
TOWARD HIGH PERFORMANCE AND ENERGY EFFICIENCY ON

MANY-CORE ARCHITECTURES

by

Elkin Garcia

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Summer 2014

c© 2014 Elkin Garcia
All Rights Reserved

TOWARD HIGH PERFORMANCE AND ENERGY EFFICIENCY ON

MANY-CORE ARCHITECTURES

by

Elkin Garcia

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Guang R. Gao, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiaoming Li, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Hui Fang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jingyi Yu, Ph.D.
Member of dissertation committee

To my mom and grandma:

For teaching me by example to do the right things and to do my best effort no

matter the difficulties.

iv

ACKNOWLEDGEMENTS

Approaching the end of this journey, there is so much people to acknowledge.

First, I want to thank my family, specially my mom. They have encouraged me to

follow my dreams and they have been supportive during all these years far from home.

I also want to thank Prof. Fernando Lozano, he encouraged me to explore the world

and he showed me the path for pursuing a Ph.D since I was an undergrad.

During these years in the US, I have met so many people. I want to deeply

express my appreciation to Prof. Guang R. Gao, he has guided me and taught me on

many aspects of life during these years. He also gave me the freedom to explore and

progress on my research interest. I want to thank my dissertation committee for your

comments and suggestions in order to improve the quality of this work.

I am so thankful to be part of the Computer Architecture and Parallel System

Laboratory (CAPSL). All CAPSL members (It is a very long list) are very talented and

I enjoyed not just the academic and technical discussions but also the opportunity to

learn about their culture and personal life. I particularly want to mention my mentors,

close collaborators and friends: Dr. Ioannis Venetis, Dr. Joseph Manzano, Dr. Daniel

Orozco, Sunil Shrestha, Robert Pavel, Jaime Arteaga and Sergio Pino. I am also

grateful from the close collaboration I had with ET International and particularly with

Dr. Rishi Khan.

During these years I was also surrounded by very good friends that make my life

pleasant in the US. I was able to share with many different cultures and nationalities.

It enhanced my Ph.D. experience. I particularly enjoyed all the support from a close

group of friends known as ’Los Cheveres’.

Finally, I want to thank all the staff in the ECE Department at U. of Delaware for

their valuable guidance and help through all the stages I had to pass during these years

v

as an International Ph.D student. Particularly, Kathy Forwood has been extremely

helpful from the first day I joined U. of Delaware.

vi

TABLE OF CONTENTS

LIST OF TABLES . xii
LIST OF FIGURES . xiii
ABSTRACT . xvii

Chapter

1 INTRODUCTION . 1

1.1 Frequency Wall . 1
1.2 Power Wall . 2
1.3 Instruction Level Parallelism (ILP) Wall 3
1.4 Memory Wall . 3
1.5 Moore’s Law . 4
1.6 Parallel Computing Era . 4
1.7 Document Organization . 6

2 AN OVERVIEW OF DATAFLOW 7

2.1 The Static Model . 8
2.2 The Unraveling Interpreter . 9
2.3 Architecture Prototypes and Implementations 9
2.4 Dataflow and Multithreaded Execution 10

3 PROBLEM FORMULATION . 14

4 AN INNOVATIVE MANY-CORE ARCHITECTURE 16

4.1 Memory Hierarchy . 17
4.2 Energy Consumption . 18

5 STATIC OPTIMIZATIONS IN THE CONTEXT OF
MANY-CORE ARCHITECTURES 20

5.1 Classic Matrix Multiplication Algorithms 22

vii

5.2 Proposed Matrix Multiplication Algorithm 23

5.2.1 Work Distribution . 23
5.2.2 Minimization of High Cost Memory Operations 24
5.2.3 Architecture Specific Optimizations 27

5.3 Experimental Evaluation . 28

6 THE PROBLEM OF STATIC TECHNIQUES AND THE RISING
OF DYNAMIC OPTIMIZATIONS FOR MANY-CORE
ARCHITECTURES . 32

6.1 Motivation . 34
6.2 Static Scheduling and Data Partitioning 37
6.3 Percolation . 38
6.4 Dynamic Scheduling for Fine Grained Parallelism 41

6.4.1 Fine-grained task partitioning 41
6.4.2 Load Balancing in Scenarios with Shared Resources 43
6.4.3 Low Overhead Fine grained Dynamic Scheduling 44
6.4.4 Example: On-chip SRAM Dense Matrix Multiplication 47

6.5 Dynamic Percolation . 48

6.5.1 Computation of one block Ci,j 51
6.5.2 Computation of matrix C . 52

6.6 Experimental Evaluation . 53

6.6.1 Experimental Testbed . 53
6.6.2 Memory Copy microbenchmark 54
6.6.3 Dense Matrix Multiplication 55
6.6.4 Sparse Vector Matrix Multiplication 59

7 PERFORMANCE MODELING OF MANY-CORE
ARCHITECTURES UNDER DYNAMIC SCHEDULING AND
RESOURCE CONSTRAINTS . 61

7.1 Motivation . 63
7.2 Background . 67

7.2.1 The Codelet Execution Model 68

viii

7.2.2 Petri Nets . 68

7.3 Solution Method . 70

7.3.1 Basic actors in timed Petri nets 71

7.3.1.1 Init . 71
7.3.1.2 Clean . 71
7.3.1.3 Done . 71
7.3.1.4 Schedule . 72
7.3.1.5 Other auxiliary constructs 72

7.3.2 Expressing concurrency . 73

7.3.2.1 Parallel for loop - On Chip Matrix Multiplication . . 73
7.3.2.2 Serial for loop - Computing a whole block from off-chip

memory . 74

7.3.3 Implementation of Performance Optimizations and Modeling of
Resource Constraints . 75

7.3.3.1 Double Buffering and Pipelining 75
7.3.3.2 Resource Constraints 76
7.3.3.3 Priorities . 77
7.3.3.4 Composability - The Complete Off-Chip Memory

Matrix Multiplication 78

7.3.4 Methodology for generation of timed Petri nets with resource
coordination conditions . 79

7.4 Experiments . 81

7.4.1 Verification of Model and Evaluation of Performance
Optimizations . 82

7.4.1.1 Dense Matrix Multiplication 82
7.4.1.2 Finite Difference Time Domain Solution of Maxwell’s

Equations . 86

7.4.2 Extrapolation of Results on Similar Architectures 88
7.4.3 Preliminary Analysis of New Algorithms 90

ix

8 POWER AWARE TILING TRANSFORMATIONS 95

8.1 Energy Consumption Model on a Many-Core Architecture 96
8.2 Tiling Techniques for Energy Efficient Applications 98

8.2.1 Matrix Multiplication . 100
8.2.2 Finite Difference Time Domain 101

8.3 Experimental Evaluation . 103

8.3.1 Evaluation of the Energy Consumption Model 103
8.3.2 Evaluation of the Energy Efficient Tiling 107

9 ENERGY OPTIMIZATIONS IN THE CONTEXT OF
MANY-CORE ARCHITECTURES 111

9.1 LU Factorization . 112
9.2 Energy Optimizations . 114

9.2.1 Energy Aware Tiling design 115
9.2.2 Minimizing Static Energy using Pipelining 118
9.2.3 Dynamic Task Scheduling for Energy Reduction 119

9.3 Experimental Evaluation . 121

10 TRADEOFFS BETWEEN PERFORMANCE AND ENERGY
OPTIMIZATIONS FOR MANY-CORE ARCHITECTURES . . . 127

10.1 Optimizing for Energy is More Difficult than Optimizing for
Performance . 127

10.2 Trade offs between Performance and Energy Optimizations 129
10.3 A Case of Study for Performance and Energy Consumption Trade offs 131

