
TiNy Threads: a Thread Virtual Machine for
the Cyclops64 Cellular Architecture

Juan del Cuvillo Weirong Zhu Ziang Hu Guang R. Gao
Department of Electrical and Computer Engineering

University of Delaware
Newark, Delaware 19716, U.S.Afjcuvillo,weirong,hu,ggaog@capsl.udel.edu

Abstract

This paper presents the design and implementation of a
thread virtual machine, called TNT (or TiNy-Threads) for
the IBM Cyclops64 architecture (the latest Cyclops archi-
tecture that employs a unique multiprocessor-on-a-chip de-
sign with a very large number of hardware thread units and
embedded memory) — as the cornerstone of the C64 sys-
tem software. We highlight how to achieve high efficiency
by mapping (and matching) the TNT thread model directly
to the Cyclops ISA features assisted by a native TNT thread
runtime library. Major results of our experimental study
demonstrate good efficiency, scalability and usability of our
TNT model/implementation.

1. Introduction

The C64 is a petaflop supercomputer project under de-
velopment at IBM Research Laboratory. C64 is intended to
serve as a dedicated compute engine originally designed for
running high performance applications such as molecular
dynamics to study protein folding [2], or image process-
ing to support real-time medical procedures. A C64 is built
from tens of thousands of C64 processing nodes arranged in
a 3D-mesh network.

The main objective behind the C64 chip (serving as a
compute node in the 3D mesh) design is to build a petaflop
computer by scaling up some millions of simple process-
ing elements and provide massive intra-chip parallelism to
tolerate memory and functional unit latencies, see Figure 1.
On the C64 architecture, the computational cell is the thread
unit, a simple 64-bit in-order RISC processor with a small
instruction set architecture (60 instruction groups) operat-
ing at a moderate clock rate (500MHz).

Perhaps the most remarkable feature of the C64 archi-
tecture is its high computation to memory ratio — 150

300Gflops / 4GB DRAM
Board

1Gflops / 64KB SRAM

Processor I−Cache

ChipProcessor
75Gflops / 4.7MB SRAM

Intra−chip Network

System
1.03Pflops
13.8TB

14.4Tflops
192GB

Rack

Unit

FP

SRAM

SRAM

Thread
Unit

Thread

Figure 1. Cyclops64 supercomputer

thread units and 4.7MB of on-chip SRAM. Although the
total amount of on-chip memory is comparable to the on-
chip data cache of common off-the-shelf processors, C64
has the advantage of a higher communication bandwidth
between on-chip memory and thread units. However, C64
hardware does not provide any sort of data cache, as the
on-chip memory is exclusively controlled by software. The
conclusion from this observation is that on-chip memory is
the most precious resource as computation resources, i.e.
thread units, become relatively inexpensive.

Given a machine such as C64 cellular architecture,
the challenge is to use this massive intra-chip paral-
lelism to obtain high sustained (not peak) performance.
Based on our previous experience in the embedded Cy-
clops32 project [18, 8], we believe that a key requirement
from the system software standpoint is a runtime sys-
tem (RTS), which efficiently manages such a large num-
ber of thread units without wasting on-chip memory. In

other words, memory footprint and bandwidth consump-
tion incurred by the RTS must be minimum, so that appli-
cations can fully utilize this scarce resource.

This paper focuses on the design of a thread vir-
tual machine for the C64 chip and the first implementa-
tion of its thread model as a native TNT thread runtime
library. Major results of our experimental study demon-
strate good efficiency, scalability and usability of our TNT
model/implementation.

2. Cyclops64 chip architecture

The work described in this paper focuses on the C64
chip, the main component of a C64 node, see Figure 2.
A C64 chip has 75 processors, each containing two thread
units, a floating-point unit and two SRAM memory banks of
32KB each. A 32KB instruction cache, not shown in the fig-
ure, is shared among five processors.

As we demonstrate in this paper, TiNy Threads, the im-
plementation of our Thread Virtual Machine, takes advan-
tage of relevant architecture features such as: (1) an in-
struction set architecture design that includes efficient sup-
port for thread level execution and a rich set of hardware
supported in-memory atomic operations; (2) a tremendous
intra-chip communication bandwidth, that can be exploited
by multithreading to hide memory access and functional la-
tencies; (3) the capability to configure a section of every
SRAM bank as scratch-pad memory, which under software
control can store thread local data that can be quickly ac-
cessed through a dedicated path.

