies memory management.
Low-cost reference-count garbage collection is used to re-
cover for reuse memory chunks for which no references exist
in the system. This supports modular programming in type-
safe programming languages.

Such a memory model provides a global addressing en-
vironment, a virtual one-level store that may be shared by
all user jobs and all processors of a many-core, multi-user
computing system. It can extend to the entirety of online
storage, replacing the separate access means for files and
databases of conventional systems.

2.2 Tasking Model
In the proposed PXM, the basic unit of parallelism is the

task, roughly the activity of performing a single instance of
function activation. The organization of multiple tasks is
expressed in a way similar to the spawn/join model for par-
allel programming of Cilk [12]. A master task may spawn
one or more worker tasks executing independent instances
of the same or different functions. Worker tasks may re-
ceive data objects (scalar values or handles of chunks) as
arguments provided by the parent task, and each worker
task contributes the results of its activity to a continuation
task using a join mechanism [9]. The Fresh Breeze tasking

model differs from Cilk in that the master task does not con-
tinue after spawning the workers and there is no interaction
between the master and the worker or among the workers
other than the contribution of each worker to the continua-
tion task at the join. Through repeated use of this scheme,
a program can generate an arbitrary hierarchy of concurrent
tasks corresponding to available parallelism in the compu-
tation being performed. It is expected that the spawn/join
mechanism would be implemented by special machine level
instructions in a hardware realization of the proposed PXM.

2.3 Envisioned System Structure
A realization of the Fresh Breeze PXM is foreseen as con-

sisting of a multitude of many-core processing chips and an
off-chip memory hierarchy [8]. On-chip memory consists
of L1 instruction and data caches at each processor, and
a shared on-chip L2 cache. Off-chip storage is envisioned to
be a multi-level storage system with associative directories
at each level that map chunk handles to memory locations.

A significant departure from conventional wisdom is the
omission of an interprocessor network for sending data be-
tween processors; in the Fresh Breeze system concept, data
access by remote processors uses the highest level of mem-
ory that contains the data and is accessible by the proces-
sor. Given the fine-grain tasking model of the Fresh Breeze
PXM, use of an I-structure-like [2] mechanism is expected
to be competitive in performance.

There is a low bandwidth network among the processors
that supports load distribution by means of a global work-
stealing scheme.

Novel features of the many-core processor chip include:
(1) Cache memories are organized around chunks instead of
typical cache lines; (2) Processor registers are tagged to flag
those holding handles of chunks; and (3) A hardware task
scheduler implements fast switching among active tasks and
a task stealing scheme [18, 13] for load distribution.

2.4 Simulation Studies
A simulator of the envisioned Fresh Breeze system has

been built that can model systems with up to 40 processing
cores and a two-level memory hierarchy. Programs writ-
ten using a library interface to an implementation of the
Fresh Breeze PXM have been developed for the linear al-
gebra kernels, dot product, matrix multiply, and the Fast
Fourier Transform. Our simulation tool has shown that the
use of the Fresh Breeze memory model in these kernel algo-
rithms achieves full utilization of 40 processing cores even for
modest problem sizes [10, 11]. Section 6 of this paper reports
on simulation experiments using the breadth-first search al-
gorithm discussed in Section 4. These experiments have
demonstrated that the fine-grained tasking scheme, coupled
with the use of a hardware task scheduler, permits effective
automatic load distribution of tasks over 40 processors and
suggests the scheme could be effective in massively parallel
systems.

2.5 An Example of Fresh Breeze Programming
Programming for the Fresh Breeze PXM typically means

identifying phases of the computation and setting up a hi-
erarchy of tasks to perform the computation of each phase.
We illustrate this with the program in Figure 1 for counting
the number of defined elements in a vector. This simple ex-
ample is included only to illustate the program structure and



long CountDefined (Handle vectHandl, long size) {

if (size < 16) {

// Leaf node: count defined elements
// and report to parent continuation.
long count = 0;
for (int i = 0; i < 16; i++} {
if (IsDefined(vector[i]) count++;

}
JoinUpdate (count);

} else {
// Not at leaf level of the tree.
// Spawn a task for each subtree.

handle event = CreateJoin (16, Continue());
for (int i = 0; i < 16; i++} {
Spawn (i, CountNonNull (vector[i],

size / 16);
}
quit;

}
}

void Continue () {
Handle dataHandl = JoinFetch ();
long sum = 0;
for (int i = 0; i < 16; i++}

sum += dataHandl[i];
JoinUpdate (sum);
// a JoinUpdate at the top level is
// the same as a return.