11 RELATED WORK AND EXTENSIONS 135

12 SUMMARY AND CONCLUSIONS 141

BIBLIOGRAPHY . 148

x

Appendix

A COPYRIGHT INFORMATION . 166

A.1 Copy of the Licensing Agreements . 166

xi

LIST OF TABLES

5.1 Number of memory operation for different tiling strategies 27

6.1 Summary of Previous Results of MM on C64 34

8.1 Ed consumed by memory operations for MM 102

8.2 Ed consumed by memory operations for FDTD 103

8.3 Energy Coefficients e and R2 . 107

xii

LIST OF FIGURES

1.1 Processor Frequency over time . 2

1.2 Number of Transistors over time 5

4.1 C64 Chip Architecture . 16

4.2 Memory Hierarchy of C64 . 17

5.1 Implementation of sequences for traversing tiles in one block of C . 26

5.2 Different Partition Schemes vs. Number of Threads Units. Matrix
Size 100× 100 . 29

5.3 Different Partition Schemes vs. Number of Threads Units. Matrix
Size 488× 488 . 30

5.4 Impact of each optimization on the performance of MM using
m = 488 . 31

6.1 Workload Distribution for a MM of size 488× 488 35

6.2 Workload Distribution for a MM of size 192× 192 36

6.3 Problem of static partition in Matrix Multiplication 38

6.4 Algorithm for computing a tile of C with size L1 × L2 40

6.5 Partition Schemes for a matrix C of 15× 15 with tiles of 3× 3 . . . 42

6.6 Code Fragment for a DS implementation 45

6.7 Tasks for computing one block Ci,j ∈ C 49

6.8 Dynamic Percolation for Computation of one block Ci,j 51

xiii

6.9 Dynamic Percolation for Computation of matrix C 52

6.10 Relative Speed Up of DS vs. SS . 55

6.11 Scalability for 156 PEs . 56

6.12 Performance for a DMM of size 486× 486 57

6.13 Scalability for a DMM with 144 PEs 58

6.14 Scalability for a DMM of size 6480× 6480 59

6.15 Relative Speed Up of DS vs. SS for SpVMM 60

7.1 A Petri net model of the computation of y = a+ b+ c in a system
with only one adder. 70

7.2 Basic actors in Timed Petrinets . 72

7.3 Pseudo algorithm for Dense Matrix Multiplication 73

7.4 Petri net model for on-chip matrix multiplication 74

7.5 Petri net model for off-chip matrix multiplication of a single block . 75

7.6 Petri net model with resource constraints for optimized off-chip
matrix multiplication of a single block 76

7.7 Petri net model for optimized off-chip matrix multiplication 78

7.8 Methodology for generation of a Timed Petri net model with resource
coordination conditions . 79

7.9 Pseudo algorithm for Finite Difference Time Domain 80

7.10 Petri net model for Finite Difference Time Domain 81

7.11 Dense Matrix Multiplication optimized for On-Chip Memory 83

7.12 On-Chip Memory Dense Matrix Multiplication 84

7.13 Off-Chip Memory Dense Matrix Multiplication with Double Buffering 85

xiv

7.14 FDTD in 1 Dimension . 87

7.15 FDTD in 2 Dimensions . 88

7.16 Study of New Features on Dense Matrix Multiplication 89

7.17 Petri Net Modeling of LU Factorization 91

7.18 Petri Net Modeling of LU Factorization with Lookahead of 1 92

7.19 Predicted Results for LU Factorization - Speed-Up For 156 Threads
Relative to Matrix Size . 93

7.20 Predicted Results for LU Factorization - Speed-Up Relative to the
Number of Threads . 94

8.1 DDG for FDTD 1D . 103

8.2 Diamond Tiling . 104

8.3 Overall comparison of selected ISA 105

8.4 Comparison for On-chip Mem. Op., FPU Op. and Integer/Logical
Op. 106

8.5 Energy consumption vs Predicted model P and Measured M for MM
with m = 300 . 109

8.6 Energy consumption vs Predicted model P and Measured M for
FDTD with m = 100k and q = 500 110

9.1 Progress in each step of LU Factorization 114

9.2 Dynamic Energy Distribution for LU factorization of 840× 840 . . 115

9.3 Optimum Energy-Aware Tiling for an Inner Block 118

9.4 Dynamic Energy vs. Thread Units for a matrix of 840× 840 122

9.5 Total Energy vs. Thread Units for a matrix of 840× 840 123

9.6 Power Eff. vs. Matrix Size for TU = 156 124

xv

9.7 Power Eff. vs. TUs for Matrix Size 840× 840 125

9.8 Performance vs. TUs for Matrix Size 840× 840 126

10.1 Projection of Performance and Dynamic Energy vs. size of the
rectangular tiling for Matrix Multiplication 132

10.2 Normalized Performance, Dynamic Energy and Total Energy vs. size
of the rectangular tiling for Matrix Multiplication 133

xvi

ABSTRACT

Recent attempts to build peta-scale and exa-scale systems have precipitated

the development of new processor with hundreds, or even thousands, of independent

processing units. This many-core era have brought new challenges on several fields

including computer architecture, algorithm design and operating systems among oth-

ers. Addressing these challenges implies new paradigms over some well-established

methodologies for traditional serial architectures.

These new many-core architectures are characterized not only by the large

amount of processing elements but also by the large number and heterogeneity of re-

sources. This new environment has prompted the development of new techniques that

seek finer granularity and a greater interplay in the sharing of resources. As a result,

several elements of computer systems and algorithm design need to be re-evaluated un-

der these new scenarios; it includes runtime systems, scheduling schemes and compiler

transformations.

The number of transistors on a chip continues to grow following Moore’s law,

but single processor architectures manufactured by main vendors in the late 90’s were

in trouble taking advantage of the increasing number of transistors. As a consequence,

Computer Architecture has become extremely parallel at all levels. It has been pre-

ferred to have several simpler processing elements than fewer more complex and power-

ful ones. Two main challenges in the algorithms implemented on these modern many-

core architectures have arisen: (1) Shared resources have become the norm, ranging

from the memory hierarchy and the interconnections between processing elements and

memory to arithmetic blocks such as double floating point units, different mechanism

at software and hardware levels are used for the arbitration of these shared resources

and need to be considered on the scheduling and orchestration of tasks. (2) In order to

xvii

take advantage of the increasing amount of parallelism available, the number of tasks

has increased and tasks have become finer, imposing new challenges for a light and

balanced scheduling subject to resource and energy constraints.

The research proposed in this thesis will provide an analysis of these new sce-

narios, proposing new methodologies and solutions that leverage these new challenges

in order to increase the performance and energy efficiency of modern many-core archi-

tectures. During the pursue of these objectives, this research intends to answer the

following question:

1. Which is the impact of low-level compiler transformations such as tiling and
percolation to effectively produce high performance code for many-core architec-
tures?

2. What are the tradeoffs of static and dynamic scheduling techniques to efficiently
schedule fine grain tasks with hundreds of threads sharing multiple resources
under different conditions in a single chip?

3. Which hardware architecture features can contribute to better scalability and
higher performance of scheduling techniques on many-core architectures on a
single-chip?

4. How to effectively model high performance programs on many-core architectures
under resource coordination conditions?

5. How to efficiently model energy consumption on many-cores managing tradeoffs
between scalability and accuracy?

6. Which are feasible methodologies for designing power-aware tiling transforma-
tions on many-core architectures?

So far, this thesis establishes a clear methodology in order to answer these

questions. This thesis addresses the research questions raised and support the claims

and observations made through this document with several experiments.

We have shown the importance of tiling using dense matrix multiplication on

the Cyclops-64 many-core architecture as an example. This technique alone is able

to increase the performance from 3.16 GFLOPS to 30.42 GFLOPS. This performance

xviii

was further improved using Instruction Scheduling and other Architecture specific opti-

mizations reaching 44.12 GFLOPS. Later, with the use of Percolation, the new perfor-

mance was 58.23 GFLOPS. We have also shown how Dynamic Scheduling can overcome

a highly balanced Static Scheduling on a Matrix Multiplication. For this case, we were

able to increase the performance from 58.23 GFLOPS to 70.87 GFLOPS on SRAM and

from 38.73 GFLOPS to 56.26 GFLOPS on DRAM using Dynamic Percolation. These

results are by far greater than any other previous published result for this architecture

and it approaches the 80 GFLOPS of theoretical peak performance.

We demonstrated how Dynamic Scheduling can overcome Static Scheduling with

regard to performance with other two additional applications. First, the tradeoffs of

Static Scheduling (SS) vs. Dynamic Scheduling (DS) are exposed using a Memory

Copy microbenchmark. Under scenarios with small amount of Hardware threads (e.g.

less than 48), SS overcome DS because SS is able to produce a balanced workload with

minimum overhead. However, increasing the number Thread Units makes SS schedule

highly unbalanced, loosing performance. DS is a feasible solution to manage these

complex scenarios and produces balanced workloads under more than a hundred Thread

Units with light overhead that allows doubling the performance in some cases. Second,

Sparse Vector Matrix Multiplication (SpVMM) was used to show the tradeoffs of SS vs

DS under heterogeneity of task controlling the variance of the sparsity distribution for

the matrix. In addition, we explained how the advantages of DS are further improved

by a low-overhead implementation using mechanisms provided by the architecture,

particularly in-memory atomic operations, diminishing the overall overhead of DS. As

a result, DS can remain efficient for finer task granularities.

We have demonstrated a technique to model the performance of parallel applica-

tions on many-core architectures with resource coordination conditions. Our approach,

based on timed Petri nets, results in algorithm specific models that allow us to account

for the resource constraints of the system and the needs of the algorithm itself. With

our approach, we were able to model the performance of a dense matrix multiplication

algorithm and a finite difference time-domain (FDTD) solution in 1D and 2D with

xix

a very high degree of accuracy, an average error of 4.4% with respect to the actual

performance of the algorithms. Finally, we demonstrated how to use our approach to

performance modeling to investigate, develop, and tune algorithms for modern many-

core architectures, we compared two different tiling strategies for the FDTD kernel and

we tested two different algorithms for LU Factorization.

We also proposed a general methodology for designing tiling techniques for en-

ergy efficient applications. The methodology proposed is based on an optimization

problem that produces optimal tiling and sequence of traversing tiles minimizing the

energy consumed and parametrized by the sizes of each level in the memory hierarchy.

We also showed two different techniques for solving the optimization problem for two

different applications: Matrix Multiplication (MM) and Finite Difference Time Domain

(FDTD). Our experimental evaluation shows that the techniques proposed reduce the

total energy consumption effectively, decreasing the static and dynamic component.

The average energy saving for MM is 61.21%, this energy saving is 81.26% for FDTD

compared with the naive tiling.

We studied and implemented several optimizations to target energy efficiency

on many-core architectures with software managed memory hierarchies using LU fac-

torization as a case of study. Starting with an implementation optimized for High

Performance. We analyzed the impact of these optimizations on the Static Energy Es,

Dynamic Energy Ed, Total Energy ET and Power Efficiency using the energy model

previously developed. We designed and applied further optimizations strategies at the

instruction-level and task-level to directly target the reduction of Static and Dynamic

Energy and indirectly increase the Power Efficiency. We designed and implemented

an energy aware tiling to decrease the Dynamic Energy. The tiling proposed mini-

mizes the energy contribution of the most power hungry instructions. The proposed

optimizations for energy efficiency increase the power efficiency of the LU factorization

benchmark by 1.68X to 4.87X, depending on the problem size, with respect to a highly

optimized version designed for performance. In addition, we point out examples of

optimizations that scale in performance but not necessarily in power efficiency.

xx

Finally, we showed tradeoffs between performance and energy optimizations for

Many-core architectures. We explained the partial relation between performance and

energy consumption through the Static Energy and execution time. We detailed some

reasons that explain why energy optimization are more challenging than performance

optimizations including: a) Performance optimizations just target directly the Static

Energy component, with diminishing benefits for the total energy consumption. b)

Some performance optimizations can affect negatively the Dynamic Energy component

diminishing even more the benefits for total energy; and c) Latency can be hidden

but energy cannot be; while multiple performance optimizations target a better use of

resources by reordering instructions, computations or tasks in order to hide latency, the

amount of work performed and the energy associated keep the same. All these reasons

motivate a deeper look at strategies that optimize Dynamic Energy such as the Power

Aware Tiling. Last, we showed how to exploit tradeoffs between performance and

energy using a parametric power aware tiling on a parallel matrix multiplication. We

reached 42% energy saving allowing a 10% decrease in performance using a rectangular

tiling instead of an square tiling.

xxi

Chapter 1

INTRODUCTION

The first stage of the evolution in microprocessors were dominated by an unin-

terrupted increase in processor frequency, transistor count and processor functionality.