The C64 instruction set architecture incorporates effi-
cient support for thread level execution. For instance, it pro-
vides a sleep instruction, such that a thread can stop execut-
ing instructions for a number of cycles or indefinitely. If a
thread is expected to wait on an external event or synchro-
nization, i.e. a long-latency operation, it would be judicious
to put the thread to sleep and get notified as soon as the
long wait is over. A thread is woken up by another thread
through a hardware interrupt/signal. Such a wakeup signal
is generated when a store into a memory-mapped port is ex-
ecuted. This operation takes as little as 20 cycles when there
is no contention in the crossbar network. Additionally, a rich
set of hardware supported in-memory atomic operations is
available to the programmer. Locks and mutexes can be effi-
ciently implemented using this type of instructions. Unlike
similar instructions available on common off-the-shelf mi-
croprocessors, when an atomic operation is executed in C64
architecture, the crossbar network only blocks the memory
bank where the atomic instruction is operating. Meanwhile,
the remaining on-chip memory banks operate normally.

In regard to intra-chip communication bandwidth, each
processor within a C64 chip is connected to a crossbar net-
work that can deliver 4GB/s per port, totaling 300GB/s in

et
he

rn
et

G
ig

ab
it

3D
−

m
es

h

Chip

A
−

sw
itc

h

Processor

Node

SP

GM

TU TU

O
ff−

ch
ip

FP

GM

HD

GM

M
em

or
y

SPSP SP

O
ff−

ch
ip

SPSP

TU

M
em

or
y

TUTU

FP

M
em

or
y

TU

O
ff−

ch
ip

FP

ATA

FP

TU

M
em

or
y

O
ff−

ch
ip

GM GM

SP

GM

TU

GM

SP

GM

Crossbar Network

Figure 2. Cyclops64 node

each direction. The bandwidth provided by the crossbar
supports intra-chip communication, i.e. access to other pro-
cessor’s on-chip memory and off-chip DRAM, as well as
inter-chip communication via the A-switch device, which
connects each C64 chip to its neighbors in the 3D-mesh.

In the C64 chip architecture there is no data cache. In-
stead a portion of each SRAM bank can be configured as
scratch-pad memory and accessed through a dedicated path.
Such a memory provides a fast temporary storage to exploit
locality under software control.

3. Cyclops64 thread virtual machine

Cellular organization and high computation to memory
ratio are probably the most noticeable features of the C64
architecture. However, after a closer look, the system soft-
ware designer will find some other distinctive characteris-
tics. For instance, similar to general purpose microproces-
sors, C64 supports user and supervisor operation modes as
well as a set of interrupts, that together provide the mech-
anisms required for protection. However, execution is non-
preemptive. That means that the OS will not interrupt the
user program running on a thread unless the user explicitly
specifies preemption or an exception occurs. Memory or-
ganization is another aspect where C64 architecture repre-
sents a major departure compared to more conventional sys-
tems. There is no hardware virtual memory manager, which
means the memory hierarchy of the C64 chip is visible by
the programmer. Within a chip, on-chip and off-chip mem-
ory banks form a non-uniformshared address space. Proces-
sors can directly address any memory location. Addition-
ally, the C64 design, unlike its predecessor [1, 2, 5], does
not have data cache, and the computation to memory ra-
tio has been quadrupled as on-chip memory was reduced to
one half while doubling the number of thread units.

Given C64 special features described above, it is not our
intention to develop a conventional OS for this platform.
Such an approach would put a considerable stress on top
of a machine aimed for simplicity from the bottom up. In-

stead, we focus our efforts in the design and implementa-
tion of a Thread Virtual Machine that provides a familiar but
efficient application programming interface. As part of the
C64 TVM we have identified three components: a thread
model, a memory model and a synchronization model. A
high level overview of the thread model and its API is pre-
sented below whereas details regarding the implementation,
TiNy Threads, are left for section 4.