}

Figure 1: Fresh Breeze code for the counting exam-
ple.

features of the present simulator API; it is not used in the
BFS implementation. The code is simplified by assuming
size is a power of 16.

The CreateJoin command creates a place (a special join
chunk) to collect the results of workers. It also identifes
the function to be executed by the continuation task when
all workers have contributed results. The Spawn command
spawns a worker task with a specified index and the func-
tion code it is to execute. The JoinFetch command obtains
the join chunk for use by the continuation task, which be-
comes ready for execution when the last worker finishes. The
JoinUpdate command is the means used by a worker to put
its result in the join chunk.

Let’s consider time and space used by this code. The tree
of tasks spawned to perform the computation consists of
size/16 leaf-level tasks and fewer than size/(16× 15) tasks
processing non-leaf nodes. One chunk of memory is used
for each non-leaf node to collect results from workers, and is
released once its entries have been summed. Leaf-level tasks
use only register memory in the processor. Thus the memory
use is less than size/15×128 bytes. Every task must include
one ChunkRead operation to bring the chunk into L1 cache;
this read is overlapped with execution of other tasks, so the
cost is about ten cycles to save and restore task status.

In the body code, each leaf task performs 16 test and count
instructions plus some load-multiples to bring the data in
from the L1 cache: 40 cycles, assuming the loop is unrolled.
Add a few more cycles for start, finish and the test at the

top to see whether the node is leaf or non-leaf, and a to-
tal of 50 cycles would be conservative. The contribution of
the non-leaf tasks is minor, as these involve just 16 spawn
instructions, each interpreted by the hardware to create a
task record for the scheduler, say two cycles each for a total
of again around 50 cycles.

This illustrates the methodology used to estimate perfor-
mance of search in Section 6.

3. PARALLEL BREADTH FIRST SEARCH
Interest in graph analysis problems and algorithms has

been heightened by recognition that data analysis problems
of massive scale are amenable to solution through massively
parallel computation. Breadth First Search is a method of
traversing all vertices and edges of a graph, and is funda-
mental to many useful graph analysis algorithms.

Given an undirected graph G and a vertex of G chosen
as the root, breadth-first search (BFS) starts from the root
vertex and constructs a tree in the graph that includes all
vertices reachable from the root (a spanning tree).

Let the vertices of G be indexed 0, ..., n − 1 where n is
the number of vertices contained in G. The edges of G are
specified by a relation, a subset of V ×V, containing pairs
of vertices. A spanning tree of G may be represented by
a function P : V → V that maps each vertex to its parent
vertex. By convention, the root vertex is taken to be its own
parent.

A straightforward parallel BFS algorithm [4] proceeds in
stages that correspond to levels of the spanning tree being
constructed. The algorithm uses a search set S, the vertices
to be examined in a stage, and the partial function Pv :
V → V that assigns a parent vertex to each neighbor of
vertex v.

For each stage, the algorithm consists of the following
steps to produce a new search set S′ and parent assignment
P′:

1. For each vertex v in S, define the partial update func-
tion Uv that maps each neighbor of v to a candidate
parent u.

2. Combine the maps Uv for all vertices in S to obtain
U defined on S, the update function for all neighbors
of vertices in S. Conflict occurs if two or more vertices
in S have a common neighbor u. If so, choose one
arbitrarily as the candidate parent of u.

3. Update: For the next stage of search, the new search
set is the set of neighbors found in this stage (the do-
main of U), excluding vertices that have already been
assigned as parents (the range of function P). The new
parent function P′ is the union of P and U.

The BFS computation has been chosen as representative
of large-scale non-numeric problems of interest for future
large-scale computing. It has been posed as a challenge
to workers with supercomputers, and up-to-date results are
posted at [1]. Implementations of parallel BFS have been
constructed for both distributed memory and shared mem-
ory computer systems.

In a typical distributed memory implementation [19], one
divides the set of vertices to be examined into many do-
mains and assigns one processor to each domain. This yields
many sets of vertices to search; producing sets of pairs <



u, v >, each identifying a candidate parent v for neigh-
bor u. These candidates must be passed to the proces-
sors responsible for the domains containing each neighbor.
In conventional multiprocesors, this is frequently accom-
plished, in part, by interprocessor messaging, often using
MPI. Because many messages arrive at each processor asyn-
chronously, there are possibilities for non-repeatable behav-
ior without careful design[15].