As a consequence, programmers had needed minimum effort to increase the perfor-

mance of their programs because all the new improvements in hardware reflected on

automatic gains in performance. Unfortunately, these automatic gains can not be

sustained anymore because limitations in frequency and single processor functionality

have reach their limits.

These limitations are better known as walls. They are related to physical con-

strains such as the frequency wall and the power wall or architectural constrains such

as the memory wall and the ILP wall

1.1 Frequency Wall

Frequency of processors had followed and exponential increase from early 70’s

to approximately 2004 when it reached a threshold around 4GHz as can be seen in

Figure 1.1. Unfortunately, several factors stop the frequency increase and motivate

to decrease the frequency on future generations of processors. The main factor is the

relation between frequency and dynamic power given by Eq. 1.1

Pd = f · C · V 2
DD (1.1)

The increase in density of transistors for a single chip and the increasing in

frequency has pushed silicon to is thermal limit before melting. In addition, the elec-

tromagnetic side effects produced by higher frequencies introduce additional difficulties

in the hardware design process.

1

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Frequency of Processors vs Time

Figure 1.1: Processor Frequency over time

1.2 Power Wall

Power consumption in processors grew rapidly thanks to the increasing fre-

quency of processors and complexity of single processor cores. Heat generated by pro-

cessor makes necessary the use of passive heat sinks but later cooling systems where

required in order to keep the silicon at safe temperatures. Unfortunately it produces

additional increases in the power budget of a single-processor system. At the end,

power density is too high for a cost-effective cooling [1]

Unfortunately, this increase in power is not scalable in the supercomputer field.

Electrical energy cost and the infrastructure required to provide the electrical power to

modern supercomputers make economically and physically unfeasible a continuous in-

crease on power consumption. Power budget is a new variable on modern architectures

2

that limits not only the frequency of operation but also the architecture itself.

1.3 Instruction Level Parallelism (ILP) Wall

The increased capabilities of processors have played a significant role in the ad-

vances of Computer Architecture. The main objective of Instruction Level Parallelism

(ILP) is to increase the number of Instructions completed Per Cycle (IPC) or decreas-

ing its reciprocal, the average cycles to complete an instruction - Clocks Per Instruction

(CPI). The development of Vector Processing highly benefit the ILP, favoring specially

the field of High Performance Computing (HPC). However, it failed to penetrate the

processor market at large due to their high cost at that time.

Starting in the late 60’s, the development of new features provided greatest

impact in the consumer market, increasing the IPC of single processor architectures

at that time. These new features include Scoreboarding [2] that allows out of order

completion of instructions, the Tomasulo’s algorithm [3] that enables multiple instruc-

tions to be issued at the same time and the Reorder Buffer that allowed speculative

execution, among others.

However, the complexity of processors with higher IPC increases quadratically

with the number of simultaneous instructions supported [4]. For example, the Intel

Pentium II achieved only a 1.44X speedup over its predecessor, the Intel Pentium,

which uses half the number of transistors. In addition, if hardware is able to execute

multiple instructions at the same time, programs are not able to provide sufficient

independent instructions. Despite the efforts from compiler and computer architecture

sides, the maximum IPC has been constant in around 4 instructions per cycle during

the past few years. This is due to the complexity in processor architecture and the

data and control dependencies in programs.

1.4 Memory Wall

The increasing number of transistors per die area has allowed to include addi-

tional function units in processors and also larger memories.

3

Today, memory sizes continue increasing, they can store billions of bits, but

their speed has not increased as rapidly as the speed of processor chips. This has

created a gap between the speed of processors and the speed of memories.

Several techniques has been used to leverage this disparity between processors

and memories. They include additional levels of automatic cache that take advantage

of locality or prefetching units and context switches that try to hide the latency of

data movement. However, the memory wall is still challenging and several programs,

including HPC ones, are memory bounded. The limitation is the memory bandwidth

required to keep busy the computing units.

1.5 Moore’s Law

Despite the limitations reached on modern computer architecture for single pro-

cessors, the increase in transistor count per die following Moore’s law is still valid [5].

The number of transistors per die area continue doubling every 18 months following the

observation of Gordon E. Moore in his 1965 paper. Figure 1.2 shows how the number

of transistors per die grows exponentially, even after frequency of single processors stop

to increase.

Now, in order to overcome and leverage the effects of the Walls that have been

explained, the extra transistors are used to include additional processing elements,

bringing a parallel computing revolution.

1.6 Parallel Computing Era

Parallel Computing is not new. Countless efforts to design and build parallel

machines have been attempted at several points in the past.

In 1962, Borroughs Corporation introduced the D825, a computer with 4 pro-

cessors and 16 memory modules accessed through a crossbar switch. Also in 1969,

Honeywell introduced a symmetric multiprocessor system with 8 processors in parallel:

the first Multics system.

4

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Number of Transistor vs Time

Figure 1.2: Number of Transistors over time

Single Instruction Multiple Data parallel computers started with the ILLIAC

IV in 1964, from University of Illinois. It was able to work with 256 processors and

large data sets, taking advantage of vector processing. Later, Seymour Cray - chief

engineer and co-founder of Cray Research - was the architect of the Cray-1 in 1976.

They were followed by the Cray X-MP and Cray Y-MP in 1982 and 1988.

Dataflow has lead another one of the first efforts, proposed a fully parallel ma-

chine using the concept of Dataflow Procedure Language [6]. Later the architecture of

a highly concurrent multiprocessor which runs programs expressed in data flow nota-

tion was proposed [7]. It was followed by other related efforts such as the U-interpreter

in 1982 [8], and the Manchester Computer in 1986 [9].

These early successful initiatives started in the academia but failed to penetrated

5

the market. The trend of serial processors and serial programming models continued

for several years with a continuous and stable increase in performance until the walls

described in Sections 1.1, 1.2, 1.3 and 1.4 forced to rethink about Parallel Computer

Architecture. The increase in performance comes from the use of several processing

elements inside a single chip. This new paradigm on the common scenarios found in

many-core architectures (e.g. large number and heterogeneity of resources) requires

the study and development of new techniques that seek finer granularity and a greater

interplay in the sharing of resources. As a result, several elements of computer systems

and algorithm design need to be re-evaluated under these new scenarios, it includes

runtime systems, scheduling schemes and compiler transformations.

1.7 Document Organization

The rest of this thesis is organized as follows: Chapter 2 presents an overview

of Dataflow. Chapter 3 introduces the Problem Formulation and Research Questions

developed along this thesis. Chapter 4 explains the IBM Cyclops-64 (C64) many-core

architecture used in this work. Chapter 5 presents Low-level compiler transformations

for high performance on many-cores. Chapter 6 discusses Dynamic Techniques for

fine-grain, highly parallel programs. Chapter 7 explains a method to model the per-

formance of Many-core Architectures under Dynamic Scheduling and Resource Con-

straints. Chapter 8 proposes an scalable Energy Consumption Model for many-cores

and Power Aware Tiling Transformations. Chapter 9 discusses Energy Optimizations

in the context of Many-core Architectures. Chapter 10 explains some trade offs between

Performance and Energy optimizations. Chapter 11 outlines the related work and ex-

tensions of this research. Finally, Chapter 12 presents the summary and conclusions

of this thesis.

6

Chapter 2

AN OVERVIEW OF DATAFLOW

The dataflow program execution model, also know as dataflow for short, is

an alternative to the traditional von Neumann execution model. Dataflow relies on

a graph representation of the program and its advantages are the complements of

stored-program in von Neumann’s model. During the las forty or so years since it

was proposed, this model of computation has been used and developed in several

areas of computing research ranging from programming languages to processor design,

including applications to signal processing and reconfigurable computing. This chapter

summarizes the current state-of-the-art in the evolution of dataflow, focusing on multi-

threaded computing.

Dataflow is a very simple but powerful model for parallel computation. Dataflow

programming and architectures do not have the notion of program counter or control

flow such as a conventional sequential computer. In a dataflow model, computation is

described in terms of local events that correspond to the firing of an actor. An actor is

a single instruction or a sequence of instructions, the dataflow model does not impose

a limitation on the size or the complexity of an actor. An actor can fire when all the

inputs are available, in consequence many actors can fire at the same time, representing

asynchronous concurrent computation events [10].

The dataflow model of execution has its roots in the work of several researchers

[11, 12, 13, 6]. In the early 70’s, dataflow computer architecture emerged with the use

of dataflow graphs in programs to represent and exploit parallelism in them.

Dataflow allows distributed scheduling (each actor can decide “on its own”

whether it is ready to fire or not), rather than relying upon a central controller to

7

do so. In addition, the model of execution do not require a central memory system for

the data elements. They are passed directly from the instructions that produce them

to those that consume them.

2.1 The Static Model

Static dataflow machines share the property that in the dataflow graphs on

which they are based, an arc can only hold one token. As a consequence, if there is a

section of a program which is executed repeatedly (e.g., a loop body or a subroutine),

the corresponding section of the dataflow graph cannot allow simultaneous execution

of more than one instance of that code. There are two ways to solve this problem:

1. Pipeline the execution of the graph: Pipelining the graph for maximal parallelism
requires that the graph have a structure analogous to pipelined processors. The
graph must be organized neatly into stages, with no internal cycles, and all paths
through the graph must have the same length. Thus, shorter paths need to be
filled with identity actors that simply pass tokens along [14]

2. Replicate the graph: Replicating the graph works well when the number of iter-
ations can be determined at compile time, as in regular numerical applications,
but not when iteration counts are determined dynamically, e.g., irregular loops
or binary recursion.