3.1. The thread model

A program section can be declared as a thread. A thread
can be activated for execution by binding a hardware thread
unit within a certain chip to a thread activation pointer.
A thread activation pointer can be defined as the tuple:<program pointer, state pointer>, where program pointer
is the address specified by the program counter associated
with the corresponding hardware thread unit and the state
pointer points to thread specific information stored in the
C64 memory map (e.g. thread identifier, stack pointer, etc.)

A thread activation pointer can also be “global” if the
thread handler is extended with a node (or chip) identifier —
a system-wide identifier of the chip where the correspond-
ing thread unit resides. The binding of a thread activation to
a thread unit can be dynamic, as long as the binding infor-
mation is properly maintained by the system software.

3.2. Thread model API

For the first release, an interface inspired by that of the
popular Pthread model, is provided to ease the first hands-
on experience of application and system software develop-
ers. Initially, the user is responsible for creating, terminating
and synchronizing threads by inserting appropriate function
calls to the TNT runtime library. In the future we expect
to support other parallel programming models, for instance
OpenMP, that demand less effort on behalf of the program-
mer to manage such a high number of threads.

tnt create(tnt desct *th, const void *(*fn)(void *),
const void *arg)

Runs the user provided function in the next available
thread unit. If no thread unit is available, it returns an er-
ror condition, otherwise it returns a unique identifier (de-
scriptor) for the new thread. One parameter can be passed
to the thread function.

tnt exit(const void *rc)
Caller thread terminates its execution returning and the

exit code specified byrc is made available to any successful
join with the terminating thread.

tnt join(const tnt desct th, void **th ret)
Caller waits for the target thread to terminate. If it re-

turns succesfully, the value passed totnt exit() by the ter-

minating thread will be placed in the location referenced by
the parameterth ret.

tnt self(void)
Obtains the descriptor of the current thread.
tnt get num threads(void)
Obtain the number of thread units available for execu-

tion in the chip.
tnt self id(void)
Returns the virtual thread identifier of the caller thread.

The identifier is an unsigned number between 0 and the
number returned by the functiontnt get num threads()-1.

4. Tiny threads design and implementation

In this section we discuss the implementation of our
thread model for the C64 cellular architecture based on
TiNy Threads (TNT).

In the TNT thread model, thread execution is non-
preemptive and software threads map directly to hardware
thread units. In other words, after a software thread is as-
signed to a hardware thread unit, it will run on that hard-
ware thread unit until completion. Furthermore, a sleeping
thread will not be swapped out so that idle hardware re-
sources can be assigned to another software thread.
Upon initialization, each software thread is given con-
trol over a well determined region of the scratch-pad mem-
ory, which is allocated to every physical thread unit at boot
time. This enables fast thread creation and reuse. As in
other thread models, a waiting thread (waiting on an ex-
ternal event/synchronization) goes to sleep; such a thread
is woken up by another thread through a hardware inter-
rupt/signal.

A thread in Tiny Threads is identified by a pointer that
references the corresponding TNT descriptor. The use of
such a descriptor simplifies the management of threads,
since this fixed-sized structure (less than 100 bytes) holds
all the information required to properly handle a thread, in-
cluding its stack pointer. TNT structures are initialized at
boot time. For example, pointers to the thread stack and
wakeup memory area are set when the system starts up. Un-
til a thread is requested to run some threaded function, its
status is said to be inactive and is therefore available. Idle
threads are queued in a singly-linked list so that one can
be easily found when a request for spawning a new thread
is received. Since multiple threads can call for TNT ser-
vices simultaneously, all operations upon TNT structures
are guarded by a lock (one lock per descriptor). TNT struc-
tures are allocated at the beginning of the scratch-pad mem-
ory in a memory region we call thread unique area or TUA.
The scratch-pad memory area above the TUA is reserved
for the thread stack. The compiler toolset and runtime sys-
tem software share a general purpose register, which points
to the end of the stack and beginning of the TUA. This reg-

Thread
unique area

GPR2

x0000

x3fff

descriptor
Thread

next

stack

Stack

Scratch−pad
memory

tid

status

Figure 3. Scratch-pad memory organization

ister is used both to check for stack overflows and to address
the TUA, see Figure 3.