The problem of delivering candidate parents to the appro-
priate procesing domain is a sorting problem – one for which
an interconnection network is effectively a Batcher sorting
network [3]. The sorting problem is special in that the set of
keys is exactly the same size as the set of items to be sorted.
As we shall see, the Fresh Breeze implementation uses the
merging of sparse vectors as a means of achieving the same
effect – essentially a ”bucket sort” [4] with a separate bucket
for each key.

When using shared memory systems, individual vertices
belonging to the set S are processed in parallel by the sys-
tem’s processing elements. Since it is possible that two ver-
tices found in set S share a common neighbor, updates to
the set P must be performed atomically. This introduces a
source of contention between processing elements and can
create bottlenecks during execution[14, 15]. Since there is
no possibility of concurrent writes to a common location in
the Fresh Breeze PXM, such mechanisms are not needed.
This results in a determinate implementation free from in-
terference among processing elements.

4. FRESH BREEZE IMPLEMENTATION
The Fresh Breeze memory model makes use of sparse vec-

tors especially attractive. In the 16-ary tree representation
of vectors, subtrees can be omitted if the subtree contains
no defined elements of the vector.

To make this concrete, consider a vector of size n = 16d

in which there are k defined elements. if k is much less than
n/16, then the number of chunks needed is no greater than
d−1 for each defined element, and no greater than k×(d−1)
for the entire vector. The memory need grows linearly with
k, and is only slightly dependent on n.

The principal contribution of this paper is the demon-
stration that the Fresh Breeze memory model, when im-
plemented together with fine-grain scheduling, can provide
competitive performance in massively parallel non-numeric
computations such as BFS.

In the Fresh Breeze implementation, vectors are repre-
sented by trees of chunks of degree 16. The parent map and
search set are each represented by sparse vectors of length n.
By “sparse” we mean that many elements of the vector are
undefined, and subtrees of the tree-of-chunks representation
that hold only undefined elements are omitted. Elements of
the search vector S consist of a value located at the index
of each vertex whose neighbors are to be searched at the
current level of the graph traversal. The parent function P
is represented by a sparse vector with a value at the index
of each vertex in the domain of P; the value is the index of
the parent vertex.

As illustrated in Figure 2, the search uses the graph and a
specified root vertex to produce the parent vector P repre-
senting a spanning tree from the specified root. Its essential
work is performed by three functions: BreadthFirstSearch,
MergeSparseVectors and UpdateParent, which are discussed
in Sections 4.2, 4.3 and 4.4. In this implementation, it is pos-

Figure 2: Dataflow diagram of parallel breadth first
search.

sible to avoid a separate update computation at the end of
each phase by identifying vertices in the search set during
execution of the BreadthFirstSearch function. Further, be-
cause the updated parent function is not needed for the next
search phase, this processing may proceed in parallel with
search computation.

4.1 Graph Representation
In our implementation, a graph of size n is represented

as a Fresh Breeze vector G containing n elements, where
Gv is the handle of a sparse vector of size n that represents
the adjacency list of vertex v. An element of the adjacency
vector for vertex v is defined if an edge exists between v and
the vertex corresponding to the element’s position in the
vector. The value of each defined element is set to v, so that
each adjacency vector of the graph contains a unique value
for each defined element. In this way, the adjacency vector
represents both vertices of each edge connecting vertex v
with a neighbor vertex: the index u of a defined element is
the neighbor vertex, and its value v is the origin of the edge.

The amount of memory needed for a graph represented
this way is discussed in Section 5. Note that this graph rep-
resentation is independent of the chosen root vertex and may
be used for any number of BFS computations for different
roots.

4.2 Searching the Graph
The search process at each level of graph traversal is guided

by a function called BreadthFirstSearch (Figure 3. The in-
puts for this function are graph, update and parent, which
correspond to segments of the graph, update and parent
vectors. In cases where the inputs correspond to non-leaf
chunks, the function recursively calls BreadthFirstSearch

on individual subtrees which contain defined elements of
update (since the elements contained in search are a subset
of the elements contained in update) and creates a contin-
uation task called CollectVectors, Figure 4 which struc-
tures the hierarchical merging process. In cases where the in-
puts are leaf chunks, the function calls MergeSparseVectors
on the set of adjacency lists rooted in the graph chunk which
also have a defined element in the corresponding index of
the update chunk and an undefined element in the corre-
sponding index of the parent chunk, since the combination
of these two conditions implies that a vertex belongs to the



Chunk BreadthFirstSearch (
Handle graph, Handle update,
Handle parent, long size ) {

if (size < 16 ) {
// The given handles represent leaf chunks
// of the respective vectors.