An architecture to execute dataflow graphs was proposed by Dennis and Misunas

at MIT [11]. Their idea was to convert a dataflow graph into an essentially isomorphic

structure which would be more amenable to execution on real hardware. On dataflow

graphs, the arguments of actors flow on the arcs as tokens, this type of machines sim-

ilar to the Dennis-Misunas architecture are known as argument-flow machines. Other

argument-flow machines were later proposed [13, 15]

A shortcoming of the argument-flow implementations is the need for extra stor-

age for copying operands. As an alternative, The argument-fetch machines were pro-

posed to address this issue. In argument-fetch machines, data values are not attached

to a specific actor, but can be stored anywhere in the Operand Memory. This means

that instructions must contain references to those locations. Data no longer flows from

one actor to another; only signals flow. The program in an argument-fetch machine

8

looks much less like a dataflow graph, though it is functionally equivalent if constructed

properly.

2.2 The Unraveling Interpreter

While the static interpreter allows only one instance of an instruction at a time,

the U-interpreter proposed by Arvind [12] allows an indefinite number of instances of

a specific instruction to exist, as a loop unravels. This is done by adding iteration tags

to each data element and allowing execution of an instruction when its input operands

have arrived and they all carry identical iteration tags. Among other parameters, a

tag contains the iteration to which the data token belongs (other fields are used for

nested loops and recursive calls). The iteration field of the tag does not change within

the body of a loop but may be modified by special operators when a data element is

transferred from one iteration to another.

This interpretation model is quite dynamic because it exposes, at runtime, all

the parallelism that is inherent to the program graph being executed. However, this

comes at a price. First, an undesirable situation could develop as the program unravels,

It will happen when some parts of the program “run ahead,” while others are bogged

down since there is no central control. This could result in some local resources being

overwhelmed. In a related issue, the size of the tag could grow indefinitely in a situation

not unlike. However, again because of the lack of control, there would be no way to

keep this in check.

Despite the interesting possibilities presented by the U-interpreter, its generality

causes it to be impractical. A better understanding of the program structure and

control on the granularity are required.

2.3 Architecture Prototypes and Implementations

The initial research on dataflow scheduling spawned several architecture imple-

mentation projects. One of the firsts was the LAU machine [16] which relied upon a

9

single assignment language at the high level and upon associative memories to identify

ready instructions.

In another project, the Hughes Data-flow Machine (HDFM) [17] offered several

interesting hybrid concepts such as a higher granularity for acknowledgment between

blocks, update-in-place for large structures, as well as specialized handling for lower

dimensional arrays. Simulation results were promising and emphasized the need to be

“application-driven.”

One of the most important projects in the area, the Monsoon Dataflow Machine

[18, 19], resulted in actual machines manufactured my Motorola which were distributed

to various research groups for evaluation. Monsoon was based on the Unraveling In-

terpreter and actually implemented a mapping from the “virtual” tag to a “physical”

tag through a conversion process which entailed partitioning the code into blocks of

execution. One of the guiding principles behind the design of Monsoon was the close

mapping which existed between the high-level language Id (functional, single assign-

ment) and the low-level data-flow principles of execution. Monsoon was eventually

superseded by a more multi-threaded version, the StarT [20].

At that time, the technology did not always allowed a large amount of paral-

lelism, also the level of granularity used on the partition, allocation and scheduling did

not take into account well-known program constructs, causing an increasing sequential

overhead. Finally, the increasing performance of single processor machines, through

frequency scaling, decreased the interest on this new type of parallel machines.

2.4 Dataflow and Multithreaded Execution

Challenges for suitable multithreaded computer architecture in general purpose

parallel computers are the subject of intensive debate. They depend heavily on the

program execution model selected, affecting the programming model, the organization

of the system and the development and support of applications implemented in the

architecture (e.g. compiler, runtime system and tools) [21, 22].

10

In this context, a program execution model defines a basic low-level layer of

programming abstraction of the underlaying system architecture upon which the ar-

chitecture model, programming model, compilation strategy, runtime system, and other

software components are developed. It serves as an interface between the architecture

and the software [10]. Program execution model is in a broader (or higher) level than

instruction set architecture (ISA) specification. An ISA usually provides a description

of an instruction set for a particular machine that involves specific details of instruc-

tions such as instruction encoding and the organization of the machine registers set.

In the context of this work, a program execution model for multithreaded machines

includes the following aspects: the thread model, the memory model and the synchro-

nization [10].

Traditionally, the dataflow model and von Newmann serial control flow model

are viewed as two execution models on opposite sites used to design a spectrum of

architecture models. However, they are not orthogonal: Based on the operational

model of a pure dataflow graph, it can be extended to support von Newmann program

execution style. A region of actors in a dataflow graph can be grouped as a thread and

executed sequentially under a private program counter; at the same time, activation

and syncronization of threads can be data-driven. This hybrid model is flexible and

it can combine dataflow and control-flow evaluation, exposing parallelism at a desired

level.

As an example, the McGill Dataflow Architecture Model (MDAM) [23, 24] has

been proposed based on the argument-fetching principle. The architecture departs

from a direct implementation of dataflow graphs by having instructions fetch data

from memory or registers instead of having instructions deposit operands (tokens) in

“operand receivers” of successor instructions. The completion of an instruction will

post an event (called a signal) to inform instructions that depend on the results of

the instruction. This implements a modified model of dataflow computation called

dataflow signal graphs [25].

11

The ideas of Iannucci, inspired by his experience on dynamic dataflow architec-

tures, combined dataflow models with sequential thread execution on a hybrid com-

putation model that later evolved into a multithreaded architecture at IBM [26, 27].

This architecture includes features such as cache memory with synchronization con-

trols, prioritized processor ready queues and features for efficient process migration to

facilitate load balancing.

Multithreaded execution models with dataflow origin provide support for fine-

grain threads at two levels. For example, under the EARTH model [28, 29, 30], the

first level of threads is called threaded function invocation: parallel function invocation

forks a thread to execute the function in parallel. Note that the caller continues its own

execution without waiting for the return of the forked threaded function. At a lower

(finer) level, the body of a threaded function can be further partitioned (by a user or a

compiler) into fibers: a collection of operations that can be forked as a separate thread.

In this way, it is possible to define a thread model combining the advantages from both

the static and dynamic dataflow models: the thread function invocation provides full

generality as in the dynamic data flow model, while the finer level of threads maintains

the simplicity of the static dataflow through software pipelining.

Recently, another hierarchical multithreading model featuring a novel event-

driven, fine-grain, multithreading model has been proposed. The Codelet Execution

Model is a new model centered on the concepts and semantics of codelets [31, 32].

The execution model is based on the EARTH model [33] and has been extended by

Dennis’s Fresh Breeze Tree-Based Memory Model [34] and also well explored by the

ongoing DOE X-Stack execution model [31]. The codelet-based model has good fea-

tures for exascale systems design. Even though codelets have a higher granularity than

individual instructions, their granularity remains finer than that used by the execution

models of the commercial CPUs. The Codelet Execution Model is a hybrid model

that incorporates the advantages of macro-dataflow[26, 23, 10] and the Von Neumann

model. The Codelet Execution Model can be used to describe programs in massively

12

parallel systems, including hierarchical or heterogeneous systems. The Codelet Ex-

ecution Model extends traditional macro-dataflow models in the way shared system

resources are managed. The management of such resources is accomplished through

events created by threads. As in macro-dataflow, computation is done through units

of small serial code known as codelets, and execution is based solely on the availability

of the data required. Codelets are executed based on required events. An event can

consist of the availability of (shared) resources including data, processing elements,

bandwidth, energy, etc. Codelets are tagged with resource requirements and linked

together by data dependencies to form a graph (analogous to a dataflow graph [35]).

This graph is further partitioned into asynchronous procedures which are invoked in a

controlled flow manner. Moreover, the definition of events and the explicit expression

and inclusion of system resources in the parallel execution model makes the Codelet

Execution Model a promising model capable of addressing the power issues faced by

future large-scale computer systems. Works that use the codelet model include ETI’s

SWift Adaptive Runtime Machine (SWARM) [36] and TIDeFlow [37, 38, 39].

13

Chapter 3

PROBLEM FORMULATION

The new many-core era motivated by the recent efforts to build peta-scale and

exa-scale machines have brought several challenges for exploiting the parallelism on new

many-core architectures with hundreds, or even thousands, of independent processing

elements. The scenario inside these chips is different to previous multi-core processors,

some of the new characteristics are:

• Increasing amount of shared resources.

• Heterogeneity of resources.

• Diversity in coordination and arbitration mechanisms for shared resources.

• Constraints in energy consumption.

This new environment requires new techniques that seek finer granularity and a

greater interplay in the sharing of resources. These work re-evaluate several elements of

computer systems and algorithm design under these new scenarios, it includes runtime

systems, scheduling schemes and compiler transformations.

Moore’s law is still valid, the number of transistor in a single chip doubles

every 18 months approximately, but single processor architectures are not able to take

advantage of the increasing amount of transistors. Today, Computer Architecture

has become extremely parallel at all levels. The many-core era has arisen: A large

number of simple processing elements are preferred over few very complex but powerful

processors.

This new era brings two main challenges in the algorithms implemented on these

modern many-core architectures:

14

1. Shared resources have become the norm, ranging from the memory hierarchy
and the interconnections between processing elements and memory to arithmetic
blocks such as double floating point units, different mechanism at software and
hardware levels are used for the arbitration of these shared resources and need
to be consider on the scheduling and orchestration of tasks.