Although the synchronization model has not yet been de-
fined, TNT provides functions for thread synchronization as
part of its API. For applications that work under low mem-
ory contention, a spin lock mechanism is available. This is
implemented with an in-memory atomic operation similar
to the test-and-set instruction present in general purpose mi-
croprocessors. Since the C64 has no data cache, under high
contention, a thread spinning on a lock interferes with other
threads (or at least with those trying to access the memory
bank where the lock is) by generating traffic on the cross-
bar network. The mutex operation is defined such that when
a thread fails to lock the mutex, the thread is put to sleep.
While asleep, a thread unit does not execute instructions un-
til another thread unit generates a wakeup signal, i.e. ex-
ecutes a store into the wakeup port of the sleeping thread
or an interrupt occurs. TNT primitives that put to sleep and
wake up threads are based on the native sleep instruction
and wakeup signal. They can be performed in as little as 1
and 20 cycles, respectively.

TNT barriers are implemented using the signal bus
(SIGB) special purpose register. All the thread units on
a chip are connected by an 8-bit bus, which is accessi-
ble through read and write operations on this register.
The actual implementation uses three bits to ensure for-
ward progress, even when arbitrarily long delays occur be-
tween instructions. However, let us assume the appropriate
bit of the SIGB register is initially set to one. Upon en-
tering the barrier, threads reset that bit to zero and wait
for it to drop to zero (according to the hardware de-
sign this does not interfere with other thread units or gen-
erate excessive heat). Changes in the state of the bus
propagate throughout the chip in a few cycles, provid-
ing a means for very fast global synchronization.

(assembler, linker, etc.)

FAST Simulator

GNU Binutils

User Application

BenchmarksNewlib

Libraries

TNT

Open64

Compiler

Multithreaded

Regression Test

GNU CC

Compiler

Figure 4. Cyclops64 software toolchain

5. Results

We demonstrate the efficiency and usability of our TiNy
Threads runtime library implementation using a diverse set
of benchmark programs.

5.1. Summary

The main results of our experimental study can be sum-
marized as follows:� Efficiency (section 5.3): Our microbenchmarks show

that TNT primitives for thread creation and termina-
tion take 286 and 60 clock cycles, respectively.� Scalability (section 5.4): For a collection of assorted
kernels, good scalability is reported for applications
that have enough parallelism and run well given the
high intra-chip bandwidth.� Usability (section 5.5): The TNT programming API is
simple to use, yet sufficiently general to write realis-
tic applications. We port NAS OpenMP parallel bench-
marks to TiNy Threads and report our initial experi-
ence and findings.

5.2. Experimental platform

Figure 4 illustrates the software toolchain available for
application development on the C64 platform. C and For-
tran compilers have been ported from the GCC-3.2.3 suite.
Assembler, linker and other binary utilities are based on
binutils-2.11.2. The C standard and math libraries are de-
rived from those in newlib-1.10.0. Additionally, we wrote
the TNT runtime system and a communication library to
manage the C64 inter-chip communication device. Finally,

to provide developers with an experimental platform to val-
idate the C64 toolchain, we wrote a functionally accurate
simulator (FAST) that is described next.

FAST: C64 functionally accurate simulator toolset.
To conduct our research before a real hardware or emulation
platform is available, we wrote FAST: an execution-driven,
binary-compatible simulator of a multichip multithreaded
C64 system. FAST accurately reproduces the functional be-
havior and count of hardware components such as chips,
thread units, on-chip and off-chip memory banks, and the
3D-mesh network, see Table 1.

RISC-like instructions such as integer, floating-point,
branch and memory operations are modeled based on ex-
ecution times expressed byx=d pairs, wherex is the execu-
tion time in the ALU, andd represents the delay before the
result of the instruction becomes available. Instruction tim-
ing reported in Table 2 is based on information provided
by the C64 chip designer. For instance, integer division is
said to take one cycle in the ALU but a subsequent instruc-
tion will not be able to use the result until 33 cycles later.
During this delay, execution of independent instructions can
proceed normally.

FAST allows thread units to fetch, decode and execute
instructions at their own pace, following the sequence of
events dictated by each thread execution. However, to prop-
erly handle C64 special operations that represent some sort
of synchronization event between threads (sleep instruc-
tion, wakeup signal, inter-thread interrupt, etc.), threads can
only commit instructions once the simulated chip clock
reaches the time point at which the instruction is executed
by the thread. In other words, instructions are executed
asynchronously but committed in a synchronized fashion.