Chunk vectors = new Chunk;
// A new chunk for the roots of the
// individual adjacency lists

int count = 0;
// A count of elements the
// sub-domain to be searched

Handle defVector;
// The handle of a non-null
// adjacency list

for (int i = 0; i < 16; i++) {

if ((IsDefined(update[i]))
&& !(IsDefined(parent[i]))) {
subtree = graph[i];
vectors[count] = subtree;
count++;

}
}
if (count > 1) {
CreateJoin(1, ForwardHandle() );
Spawn(0, MergeSparseVectors(vectors) );
quit();

}
if (count == 1)
JoinUpdate (defVector);

if (count == 0)
JoinUpdate (UnDef);

} else {
// The given handles represent non leaf
// chunks of the respective vectors.

createJoin(16, CollectVectors() );

for (int i = 0; i < 16; i++) {
if(IsDefined (update[i]))
Spawn(i, BreadthFirstSearch(graph[i],

update[i], parent[i]));
else
Spawn(i, UpdateNull());

}
quit();

}
}

Figure 3: The BreadthFirstSearch function.

search vector.
The CollectVectors function receives the vectors pro-

duced after the lower-level merge operations have completed
and then merges them further. At each successive level, the
number of vectors is reduced by a factor of 16. This process
continues until the adjacency lists for all vertices examined
in the current level of the graph traversal are merged into a
single vector.

4.3 Merging Sparse Vectors
The merging of sparse vectors is perhaps the most inter-

esting part of our BFS implementation.
Input to this function is vecHandl, the handle of a chunk

that contains 16 handles of chunks that are root chunks of
trees representing sparse vectors to be merged. As in the
illustrative code above, the function body has two parts,
shown in Figures 5 and 6: The first part processes leaf
chunks; the second part processes non-leaf chunks that rep-

void CollectVectors() {
Handle vecHandl = JoinFetch();

Chunk new_vectors = new Chunk;
// A chunk for the roots of
// individual vectors

int count = 0;
// A count of non-null vectors

Handle defVector;
// The handle of a non-null vector

for (int i = 0; i < 16; i++) {
// Iterate over root chunks of the
// given vectors
if (IsDefined(vecHandl[i])) {

defVector = vecHandl[i];
new_vectors[count]=defVector;
count++;

}
}

if (count > 1) {
CreateJoin(1, ForwardHandle() );
Spawn(0, MergeSparseVectors(new_vectors) );
quit();

}
if (count == 1)

JoinUpdate(defVector);
if (count == 0)

JoinUpdate(UnDef);
}

void ForwardHandle() {
Handle dataHandl = JoinFetch();
JoinUpdate (dataHandl[0]);

}

void UpdateNull () {
JoinUpdate (Undef);

}

Figure 4: The CollectVectors function.

resent subtrees of the set of 16 vectors.
For leaf chunks, the program chooses, for each each in-

dex from 0 to 15, a single value from the last among the
16 chunks containing a defined element at that index (I).
Defined values found at lesser indices are overwritten.

For non-leaf chunks, the merge process is continued in
parallel for each of the 16 leaf or non-leaf chunks at the next
lower level. Of course, if all elements at some index are un-
defined, a null reference is placed in the join chunk instead of
the handle of a subtree or leaf chunk. Also, if only one of the
sixteen given chunks has a non-null element at some index,
then the handle of that subtree or leaf chunk is placed in
the join chunk and no recursive call of MergeSparseVectors
is made.

4.4 Update Parent
At each level, a new parent vector is generated by using

the MergeSparseVectors function to combine the candidates
vector with the current parent vector. The existing parent
vector is given priority to ensure that the assignment ob-
tained in earlier stages remains unchanged.

5. ANALYSIS
In this section, we formulate upper and lower bounds on

the number of memory chunks used in the representation
of a sparse vector and use this information to determine
bounds on the number of tasks executed while performing
BFS. We also discuss the amount of memory space occu-



Chunk MergeSparseVectors (
Handle vecHandl, long size) {

Chunk vecChunk = ChunkRead (vecHandl);
// Read the chunk containing handle
// of trees to be merged.

if ( size < 16 ) {

// The given chunks are leaf
// chunks of the 16 vectors.