2. In order to take advantage of the increasing amount of parallelism available,
the number of tasks has increased and tasks have become finer, imposing new
challenges for a light and balanced scheduling subject to resource and energy
constraints.

The research proposed here will provide an analysis of these new scenarios,

proposing new methodologies and solutions that leverage these new challenges in order

to increase the performance and energy efficiency of modern many-core architectures.

During the pursue of these objectives, this research intends to answer the following

question:

1. Which is the impact of low-level compiler transformations such as tiling and
percolation to effectively produce high performance code for many-core architec-
tures?

2. What are the trade-offs of static and dynamic scheduling techniques to efficiently
schedule fine grain tasks with hundreds of threads sharing multiple resources
under different conditions in a single chip?

3. Which hardware architecture features can contribute to better scalability and
higher performance of scheduling techniques on many-core architectures on a
single-chip?

4. How to effectively model high performance programs on many-core architectures
under resource coordination conditions?

5. How to efficiently model energy consumption on many-cores managing trade offs
between scalability and accuracy?

6. Which are feasible methodologies for designing power-aware tiling transforma-
tions on many-core architectures?

So far, this thesis establish a clear methodology, propose solutions and provide

evidence in order to answer these questions.

15

Chapter 4

AN INNOVATIVE MANY-CORE ARCHITECTURE

Cyclops-64 (C64) is an innovative architecture developed by IBM, designed to

serve as a dedicated petaflop computing engine for running high performance appli-

cations. A C64 chip is an 80-processor many-core-on-a-chip design, as can be seen

in Figure 4.1. Each processor is equipped with two thread units (TUs), one 64-bit

floating point unit (FP) and two SRAM memory banks of 30kB each. It can issue one

double precision floating point “Multiply and Add” instruction per cycle, for a total

performance of 80 GFLOPS per chip when running at 500MHz.

Cyclops 64 Chip

…

DDR2

Controller

Off-Chip

Memory

DDR2

Controller

Off-Chip

Memory

DDR2

Controller

Off-Chip

Memory

DDR2

Controller

Off-Chip

Memory

Host
Interface

A

Switch

3D Mesh

FPGA

Gigabit

Ethernet

Control

Network

Blade

FPU

SRAM SP

Processor 1

TU TU

SP

FPU

SRAM SP

Processor 2

TU TU

SP

FPU

SRAM SP

Processor 80

TU TU

SP

Crossbar Network

HD

Figure 4.1: C64 Chip Architecture

A 96-port crossbar network with a bandwidth of 4GB/s per port connects all

TUs and SRAM banks. The total crossbar network bandwidth of 384GB/s supports

16

Latency
Overall Bandwidth

Load: 2 cycles; Store: 1 cycle

640GB/s

Load: 57 cycles; Store: 28 cycles
16GB/s (Multiple load and Multiple store

instructions); 2GB/s

Load: 31 cycles; Store: 15 cycles

320GB/s

64
Registers

SP
16kB

GM
~2.5MB

Off-Chip
DRAM

1GB

Read: 1 cycle
Write: 1 cycle

1.92 TB/s

Figure 4.2: Memory Hierarchy of C64

both the intra-chip communication, as well as the six routing ports that connect each

C64 chip to its neighbours [40]. The complete C64 system is built out of tens of

thousands of C64 processing nodes arranged in a 3-D mesh topology. Each processing

node consists of a C64 chip, external DRAM, and a small amount of external interface

logic.

4.1 Memory Hierarchy

A C64 chip has an explicit three-level memory hierarchy (scratchpad memory,

on-chip SRAM, off-chip DRAM), 16 instruction caches of 32kB each (not shown in

the figure) and no data cache. The scratchpad memory (SP) is a configured portion

of each on-chip SRAM bank which can be accessed with very low latency by the TU

it belongs to. The remaining sections of all on-chip SRAM banks consist the on-chip

17

global memory (GM), which is uniformly addressable from all TUs. As a summary,

Figure 4.2 reflects the current size, latency (when there is no contention) and bandwidth

of each level of the memory hierarchy.

Execution on a C64 chip is non-preemptive and there is no hardware virtual

memory manager. The former means that the C64 micro-kernel will not interrupt

the execution of a user application unless an exception occurs. The latter means the

three-level memory hierarchy of the C64 chip is visible to the programmer.

All memory controllers in C64 support in-memory atomic operations: Each

memory controller has an ALU that allows it to execute atomic operations in 3 clock

cycles directly inside the memory controller (both SRAM and DRAM), without help

from a thread unit.

4.2 Energy Consumption

Because C64 is a general purpose many-core architecture it has not been de-

signed for energy efficiency and it does not have special features for saving power. For

example, it is not possible to turn off cores not used or to slow down the clock rate of

a set of cores or for the whole chip.

Despite the fact that the C64 Instruction Set Architecture (ISA) does not in-

clude any additional instructions that help reduce energy consumption we can group

the instructions according to the hardware units they use and the complexity of the

operation (reflected indirectly on the execution time if there is not contention). Fur-

thermore, we can use these groups to build our energy consumption model. According

with that, the taxonomy proposed for the ISA is:

• Logical Operations: And, or, etc.

• Integer Arithmetic Operations:

– Simple: Add, sub.

– Medium: Multiply.

• Floating Point Operations:

– Simple: Add, sub.

18

– Medium: Multiply, multiply and add.

• Memory Operations:

– On Registers: Move, load immediate.

– On SPM: load, store.

– On SRAM: load, store.

– On DRAM: load, store.

Some instructions not mentioned here. For example, branches can be included

in the logical operations category, given the hardware resources and amount of work

they require.

19

Chapter 5

STATIC OPTIMIZATIONS IN THE CONTEXT OF MANY-CORE
ARCHITECTURES

Traditional parallel programming methodologies for improving performance as-

sume cache-based parallel systems. They exploit temporal locality making use of cache

tiling techniques with tile size selection and padding [41, 42]. However, the data lo-

cation and replacement in the cache is controlled by hardware making fine control

of these parameters difficult. In addition, power consumption and chip die area con-

straints make increasing on-chip cache an untenable solution to the memory wall prob-

lem [43, 44].

As a result, new architectures like the IBM Cyclops-64 (C64) belong to a new

set of many-core-on-a-chip systems with a software managed memory hierarchy. These

new kinds of architectures hand the management of the memory hierarchy to the

programmer and save the die area of hardware cache controllers and over-sized caches.

Although this might complicate programming at their current stage, these systems

provide more flexibility and opportunities to improve performance. Following this path,

new alternatives for classical algorithmic problems, such as Dense Matrix Multiplication

(MM), LU Factorization (LU) and Fast Fourier Transform (FFT) have been studied

under these new many-core architectures [45, 46, 47]. The investigation of these new

opportunities leads to two main conclusions: (1) The optimizations for improving

performance on cache-based parallel system are not necessarily feasible or convenient

on software managed memory hierarchy systems. (2) Memory access patterns reached

by appropriate tiling substantially increase the performance of applications.

Based on these observations we can conclude that new programming and com-

piling methodologies are required to fully exploit the potential of these new classes

20

of architectures. We believe that a good starting point for developing such method-

ologies are classical algorithms with known memory access and computation patterns.

These applications provide realistic scenarios and have been studied thoroughly under

cache-based parallel systems.

Following this idea, we present a general methodology that provides a mapping

of applications to software managed memory hierarchies, using MM on C64 as a case

of study. MM was chosen because it is simple to understand and analyze, but compu-

tationally and memory intensive. For the basic algorithm, the arithmetic complexity

and the number of memory operations in multiplications of two matrices of sizes m×m

are O(m3) .

The methodology presented in this thesis is composed of three strategies that

result in a substantial increase in performance, by optimizing different aspects of the

algorithm. The first one is a balanced distribution of work among threads. Providing

the same amount of work to each thread guarantees minimization of the idle time of

processing units waiting for others to finish. If a perfect distribution is not feasible, a

mechanism to minimize the differences is proposed. The second strategy is an optimal

register tiling and sequence of traversing tiles. Our register tiling and implementation

of the sequence of traversing tiles are designed to maximize the reuse of data in registers

and minimize the number of memory accesses to slower levels, avoiding unnecessary

stalls in the processing units while waiting for data. The last strategy involves more

specific characteristics of C64. The use of special instructions, optimized instruction

scheduling and other techniques further boost the performance reached by the previous

two strategies. The impact on performance can change according to the particular

characteristics of the many-core processor used.

The experimental evaluation was performed using a real C64 chip. After the

implementation of the three strategies proposed, the performance reached by the C64

chip is 44.12 GFLOPS, which corresponds to 55.2% of the peak performance.

21

5.1 Classic Matrix Multiplication Algorithms

MM algorithms have been studied extensively. These studies focused mainly

on two areas: (1) Algorithms that decreases the näıve complexity of O(m3). (2) Im-

plementations that take advantage of advanced features of computer architectures to

achieve higher performance. This study is oriented towards the second area.

In the first area, more efficient algorithms are developed. Strassen’s algo-

rithm [48] is based on the multiplication of two 2 × 2 matrices with 7 multiplica-

tions, instead of 8 that are required in the straightforward algorithm. The recursive

application of this fact leads to a complexity of O(mlog7) [49]. Disadvantages, such

as numerical instability and memory space required for sub-matrices in the recursion,

have been discussed extensively [50, 51]. The current best lower bound is O(m2.376),

given by the Coppersmith–Winograd algorithm [52]. However, this algorithm is not

used in practice, due to its large constant term.

The second area focuses on efficient implementations. Although initially more

emphasis was given towards implementations for single processors, parallel approaches

quickly emerged. A common factor among most implementations is the decomposition

of the computation into blocks. Blocking algorithms not only give opportunities for

better use of specific architectural features (e.g., memory hierarchy) but also are a

natural way of expressing parallelism. Parallel implementations have exploited the

interconnection pattern of processors, like Cannon’s matrix multiply algorithm [53, 54,

55], or the reduced number of operations like Strassen’s algorithm [56, 57, 58]. These

implementations have explored the design space along different directions, according

to the targeted parallel architecture.