Timer alarm events and error conditions such as the exe-
cution of an illegal instruction are modeled as exceptions by
the simulator. Throughout the instruction’s execution, mul-
tiple exceptions may occur. FAST keeps track of all of them.
Before putting the results away, it triggers an interrupt ac-
cording to the priority order specified by the architecture.

Given the appropriate command line options, FAST gen-
erates the execution trace and/or an instruction statistics re-
port to help the software developer debug, tune and opti-
mize a program. Although FAST is not cycle accurate, we
are confident of the general trends demonstrated in this pa-
per and certain it is useful for software development and
performance estimation.

5.3. Microbenchmarks

An efficient runtime library in terms of thread manage-
ment must provide the minimum functionality required to
write multithreaded programs with low overhead. From the
API briefly described in section 3.2, it is clear that the most
expensive operations are thread creation and termination.

Component # of units Params./unit
Threads 150 single in-order issue,

500MHz
FPUs 75 floating point/MAC,

divide/square root
I-cache 15 32KB
SRAM (on-chip) 150 32KB
DRAM (off-chip) 4 256MB

Table 1. Simulation parameters

Instruction type x d
Branches 2 0
Integer multiplication 1 5
Integer divide 1 33
Floating add, mult. and conv. 1 5
Floating mult. and add 1 10
Floating divide double 1 30
Floating square root double 1 56
Floating mult. and accumulate 1 5
Memory operation (local SRAM) 1 2
Memory operation (remote SRAM) 1 20
Memory operation (off-chip DRAM) 1 36
All other operations 1 0

Table 2. Instruction timing

To measure the overhead imposed by these operations, we
wrote a simple microbenchmark program.

The program consists of two loops. The first loop spawns
a number of threads, which in turn, execute a function con-
sisting of a delay that guarantees each software thread runs
on a different thread unit. Once all threads finish, the sec-
ond loop performs a join operation for each previously cre-
ated thread. The execution time of each loop is divided by
the number of spawned/joined threads to obtain the average
thread creation and termination times. The results show that
to create and join a thread takes approximately 286 and 60
clock cycles, respectively. By inspecting the trace file ob-
tained from the execution of the microbenchmark, we ad-
ditionally determined the reuse time. The reuse time is de-
fined as the elapsed time since a software thread terminated
the execution of the threaded function until the hardware
thread unit goes to sleep, where it can be assigned to work
on another task. As it turns out, 265 cycles are required.

For illustration purposes, the same microbenchmark pro-
gram was written using Pthreads and ran on two SMP plat-
forms: a PowerEdge 6600, 4 CPUs, 1.4GHz running Linux
and a Ultra Enterprise 4500, 4 CPUs, 400MHz running Sun
Solaris. From the experiment, results show Pthread creation

takes 105 thousand and 100 thousand cycles on the Pow-
erEdge and Ultra Enterprise, respectively, while Pthread
termination takes 35 thousand and 52 thousand cycles on
the same platforms. As we mentioned above, TNT creation
and termination take only 286 and 60 cycles, respectively.
That means thread creation is almost 350 times faster while
thread termination is between 580 and 860 times faster.

Microbenchmarks analysis. After demonstrating the
efficiency of TNT primitives, the key question is: what fea-
tures of the C64 architecture can be exploited by the TNT
runtime library to yield such results?

1. Direct use of C64 ISA:
Sleep instruction: a thread is put to sleep in 1 clock

cycle only. While a thread is asleep, no instructions are
executed. Hence, no memory bandwidth is wasted.

Wakeup instruction: featured as a store into a
memory-mapped port. It takes 20 clock cycles to wake
up a thread.

In-memory atomic operations: used to implement
locks and mutexes. While such instructions are exe-
cuted, only the memory bank where the operation takes
place is locked. All others operate normally.

2. Managing hardware threads in user mode: If TNT
primitives were trapped into the supervisor mode to
service a request, they would had experienced an ad-
ditional 60-cycle delay due to a context switch (saving
and restoring a few registers) and calling a dispatcher.