Chunk leaf = new Chunk;
// A new leaf chunk for the
// merged vector

for (int i = 0; i < 16; i++) {
// Iterate over indices of elements
// in the 16 given root chunks

long element;
for (int j = 0; j < 16; j++) {
// Iterate over the 16 leaf chunks
// at the current element index

element = vectors[i][j];
if (IsDefined(element))

leaf[i] = element;
}

}

// Pass the chunk of merged values to the
// parent continuation
JoinUpdate (HandleOf(leaf));
quit();

} else {

Figure 5: MergeSparseVectors, case of leaf chunks.

pied by our chosen graph representation and the necessary
memory bandwidth. Throughout our analysis, we use n for
the number of vertices in the graph and assume that n is a
power of 16, n = 16d. We use m for the number of edges in
the graph.

5.1 Chunks to Represent a Sparse Vector
We consider a sparse vector V of size n with x defined

elements. The 16-ary tree of chunks representing V will
have a depth of d, where there is a single chunk at level
0 and a maximum of 16d−1 chunks at the leaf level d − 1.
To determine an upper bound, we consider the worst case,
where a separate leaf chunk is used for each defined element.
Let S[h] be the number of chunks in the representation of
V at level h. S[h] cannot be any greater than x, but also
it cannot be any greater than the number of chunks 16h

needed to represent a fully defined vector of size n. Thus an
upper bound on the number of chunks at level h is

S[h] ≤ min(x, 16h)

and the total for the tree is

ST ≤
d−1∑
h=0

{min(x, 16h) }

Using b = dlog16(x)e and assuming x ≥ 16, we can split this
sum into two parts, the first where the number of defined
elements bounds, and the second where the maximum size
of representation bounds:

// The given chunk holds handles of
// non-leaf chunks of the 16 trees.

join = JoinCreate (16, DoneMerge () );

for (int i = 0; i < 16; i++) {

// Iterate over element indices of chunks
Chunk new_vectors = new Chunk;

// A new chunk for the roots of the
// individual subtrees

int count = 0;
// A count of vectors having a non-null
// element at index i.

Handle subtree;
// The handle of a non-null subtree

for (int j = 0; j < 16; j++) {

// Iterate over root chunks of the
// given vectors.
if (vectors[i][j] != UnDef) {

subtree = vectors[i][j];
new_vectors[count] = subtree;
count++;

}
}
if (count > 1)

Spawn (i, MergeSparseVectors(
new_vectors) );

if (count == 1)
Spawn (i, MergeOne(subtree) );

if (count == 0)
Spawn (i, MergeOne(UnDef) );

}
quit();

}
}

void MergeOne (Handle tree) {
JoinUpdate (tree);

}

void DoneMerge () {
Handle dataHandl = JoinFetch ();
JoinUpdate (dataHandl)

// Pass the chunk containing subtrees
// to the parent task and quit.

}

Figure 6: MergeSparseVectors, case of non-leaf
chunks.

ST ≤
d−1∑
b

x +

b−1∑
h=0

16h

For simplicity, in the remaining discussion we will use

ST ≤
d−1∑
0

x = d · x

as the upper bound, ignoring the constraint imposed by the
maximum possible size at each depth.

For a lower bound, we assume a best case in which the de-
fined elements of the sparse vector are densely packed into
the smallest number of chunks sufficient to hold them. The
leaf level of the tree will have dx/16e chunks containing de-
fined elements, and each higher level will have fewer chunks
by a factor of 16. Levels 0 through b will have just a single
chunk, where b = d−dlog16(x)e. Using the sum of geometric
series, we find

ST ≥
16b − 1

16− 1
+ b



or, dropping the second term

ST ≥ (x− 1)/15

5.2 Merge Sparse Vectors
In our implementation of BFS, each level of search is per-

formed by merging the set of adjacency vectors of vertices
in the search set. These vectors are gathered by a task hi-
erarchy that visits successively smaller domains of vertices.
Let us call the tasks in this hierarchy Master Tasks. Each
Master Task is the root task of a hierarchy of Merge Tasks
that performs the merge of up to 16 sparse vectors.