The many-core architecture design space has not yet been explored in detail,

but existing studies already show their potential. A performance prediction model

for Cannon’s algorithm has shown a huge performance potential for an architecture

similar to C64 [59]. Previous research of MM on C64 showed that is possible to increase

performance substantially by applying well known optimizations methods and adapting

them to specific features of the chip [46]. More recent results on LU Factorization

22

conclude that some optimizations that performs well for classical cached-based parallel

system are not the best alternative for improving performance on software managed

memory hierarchy systems [47].

5.2 Proposed Matrix Multiplication Algorithm

In this section we analyze the proposed MM algorithm and highlight our design

choices. The methodology used is oriented towards exploiting the maximum benefit

of features that are common across many-core architectures. Our target operation is

the multiplication of dense square matrices A × B = C, each of size m × m using

algorithms of running time O(m3). Throughout the design process, we will use some

specific features of C64 to illustrate the advantages of the proposed algorithm over

different choices used in other MM algorithms.

Our methodology alleviates three related sources identified to cause poor per-

formance in many-core architectures: (1) Inefficient or unnecessary synchronization.

(2) Unbalanced work between threads. (3) Latency due to memory operations. Re-

lation and impact in performance of these sources are architecture dependent and

modeling their interactions has been an active research topic.

In our particular case of interest, the analysis of MM is easier than other algo-

rithms not only for the simple way it can be described but also for the existence of

parallel algorithms that do not required synchronizations. It simplifies the complexity

of our design process because we only need to carefully analyze in two instead of the

three causes of poor performance we have identified as long as the algorithm proposed

does not require synchronizations. These challenges will be analyzed in the following

subsections.

5.2.1 Work Distribution

The first challenge in our MM algorithm is to distribute work among P pro-

cessors avoiding synchronization. It is well known that each element ci,j ∈ C can

be calculated independently. Therefore, serial algorithms can be parallelized without

23

requiring any synchronization for the computation of each element ci,j, which immedi-

ately solves this requirement.

The second step is to break the m × m matrix C into blocks such that we

minimize the maximum block size pursuing optimal resource utilization and trying to

avoid overloading a processor. This is optimally done by breaking the problem into

blocks of m2

P
elements, but the blocks must be rectangular and fit into C.

One way to break C in P rectangular blocks is dividing rows and columns of

C into q1 and q2 sets respectively, with q1 · q2 = P . The optimal way to minimize the

maximum block size is to divide the m rows into q1 sets of
⌊
m
q1

⌋
rows (with some having

an extra row) and the same for columns. The maximum tile size is
⌈
m
q1

⌉
·
⌈
m
q2

⌉
and it

is bounded by
(

m
q1

+ 1
)
·
(

m
q2

+ 1
)

. The difference between this upper bound and the

optimal tile size is m
q1

+ m
q2

+ 1 and this difference is minimized when q1 = q2 =
√
P .

If P is not a square number, we find the q1 that is a factor of P and closest but not

larger than
√
P . To further optimize, we can turn off some processors if the maximum

tile size could be decreased. In practice, this reduces to turning off processors if q2− q1

is smaller and in general, this occurs if P is prime or one larger than a square number.

5.2.2 Minimization of High Cost Memory Operations

After addressing the synchronization and load-balancing problems for MM, the

next major bottleneck is the impact of memory operations. Despite the high band-

width of on-chip memory in many-core architectures (e.g. C64), bandwidth and size

of memory are still bottlenecks for algorithms, producing stalls while processors are

waiting for new data. As a result, implementations of MM, LU and FFT are still

memory bound [45, 46, 47]. However, the flexibility of software-managed memory hier-

archies provides new opportunities to the programmer for developing better techniques

for tiling and data locality without the constraints imposed by cache parameters like

line sizes or line associativity [60, 47]. It implies an analysis of the tile shapes, the tile

size and the sequences in which tiles have to be traversed taking advantage of this new

dimension in the design space.

24

While pursuing a better use of the memory hierarchy, our approach takes two

levels of this hierarchy, one faster but smaller and the other slower but bigger. Our

objective is to minimize the number of slow memory operations, loads (LD) and stores

(ST), that may are function of the problem (Λ), the number of processors (P), the tile

parameters (L) and the sequence of traversing tiles (S), subject to the data used in

the current computation (R) cannot exceed the size of the small memory (Rmax). This

can be expressed as the optimization problem:

min
L,S

LD (Λ, P, L, S) + ST (Λ, P, L, S) , s.t. R (Λ, P, L, S) ≤ Rmax (5.1)

In our case, internal registers are the fast memory and Λ is the MM with the

partitioning described in subsection 5.2.1. Our analysis assumes a perfect load-balanced

case where each block C ′ ∈ C of size n × n
(
n = m√

P

)
computed by one processor is

subdivided in tiles C ′i,j ∈ C ′ of size L2 × L2. Based on the data dependencies, the

required blocks A′ ∈ A and B′ ∈ B of sizes n ×m and m × n are subdivided in tiles

A′i,j ∈ A′ and B′i,j ∈ B′ of sizes L2 × L1 and L1 × L2 respectively.

Each processor requires 3 nested loops for computing all the tiles of its block.

Using loop interchange analysis, an exhaustive study of the 6 possible schemes to

traverse tiles was conducted and two prototype sequences S1 and S2 were found. The

algorithms that describe these sequences are in Figure 5.1.

Based on the data dependencies of this implementations, the general optimiza-

tion problem described in (5.1) can be expressed for our case by Eq. (5.2).

min
L∈{L1,L2},
S∈{S1,S2}

f (m,P, L, S) =

2
L2
m3 +m2 if S = S1(
2
L1

+ 1
L2

)
m3 +

(√
P − 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax

(5.2)

Analyzing the piecewise function f , it can be easily shown that S1 sequence has

an smaller objective function than S2 under the conditions P ≥ 4 and L2

L1
≥ 1

2
. The first

25

S1: for i = 1 to n
L2

S2: for j = 1 to n
L2

S3: Initialize C ′i,j
S4: for k = 1 to m

L1

S5: Load A′i,k, B′k,j
S6: C ′i,j+ = A′i,k ·B′k,j
S : end for

S7: Store C ′i,j
S : end for

S : end for

(a) Algorithm using sequence S1

S1: for i = 1 to n
L2

S2: for k = 1 to m
L1

S3: Load A′i,k
S4: for j = 1 to n

L2

S5: if k = 1 then Initialize C ′i,j
S6: else Load C ′i,j
S7: Load B′k,j
S8: C ′i,j+ = A′i,k ·B′k,j
S9: Store C ′i,j
S : end for

S : end for

S : end for

(b) Algorithm using sequence S2

Figure 5.1: Implementation of sequences for traversing tiles in one block of C

one is easily satisfied in many-cores, the second one can be satisfied when 2L2 ≥ L1

and it can be verified with the solution.

We will solve the integer optimization problem using the branch and bound

technique. Since f only depends on L2 (when S = S1), we minimize the function f

by maximizing L2. Given the constraint, L2 is maximized by minimizing L1. Thus

L1 = 1, we solve the optimum L2 in the boundary of the constraint and round off it.

The solution of Eq. (5.2) is:

L1 = 1, L2 =
⌊√

1 +Rmax − 1
⌋

(5.3)

This result is not completely accurate, since we assumed that there are not

remainders when we divide the matrices into blocks and subdivide the blocks in tiles.

Despite this fact, they can be used as a good estimate.

For comparison purposes, C64 has 63 registers and we need to keep one register

for the stack pointer, pointers to A,B,C matrices, m and stride parameters, then

Rmax = 63 − 6 = 57 and the solution of Eq. (5.3) is L1 = 1 and L2 = 6. Table 5.1

summarizes the results in terms of the number of LD and ST for the tiling proposed

and other 2 options that fully utilizes the registers and have been used in practical

26

algorithms: inner product of vectors (L1 = 28 and L2 = 1) and square tiles (L1 =

L2 = 4). As a consequence of using sequence S1, the number of ST is equal in all tiling

strategies. As expected, the tiling proposed has the minimum number of LD: 6 times

less than the inner product tiling and 1.5 times less than the square tiling.

Table 5.1: Number of memory operation for different tiling strategies

Memory Operations Inner Product Square Optimal

Loads 2m3 1
2m

3 1
3m

3

Stores m2 m2 m2

5.2.3 Architecture Specific Optimizations

Although the general results of subsection 5.2.2 are of major importance, an

implementation that properly exploits specific features of the architecture is also im-

portant for maximizing the performance. We will use our knowledge and experience

for taking advantage of the specific features of C64 but the guidelines proposed here

could be extended to similar architectures.

The first optimization is the use of special assembly functions for Load and

Store. C64 provides the instructions multiple load (ldm RT, RA, RB) and multiple

store (stm RT, RA, RB) that combine several memory operations into only one in-

struction. For the ldm instruction, starting from an address in memory contained in

RA, consecutive 64-bit values in memory are loaded into consecutive registers, starting

from RT through and including RB. Similarly, stm instruction stores 64-bit values in

memory consecutively from RT through and including RB starting in the memory

address contained in RA.

The advantage in the use of these instructions is that the normal load instruction

issues one data transfer request per element while the special one issues one request each

64-byte boundary. Because our tiling is 6×1 in A and 1×6 in B, we need A in column-

major order and B in row-major order as a requirement for exploiting this feature. If

they are not in the required pattern, we transpose one matrix without affecting the

27

complexity of the algorithms proposed because the running time of transposition is

O(m2).