3. The scratch-pad memory advantage: The TNT mem-
ory footprint is small (approximately 100 bytes). It
fits very well in scratch-pad memory without affect-
ing the thread stack. Access to the scratch-pad mem-
ory is fast, similar to a L1 data cache. However, the use
of a conventional cache in this case would not guaran-
tee the thread-specific data to always be in the cache,
unless the thread descriptor is locked. If TNT descrip-
tors were not allocated on SPM, create and join primi-
tives would have taken 414 and 77 cycles, respectively.
This means a 20% and 28% increase in the execution
time!

5.4. Assorted scientific kernels

In this section, we present results for a small set of sci-
entific kernels, each representing a typical application class
with different computation to communication ratios:

Matrix-matrix-multiply: The result matrix is partitioned
among threads which carry out the computation indepen-
dently of each other. Sobel is an edge detection algorithm
widely used in computer vision. Each pixel is computed
independently from the others, based on the first deriva-
tive of the intensity. Laplace is the parallel implementation

of a hypothetical 1D Laplace solver. At each iteration, ev-
ery position of a single single-dimension array is updated
with a value function of its neighbors. However, all the el-
ements of the array need to be updated before the follow-
ing iteration can start. Heat simulates the heat conduction
over a solid plate (modeled as aN � N grid) using finite
differential equations. First, the grid is initialized with one
side of the plate being heated. Then, the simulation starts
with the heat transfer from that side to the rest of the plate.
The program runs until a convergence condition is reached.
Nqueens counts the number of ways in whichN queens can
be arranged on aN�N chess board so that no queen can at-
tack any other queen under normal chess rules. In this im-
plementation, a number of independent tasks are created af-
ter the first three rows of the board are filled with queens
in valid positions. Then, the tasks are distributed among
threads in a round-robin fashion.

We chose the problem size such that the input data sets
fit in the on-chip memory (i.e. global memory, not scratch-
pad): MxM,256� 256; Sobel,1024� 1024; Laplace,217;
Heat,2048 � 2048; Nqueens,12. Since applications have
enough parallelism, they should run well given the high
bandwidth provided by the crossbar switch despite the C64
architecture’s lack of data cache.

Figure 5 shows the absolute speedup achieved by the
TNT kernel programs. As expected, the results show a de-
cline in the speedup as the synchronization/communication
increases. Nonetheless, it also demonstrates the efficiency
of the thread management system that allows Sobel to
achieve almost linear speedup, even for 128 threads. We
also like to highlight that despite a global barrier, Heat
achieves a speedup of 90 on 128 threads.

5.5. NAS parallel benchmarks

To demonstrate that TNT programming API is simple to
use, yet sufficiently general to write realistic applications,
we port the OpenMP C version of NAS NPB-2.3 parallel
benchmarks written by the Omni project into TiNy Threads.
TNT versions are hand-coded with no optimizations, map-
ping OpenMP parallel constructs and library calls to TNT
function calls. For example, an OpenMP parallel region re-
sults in code that forks and joins threads; critical sections
are directly translated to lock and unlock operations on a
mutex, etc. Such an exercise took a reasonable effort and
was completed fairly quickly.

To verify the correctness of the implementations we se-
lect NAS class S benchmarks. All programs run success-
fully on a number of threads between 1 (sequential) and
150 (number of threads per chip). Except for EP, these pro-
grams do not have enough parallelism to show good scala-
bility, mainly due to their small data sets. For instance, the
outermost loops of BT, LU and SP have only 12 iterations,

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

Number of Threads

Heat
MxM

NQ
Sobel

Laplace

Figure 5. Assorted kernels: absolute
speedup

preventing our non-optimized implementation from achiev-
ing significant scalability when run on more than 8 threads
(data not shown). We also try NAS class W benchmarks.
However, only EP, MG, BT and CG run successfully. The
reason for missing some of the benchmarks is the limited
hardware memory size. More specifically, the stack, which
is allocated in the scratch-pad memory, can not be dynami-
cally extended in the current version.

6. Related work

Previous work related to TNT are thread packages that
are either found in multithreaded runtime systems or pro-
vided as stand-alone thread libraries such as: Coda
LWP [17], Pthreads [14], QuickThreads [13], TAM [6],
Converse [12], Nano-Threads [15], OpenThreads [11], Ac-
tive Threads [21], Cilk [10], EARTH [19], NPTL [9].