Assume that the set of adjacency vectors to be merged in
level s of search contains a total of x defined elements. To
determine an upper bound on the number of Master Tasks,
note that at most x leaf-level domains can spawn a Merge
Task hierarchy. This constraint also holds at all higher levels
of Master Tasks, so the number of Master Tasks executed
for search level s is subject to the bound:

U(s) ≤ (d− 1) · x
In a Merge Task Hierarchy, a merge task is performed only

if there are two or more subtrees or leaf chunks to be merged.
For x defined elements, there can only be x leaf level merge
tasks among all Merge Task hierarchies. As before, the same
bound applies at all higher levels. Therefore the number of
Merge Tasks is subject to the same bound:

L(s) ≤ (d− 1) · x
The total number of tasks performed while merging adja-
cency vectors in a complete search is

TS ≤
∑
s

( U(s) + L(s) ) = 2 · (d− 1) ·
∑
s

x(s)

But
∑

s x(s) cannot be greater than twice the number of
edges in the graph, so our upper bound is

TS ≤ 4 · (d− 1) · m
A lower bound is determined by assuming the e(s) de-

fined elements of the final merged sparse vector of a search
level are densely packed. The sum of e(s) over all search
levels must be at least n − 1, one less than the number of
vertices in the graph (or the number of vertices in the con-
nected component being traversed, if the graph is not fully
connected). The number of leaf-level tasks in the collection
of Merge Task hierarchies must be at least e(s) / 16, and
each higher level less by a factor of 16. As in determining
the least number of chunks to represent a sparse vector, the
total for all levels of the Merge Task tree is no less than

e(s) / 15

Similarly, the number of leaf tasks in the Master Task tree
must be at least e(s), and because the sum of e(s) over all
search levels must be at least n− 1, our lower bound is:

TS ≥ 2 · (n − 1) / 15

The conclusion of this analysis is that the number of tasks
executed in BFS grows at worst linearly with the number of
edges in the graph, increased by a factor proportional to
log16(n). In the case of scale-free graphs generated for the
Graph500 benchmark, the number of edges in the graph is
at most 16∗n, so we can say that the number of tasks grows
at worst linearly with the number of vertices in the graph.

5.3 Memory for the Graph
The graph representation used in the BFS algorithm is an

n-vector having sparse vectors as its elements. The memory
space required to store this form of a graph is no more than
the memory to store

d · 2 ·m
chunks with 128 bytes for each chunk plus some metadata.

The additional memory required to perform BFS consists
of the single chunks created to accumulate results passed up
to parents by subtasks. Most of these chunks have a short
lifetime, so the amount of memory in use depends on the
dynamics of the computation.

5.4 Memory Bandwidth
While executing MergeSparseVectors, each leaf-level merge

task may read up to 16 chunks from the graph representation
and create a single new chunk for its results. The number
of such tasks is, as before, bounded by x, the number of
defined elements of the search set for one level of search.
Many of the input chunks for these tasks will be read from
lower levels of the memory system. The non-leaf level tasks
will read recently created chunks which will therefore oc-
cupy upper levels of the memory hierarchy. Evidently, the
read bandwidth required will be substantially greater than
the write bandwidth, and writes of chunks to lower memory
levels will occur only if memory capacity limits at higher
levels are exceeded.

6. EXPERIMENTS
For simulation with a model of a Fresh Breeze system,

the FAST simulation tool [5] available at the University
of Delaware was used. This simulation tool was developed
by a collaboration of IBM and E.T. International, for test-
ing and evaluating the IBM Cyclops 64 many-core chip [6].
The Cyclops 64 chip contains 80 processing assemblies, each
consisting of two independent thread units (TUs) sharing
a 64-bit floating point unit. Each TU has an associated
30 KB block of SRAM. There are several instruction cache
memories, each serving a group of ten TUs. The chip in-
corporates a cross-bar switching network that interconnects
all 160 TUs, allowing each TU to access the SRAM of any
other TU. The TUs have access to 1GB of off- chip DRAM
memory through four additional ports of the X-bar network.
The FAST simulator implements a cycle-accurate model of
a complete Cyclops chip.

A hypothetical Fresh Breeze computer system is modeled
by code written in C that runs on the simulated Cyclops
cores. Forty of the Cyclops thread units are used to model
Fresh Breeze processing cores, including an L1 cache mem-
ory with each core and a local task scheduler. The remaining
thread units are used to model a second level of memory, im-
plemented in the off-chip DRAM, that serves chunk read re-
quests that miss in the L1 cache. One thread unit is reserved
to support the task stealing mechanism for distributing tasks
among the 40 cores.