The second optimization applied is instruction scheduling: the correct inter-

leaving of independent instructions to alleviate stalls. Data dependencies can stall the

execution of the current instruction waiting for the result of one issued previously. We

want to hide or amortize the cost of critical instructions that increase the total compu-

tation time executing other instructions that do not share variables or resources. The

most common example involves interleaving memory instructions with data instruc-

tions but there are other cases: multiple integer operations can be executed while one

floating point operation like multiplication is computed.

5.3 Experimental Evaluation

This section describes the experimental evaluation based on the analysis done

in section 5.2 using the C64 architecture described in section 4. Our baseline parallel

MM implementation works with square matrices m×m and it was written in C. The

experiments were made up to m = 488 for placing matrices A and B in on-chip SRAM

and matrix C in off-chip DRAM, the maximum number of TUs used is 144.

To analyze the impact of the partitioning schema described in subsection 5.2.1

we compare it with other two partition schemes. Figure 5.2 and Figure 5.3 show the

performance reached for two different matrix sizes. In Partitioning 1, the m rows are

divided into q1 sets, the first q1 − 1 containing
⌊
m
q1

⌋
and the last set containing the

remainder rows. The same partitioning is followed for columns. It has the worst per-

formance of the three partitions because it does not minimize the maximum tile size.

Partitioning 2 has optimum maximum tile size of
⌈
m
q1

⌉
·
⌈
m
q2

⌉
but does not distribute the

number of rows and columns uniformly between sets q1 and q2 respectively. Its perfor-

mance is very close to our algorithm Partitioning 3, which has optimum maximum tile

size and better distribution of rows and columns between sets q1 and q2 respectively. A

disadvantage of Partitioning 2 over Partitioning 3 is that for small matrices (n ≤ 100)

and large number of TUs Partitioning 2 may produce a significant lower performance

28

as can be observed in Figure 5.2. Our partitioning algorithm Partitioning 3 performs

always better, the maximum performance reached is 3.16 GFLOPS. The other one

with optimum maximum tile size performs also well for large matrices, indicating that

minimizing the maximum tile size is an appropriate target for optimizing the work

load. In addition, our partition algorithm scales well with respect to the number of

threads which is essential for many-core architectures.

0.0

0.5

1.0

1.5

2.0

2.5

1 4 9 16 25 36 49 64 81 100 121 144

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Thread Units

Partitioning 1

Partitioning 2

Partitioning 3

Figure 5.2: Different Partition Schemes vs. Number of Threads Units. Matrix Size
100× 100

The results of the progressive improvements made to our MM algorithm are

shown in Figure 5.4 for the maximum size of matrices that fits on SRAM. The im-

plementation of the tiling strategy proposed in subsection 5.2.2 for minimizing the

number of memory operations, was made in assembly code using tiles of 6 × 1, 1 × 6

and 6 × 6 for blocks in A, B and C respectively. Because the size of blocks in C

29

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 4 9 16 25 36 49 64 81 100 121 144

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Thread Units

Partitioning 1

Partitioning 2

Partitioning 3

Figure 5.3: Different Partition Schemes vs. Number of Threads Units. Matrix Size
488× 488

are not necessarily multiple of 6, all possible combinations of tiles with size less than

6 × 6 were implemented. The maximum performance reached was 30.42 GFLOPS,

which is almost 10 times the maximum performance reached by the version that uses

only the optimum partition. This big improvement shows the advantages of the cor-

rect tiling and sequence of traversing tiles that directly minimizes the time waiting for

operands, substituting costly memory operations in SRAM with operations between

registers. From another point of view, our tiling increases the reuse of data in registers

minimizing number of access to memory for a fixed number of computations.

The following optimizations related more with specific features of C64 also in-

creased the performance. The use of multiple load and multiple store instructions

30

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1 4 9 16 25 36 49 64 81 100 121 144

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Thread Units

Partitioning

Tiling

Optimization 1 - ldm/stm

Optimization 2 - Inst. Scheduling

Figure 5.4: Impact of each optimization on the performance of MM using m = 488

(ldm/stm) diminishes the time spent transferring data addressed consecutively in mem-

ory. The new maximum performance is 32.22 GFLOPS: 6% better than the version

without architecture specific optimizations. The potential of these features has not

been completely explored because transactions that cross a 64-byte boundary are di-

vided and transactions in groups of 6 do not provide an optimum pattern for minimizing

this division. Finally, the instruction scheduling applied for hiding the cost of some

instructions doing other computations in the middle increases performance by 38%.

The maximum performance of our MM algorithm is 44.12 GFLOPS which corresponds

to 55.2% of the peak performance of a C64 chip.

31

Chapter 6

THE PROBLEM OF STATIC TECHNIQUES AND THE RISING OF
DYNAMIC OPTIMIZATIONS FOR MANY-CORE ARCHITECTURES

Recent trends in computer architecture, where many-core processors are rou-

tinely composed of hundreds of processing cores, have unleashed challenges in many

aspects of computing technology. Task scheduling, in particular, is difficult in many-

core architectures due to the quantity, availability, and diversity of resources: Static

Techniques, including for example Static Scheduling (SS), were usually preferred over

Dynamic Techniques, including for example Dynamic Scheduling (DS), for regular and

embarrassingly parallel applications on general purpose architectures. However, tech-

niques such as SS are not necessarily the best choice for many-core architectures, even

for regular, embarrassingly parallel applications.

The two main factors that usually hurt the expected advantages of SS over DS

in many-cores are:

1. The large number of processing elements in a many-core chip results in fewer
tasks assigned to each processing element.

2. The behavior and interaction of shared resources are not necessarily uniform
during execution.

These two new factors blunt the effectiveness of SS while greatly favoring DS,

even under scenarios where SS has traditionally been the logical solution.

Keeping the abundant number of Processing Elements (PEs) inside of a chip

busy, when resources are limited, results in few tasks per PE, often with comparatively

small durations. Thus, a totally balanced distribution of tasks becomes a daunting

challenge as problem sizes and application features make individual situations very

different. Even within the design space of fixed problem sizes, not all tasks will be

32

identical, because the problem size may or may not be a multiple of the expected task

size, resulting in varying task sizes. These small variations in the sizes can contribute

to the imbalance of the system, in particular when the granularity of the task is fine

and the number of tasks per PE is decreased.

Shared resources are an important source of task imbalance because the ar-

bitration of shared resources may produce unexpected stalls that could change the

completion time of similar tasks. The most common shared resources on many-cores

are the memory, the communication infrastructure (e.g. crossbar, access ports), and

the functional units (e.g. Floating Point Units and other special purpose units).

All of these sources of imbalance make it difficult for SS to provide a strategy

that fully utilizes the hardware. This produces results below those expected, even for

classical regular applications like Matrix Multiply [61].

The nature of DS can manage and compensate for the unpredictable effects of

resource sharing and imbalance introduced by the granularity of tasks. However, it

remains a challenge to execute a low-overhead implementation of DS in architectures

without adequate hardware support. In contrast, when hardware support is available,

it is possible to deliver high throughput and low latency using a DS implementation

with overall results superior to those of an SS approach. This superiority can be

observed in situations that were traditionally favorable to SS (regular applications in

homogeneous architectures) and in situations with fine-grained tasks with some degree

of heterogeneity.

In addition, to solve the difficulties in percolation and scheduling, we can take

advantage of the fine-grain synchronization primitives available in many-core archi-

tectures. Percolation and dynamic scheduling can be fused together in what we call

dynamic percolation which dynamically schedules data prefetching at an appropriate

time so that (1) data is available when the computation needs it and (2) the percolation

operation is done when enough memory bandwidth is available.

33

Operand Optimization Performance
Placement (GFLOPS)

SRAM Static Partition 3.16
SRAM +Register Tiling 30.42
SRAM +Instruction Scheduling 44.20

Percolation
DRAM +Synch. Optimization 13.90

+Opt. Data Movement

Table 6.1: Summary of Previous Results of MM on C64

6.1 Motivation

Several efforts have been made to study the optimization of applications [61, 45,

47, 60] for the IBM Cyclops-64 (C64) [40]. Those studies, however, show results that

are still far from the theoretical maximum performance. To understand the problem,

we have analyzed one of the simplest examples of Static Scheduling to find the issues

that have prevented better results.

Two recent studies in the implementation of Matrix Multiplication on C64

[46, 61] have shown the effectiveness of several optimization techniques (Table 6.1).

The initial implementations studied targeted SRAM and DRAM and they achieved a

performance of 13.9 GFLOPS [46]. Further optimization of on-chip SRAM memory

usage resulted in a performance of 44.12 GFLOPS [61].

As can be observed from Table 6.1, the maximum performance reported after

several static optimizations barely surpassed one half of the peak performance with all

operands in SRAM.

The implementation in our study (Matrix Multiply) was improved to 58.95

GFLOPS when Optimum Register Tiling [61] with Data-Prefetching was used. Sur-

prisingly, this implementation is still far from the expected peak performance, even

after months of optimizing carefully-written assembly code and after significant theo-

retical and experimental effort to find an optimal register-tiling strategy [61].

34

The comparatively low performance achieved – even after the carefully opti-

mized assembly code implementation– prompted an investigation into the factors that

prevented us from reaching a higher performance. To do so, we conducted an extensive

and careful profiling of the application.

Two cases, both using SS, were studied in particular: A multiplication of the

largest matrices that can fit in SRAM (Figure 6.1) and a multiplication of smaller ma-

trices also in SRAM (Figure 6.2). Smaller matrices are required for implementation of

matrix multiplication in DRAM doing overlapping of computation and data movement

with SRAM.

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Thread Unit

%
 E

x
e

c
u
ti
o
n

 T
im

e

Computing
Optimum Tile

Computing
Border Tile

(Smaller Tile)
Idle

Figure 6.1: Workload Distribution for a MM of size 488× 488

The following observations can be made:

• The amount of time computing tiles whose size was optimized for maximum
performance does not surpass 70% of the execution time in any thread.