These thread packages have been developed as part of
the runtime system for multithreaded parallel programming
languages with goals in terms of portability, interoperabil-
ity and open implementation in regards to design decisions
(e.g. scheduling and preemption). To achieve portability
across parallel machines and environments, a number of
them assume a common software substrate to be provided
by the OS or a machine-dependent layer. Unlike them, TNT
is part of a microkernel for the C64 that runs directly on top
of the C64 architecture aimed to high efficiency at the ex-
pense of portability.

Some thread packages such as TAM, Cilk and EARTH
implement a Thread Virtual Machine, similar to that of
TNT. However, the resulting TVMs are influenced to dif-

ferent extents by dataflow execution models whereas TNT
is not.

Another work on a thread package for a cellular architec-
ture is the BlueGene/L runtime system. However, C64 em-
ploys a radically different chip architecture, which presents
a different set of challenges and opportunities. For instance,
the C64 has no data cache, a multilevel memory hierarchy
visible by the programmer, a larger computation to mem-
ory ratio, etc.

Our work was initially influenced by QuickThreads be-
cause its hardware efficiency and by Pthreads in the sense
of usability. We soon realized that the C64 chip architec-
ture is fundamentally unlike those considered on previous
work based on QuickThreads. Therefore, it turns out to be
more convenient to develop a TNT runtime software infras-
tructure from scratch. In this first version, TNT machine-
specific functionality has been wrapped to provide an in-
terface similar to that of Pthreads, which shall facilitate
the initial application development and testing of the C64
toolchain.

There are many available emulation and simulation plat-
forms such as MicroLib [16], PearPC [3], Liberty [20], Sim-
pleScalar [4], etc. However, the C64 chip is not a general
purpose microprocessor. Although its ISA is similar to that
of the PowerPC, the lack of an out of order engine, as well
as other dissimilarities enumerated in Section 2, make the
use of PowerPC-based emulation/simulation tools imprac-
tical. Instead, FAST is inspired by SimpleScalar’s design
to achieve good performance, but was written from scratch
to accurately reproduce the behavior of the C64 architec-
ture details not present in other simulators (e.g. the hard-
ware wakeup signal, the sleep instruction and the crossbar
network).

Due to space restriction of this paper, previous work rel-
evant to Cyclops64 cellular architecture is not described in
this paper. A review can be found in [7].

7. Conclusions

We have reported our work in developing a thread model
for the Cyclops64 architecture as the first component of a
Thread Virtual Machine targeted to cellular architectures in
general.

Our TiNy Threads implementation, which presents dis-
tinctive features such as direct mapping of software threads
to hardware thread units and preallocation of resources
(thread-unique memory area assigned to each thread upon
initialization), blends nicely with the Cyclops64 hardware
resources. We demonstrate that this approach offers high ef-
ficiency, scalability and usability.

8. Future work

We believe that TiNy Threads is a good starting point
in the development of a portable thread package targeted to
cellular architectures. In addition, we do not discard port-
ing other thread packages to the Cyclops64 platform using
TNT as interface.

Acknowledgments

We acknowledge support from IBM, in particular, Monty
Denneau, Henry Warren, José Castaños and Christos Geor-
giou. We thank ETI for support of this work, especially
Clement Leung. Thanks to many CAPSL members for help-
ful discussions, in particular, Fei Chen, Hirofumi Sakane,
Alban Douillet, Geoff Gerfin and Brice Dobry

References

[1] G. Almási, C. Caşcaval, J. G. Castaños, M. Denneau,
D. Lieber, J. E. Moreira, and H. S. Warren, Jr. Dissecting
Cyclops: A detailed analysis of a multithreaded architecture.
ACM SIGARCH Computer Architecture News, 31(1):26–38,
March 2003.

[2] G. S. Almási, C. Caşcaval, J. G. Castaños, M. Denneau,
W. Donath, M. Eleftheriou, M. Giampapa, H. Ho, D. Lieber,
J. E. Moreira, D. Newns, M. Snir, and H. S. Warren, Jr.
Demonstrating the scalability of a molecular dynamics ap-
plication on a petaflops computer.International Journal of
Parallel Programming, 30(4):317–351, August 2002.