Although this Fresh Breeze simulator is not cycle-accurate,
faithful modeling for earlier results [11] was achieved by
“padding” the code for actions in the simulation for a uni-
form ratio of simulation time to expected cycle counts for
the Fresh Breeze system. For the Graph500 experiments re-
ported here, “padding” was not feasible as it would extend
simulation times too much.



Figure 7: TEPS results based on simulation

Test programs for graph construction and breadth first
search, the two kernel algorithms of the Graph 500 bench-
mark, were written in C using code libraries for the spe-
cial Fresh Breeze instructions for task coordination, and for
memory access to read and write chunks of data.

Using our simulator, Breadth First Search computation
was performed for several graph sizes. These test cases were
generated according to the Graph 500 benchmark specifi-
cations [1]. Vertices of each graph are linked to randomly-
chosen neighbor vertices, with an average degree of 16. The
graph sizes considered are: 32, 64, 128, 256, 512 and 1024,
limited by the amount of simulator memory and the dura-
tion of simulation runs.

We first present results based on raw data from one sim-
ulation run for each test case, Figure 7. TEPS (Traversed
Edges Per Second) for each graph size was determined by
dividing the number of graph edges contained in the con-
nected component consisting of vertices reached during the
traversal by the product of the measured number of Cy-
clops cycles used in performing BFS tasks and the duration
of a cycle, assuming a 1GHz core. This value was reduced
by processor core utilization, measured as simulation cycles
executing problem tasks divided by total simulation cycles
including core idle cycles and shown in Figure 8

The results show that, with a fixed set of forty cores,
TEPS increases roughly linearly with graph size before reach-
ing a peak rate of 12 million edges per second. For the small
graphs of our experiments, the number of tasks available for
each core to execute is small, and the amount of concur-
rency is limited by the fact that a “pinch” occurs between
levels of search. Nevertheless, a processor utilization of 61%
was measured for a graph of 1024 vertices. In addition, we
observed that, on average, each processing core traverses
242,748 edges per second, which is comparable to machines
ranked on the Graph500 list [1].

We have also used the experimental results to estimate
performance of an actual Fresh Breeze system (although
with just 40 cores) for BFS. For this calculation, we coded
the four principal tasks from the MergeSparseVector and
UpdateParent functions in a hypothetical instruction set and
counted cycles for their execution. Using these numbers and
the measured counts of task executions from the simulation
runs, a count of total task execution cycles for BFS was ob-
tained. Using the 1 GHz core frequency and the measured
utilization values gives the results shown in Figure 9.

Figure 8: System utilization based on simulation

Table 1: TEPS Per Core
Vertex Count TEPS / core

32 150399
64 218644
128 300782
256 310549
512 300980
1024 242748

This level of performance will only be achieved in a mas-
sively parallel Fresh Breeze system if the task-stealing mech-
anism for load distribution is effective for very large numbers
of processing cores, and if the memory system can support
sufficiently high access bandwidth to remote memory units.
However, it should work well if there are large numbers of
tasks to be performed at each node, which will be the case
for graphs that are very large compared to the number of
processing cores.

The analysis in Section 5 indicates that the number of task
executions needed for BFS grows linearly with the sizes of
the graph time a log factor of the depth of trees of chunks.
So long as sufficient processor cores are available and an
effective load distribution mechanism is used, it is expected
that competitive performance would be achieved for very
large graphs on a massively parallel Fresh Breeze system.

7. CONCLUSIONS
We have shown that parallel breadth-first search can be

implemented using the Fresh Breeze execution model with-
out the use of locks or atomic operations which have been
thought to be necessary when using a shared memory sys-
tem. Earlier simulations demonstrating the merit of the

Table 2: Task Execution Count
Vertex Count MergeSparseVectors UpdateParent

32 18 5
64 49 12
128 147 26
256 426 42
512 1417 97
1024 4106 167



Figure 9: Estimated TEPS for a Fresh Breeze sys-
tem

Fresh Breeze PXM for standard linear algebra computa-
tions, dot product, matrix multiply and the Fast Fourier
Transform, have been reported in recent publications [10,
11], showing effectiveness in exploiting fine-grain concur-
rency in these kernels. The work reported here adds to our
confidence that the Fresh Breeze PXM is a worthy candi-
date for guiding the architecture of future massively parallel
computer systems.
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