[3] S. Biallas. PearPC - PowerPC architecture emulator, May
2004.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin at Madison, Madison,
Wisconson, June 1997.

[5] C. Cascaval, J. G. Castaños, L. Ceze, M. Denneau, M. Gupta,
D. Lieber, J. E. Moreira, K. Strauss, and H. S. Warren, Jr.
Evaluation of a multithreaded architecture for cellular com-
puting. In Proceedings of the Eighth International Sym-
posium on High-Performance Computer Architecture, pages
311–321, Boston, Massachusetts, February 02–06, 2002.

[6] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. TAM – a compiler controlled threaded abstract
machine. Journal of Parallel and Distributed Computing,
18:347–370, July 1993.

[7] J. B. del Cuvillo, Z. Hu, W. Zhu, F. Chen, and G. R. Gao. To-
ward a software infrastrucutre for the Cyclops64 cellular ar-
chitecture. CAPSL Technical Memo 55, Department of Elec-
trical and Computer Engineering, University of Delaware,
Newark, Delaware, April 2004.

[8] J. B. del Cuvillo, R. Klosiewicz, and Y. Zhang. A software
development kit for DIMES. CAPSL Technical Note 10, De-
partment of Electrical and Computer Engineering, University
of Delaware, Newark, Delaware, September 2003.

[9] U. Drepper and I. Molnar. The native POSIX thread library
for linux. Technical report, Read Hat, Inc., January 2003.

[10] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. InPro-
ceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation, pages 212–223,
Montréal, Québec, June 17–19, 1998.

[11] M. Haines and K. Langedoen. Platform-independent run-
time optimizations using OpenThreads. InProceedings of
the 11th International Parallel Processing Symposium, pages
460–466, Geneva, Switzerland, April 1–5, 1997.

[12] L. Kalè, J. Yelon, and T. Knauff. Threads for interopera-
ble parallel programming. InProceedings of the 9th Interna-
tional Workshop on Languages and Compilers for Parallel
Computing, number 1239 in Lecture Notes in Computer Sci-
ence, pages 534–552, Ithaca, New York, August 8–10, 1996.

[13] D. Keppel. Tools and techniques for building fast portable
threads packages. Technical Report UW-CSE-93-05-06, De-
partment of Computer Science and Engineering,University
of Washington, May 1993.

[14] F. Mueller. Pthreads library interface. Technical report, De-
partment of Computer Science, Florida State University, July
1993.

[15] D. S. Nikolopoulos, E. D. Polychronopoulos, and T. S. Pa-
patheodorou. Efficient runtime thread management for the
Nano-Threads programming model. InProceedings of the
2nd IPPS/SPDP Workshop on Runtime Systems for Paral-
lel Programming, pages 183–194, Orlando, Florida, March
30, 1998.

[16] D. G. Perez, G. Mouchard, and O. Temam. Microlib: A case
for the quantitative comparison of micro-architecture mecha-
nisms. InProceedings of the 37th Annual International Sym-
posium on Microarchitecture, pages 43–54, Portland, Ore-
gon, December4–8, 2004.

[17] J. Rosenberg. LWP user manual. Technical Report CMU-
ITC-85-037, Information Technology Center, Carnegie-
Mellon University, June 1985.

[18] H. Sakane, L. Yakay, V. Karna, C. Leung, and G. R.Gao.
DIMES: An iterative emulation platform for multiprocessor-
system-on-chip designs. InProceedings of the IEEE Interna-
tional Conference on Field-Programmble Technology, Tokio,
Japan, December 15–17, 2003.

[19] K. B. Theobald.EARTH: An Efficient Architecture for Run-
ning Threads. PhD thesis, McGill University, Montréal,
Québec, May 1999.

[20] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August. Microarchitectural exploration with lib-
erty. InProceedings of the 35th Annual International Sympo-
sium on Microarchitecture, pages 271–282, Istanbul, Turkey,
November18–22, 2002.

[21] B. Weissman. Active threads: An extensible and portable
light-weight thread system. Technical Report ICSI TR-97-
036, International Computer ScienceInstitute, University of
California at Berkeley, October 1997.