35

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Thread Unit

%
 E

x
e

c
u
ti
o
n

 T
im

e

Computing
Optimum Tile

Computing
Border Tile

(Smaller Tile)
Idle

Figure 6.2: Workload Distribution for a MM of size 192× 192

• The problem size is not always a multiple of the optimum tile size, so smaller tiles
have to be included in the computation, adding to the imbalance of the system.
This causes problems because either (1) the computation is partitioned into tiles,
which may result in different number of tiles per thread or (2) the computation is
partitioned evenly among threads, which may not be as efficient as partitioning
the computation in carefully chosen tiles.

• In general, when the size of a problem decreases, the fraction of tiles that are
not of the optimum size increases. This hurts the performance because smaller
tasks may not fully take advantage of the available resources, even if they are
optimized.

• The idle (wasted) time includes the time spent in synchronization, flow control,
and scheduling. It is more than 10% in the best case and increases dramatically
when the matrix size decreases.

We see that SS is not necessarily a good strategy in many-core processors, even

for the case of highly regular parallel benchmarks.

36

6.2 Static Scheduling and Data Partitioning

Scheduling is an important optimization for programs once the bottleneck of

memory bandwidth has been removed through tiling.

Scheduling presents challenges in itself since it requires assignment of work to

processors at the appropriate time, taking into account issues such as availability of

resources and availability of data. The scheduling problem is complicated by the fact

that the tasks scheduled to each processor are not necessarily identical. The problem

seems simpler for regular and embarrassingly parallel applications, where the amount

of data can be distributed uniformly between TUs, expecting similar execution times.

Two main factors under the scenario imposed by many-core architectures decrease the

expected performance of this static approach to the point of making it impractical even

for regular applications. These two factors are: 1) shared resources and 2) size and

shape of tiles.

Shared resources such as function units or bandwidth are a source of imbalance

even with tasks that perform similar computations over the same amount of data.

As a result, tasks may have different execution times due to competition for shared

resources. This factor is critical on many-cores, where shared resources are abundant

at different levels with diverse arbitration schemes.

The size and shape of the tiles greatly influence the performance of an appli-

cation. Numerous publications [61, 62, 47, 60] have been devoted to the discussion of

what is the optimal tile that must be used for a problem. Usually, criteria to select a

good tile size is that which maximizes the ratio of computation to memory operations

given some constraints such as available memory, the desired parallelism, or the num-

ber of processing units in a chip. Although tiling effectively improves the efficiency of

the computation, it is not always possible to place all of a problem’s data into tiles

since it is frequent that the problem dimensions are not a multiple of the tile size. For

that reason, in general, problems result in a combination of optimal-sized tiles and

non-optimal-sized tiles.

For example, as explained in Section 5, the best strategy to compute a matrix

37

Partition for TU=4 Partition for TU=9

Figure 6.3: The figure illustrates the problem of partitioning. Tiles of 3 × 3 are
optimum-sized and they result in the best performance. However, as the
number of Thread Units (TUs) increase, the number of optimum-sized
tiles decrease. In the Figure, a matrix of 15× 15 results in 16 optimum-
sized tiles when using 4 TUs, but only 9 optimum-sized tiles are available
when using 9 TUs.

multiplication was to divide the computation uniformly between blocks according to

the number of Thread Units (TUs) and partition these blocks into optimal-sized tiles

if possible [61], even if such a partition left some non-optimal-sized tiles. Although the

idea of partitioning a problem into equal work for all the TUs works well, it may still

result in some non-optimal-sized tiles left because the problem size is not necessarily

a multiple of the tile size used. These remaining non-optimal-sized tiles result in

poor performance during execution. Two factors exacerbate the presence of slow non-

optimal tiles: 1) an increased number of TUs working in parallel and 2) a limited

amount of on-chip shared memory available to host the data. These two conditions

are evident on a many-core environment and they will ultimately limit the ability of

an application to reach peak performance. Figure 6.3 shows a simple example where

the amount of data that belongs to non-optimum-sized tiles (in light colors) increases

when the number of TUs increases and the amount of data shared is limited.

6.3 Percolation

Uninterrupted computation by the processing units in a many-core chip requires

data to be available continuously. Percolation is the process by which data is moved

across the levels of memory hierarchy to meet the necessities of locality for computation.

38

Percolation is related to data prefetching in that both achieve the same objective. As

opposed to conventional data prefetching, percolation operations are expressed as tasks

on their own, with precedence relationships with other computational tasks and with

restrictions to available resources such as bandwidth or on-chip memory space.

One of the main challenges of percolation is the decision of when to move data.

Data moved too early will occupy buffer space for an unnecessary amount of time while

data moved too late will stall the computation that depends on it. It is difficult to

know a priori when percolation should be done. As explained in the previous section,

not all tiles are of the same size, and not all tiles take the same amount of time, even

when they perform similar amounts of computations.

For example, Garcia’s approach to optimize Matrix Multiply failed to achieve

peak performance [61], in part, due to the difficulties of scheduling the percolation

operations at an appropriate time.

An interesting research direction is the development of strategies to schedule

percolation operations at the right time.

Taking as example the Matrix Multiply algorithm, the majority of the processing

is computing tiles. Therefore, computation deserves special attention. The Instruction

Scheduling made by Garcia et. al. [61], only partially hides the latency incurred while

fetching the operands a and b from SRAM to registers.

To eliminate stalls due to latency, we used percolation of operands a and b into

registers using loop unrolling in the calculation of the tile. Figure 6.4 shows the pseudo-

code for calculating one tile C of size L1×L2 with and without Percolation. Uppercase

variables are arrays in share memory and lowercase variables are arrays allocated in

registers.

Unrolling the loop once and carefully using instruction scheduling, we can sig-

nificantly increase the time between the issue of loads for operands a and b and com-

putations where they are required through carefully scheduled percolation operations.

In [61] we showed that L1 = L2 = 6 consumes a bandwidth below crossbar saturation.

A basic analysis of the unrolled loop show us that the required number of registers

39

S1: c[1..L1][1..L2] = 0
S2: for k = 1 to m, k ++
S3: a[1..L1][1] = A[i..i+ L1][k]
S4: b[1][1..L2] = B[k][j..j + L2]
S5: c[1..L1][1..L2]+ = a[1..L1][1]× b[1][1..L2]
S : end for

S6: C[i..i+ L1][j..j + L2] = c[1..L1][1..L2]

(a) Without Percolation

S1 : c[1..L1][1..L2] = 0
S2 : a[1..L1][1] = A[i..i+ L1][1]
S3 : b[1][1..L2] = B[1][j..j + L2]
S4 : for k = 1 to m, k ++
S5 : a[1..L1][2] = A[i..i+ L1][k + 1]
S6 : b[2][1..L2] = B[k + 1][j..j + L2]
S7 : c[1..L1][1..L2]+ = a[1..L1][1]× b[1][1..L2]
S8 : k ++, if k == m then break

S9 : a[1..L1][1] = A[i..i+ L1][k + 1]
S10: b[1][1..L2] = B[k + 1][j..j + L2]
S11: c[1..L1][1..L2]+ = a[1..L1][2]× b[2][1..L2]
S : end for

S12: C[i..i+ L1][j..j + L2] = c[1..L1][1..L2]

(b) With Percolation

Figure 6.4: Algorithm for computing a tile of C with size L1 × L2

increases from L1 + L2 + L1 · L2 without Percolation to 2(L1 + L2) + L1 · L2 with

Percolation.

Of the available 63 register of C64, 5 registers are used for pointer and indexes

leaving 58 registers for computation. A careful live variable analysis shows that registers

used to store a and b vectors in one iteration can be reused in another one. Therefore,

we were able to retain a 6× 6 tile without spilling register.

With respected to Instruction Caches (I-Caches). Instruction misses will pro-

duce costly stalls in the execution while instruction are accessed from main memory.

The case for many-core architectures imposes additional constrains because I-caches

are shared and executing the same code by the processors that share the I-cache is

desirable. For the particular case of MM, the most used code is the scheduling and the

code for computing a tile.

40

In order to minimize the I-misses, we can apply two strategies. The first one is

to align the functions of the scheduling and Tile computation with the I-Cache block

size, minimizing the number of cache blocks for that code. The second one is to apply

Instruction Percolation (IP), it can be done executing the scheduling code and Tile

computation code prior to the execution of the whole MM, allocating that code in the

shared I-Caches reducing the excessive number of I-misses on the first iterations.

6.4 Dynamic Scheduling for Fine Grained Parallelism

Finer task granularity is one of the ways in which sufficient parallelism is pro-

vided for many-core processors. We strive to address these challenges by making ob-

servations that motivate a deeper understanding of the trade-offs that are normally

left unconsidered by SS, even in the face of new many-core architectures. We will show

how DS is a better alternative due to the disadvantages of SS, even in the presence of

fine-grained tasks. First, we will discuss the impact of a fine-grained task partition on

overall performance. Second, we will show the implications on load balancing and per-

formance in a scenario where resources are shared between PEs. Finally, we will study

the required characteristics for a low overhead DS and how to implement it efficiently

for a set of similar tasks.

6.4.1 Fine-grained task partitioning

In this section, we will explain that, under certain conditions, DS can result in

faster execution of programs because it can partition the work into better tasks. At

this point we consider ideal conditions of no scheduling overhead, no shared resources,

and tasks with very similar execution times. We will expand this reasoning to include

more realistic scenarios in the following sections.

The problem faced by SS is the trade-off between load balance and the efficient

processing of tasks given by the partitioning of data into blocks for threads, and the

further partitioning of blocks into tasks for optimal execution. On one hand, an SS

41

Optimum Size Tiles

Non-optimum Size
Tiles

(a) Legend (b) SS for P = 4 (c) SS for P = 9 (d) Without Blocks

Figure 6.5: Partition Schemes for a matrix C of 15× 15 with tiles of 3× 3

that maximizes load balancing will distribute equally sized blocks among all proces-

sors. Unfortunately, the partitioning of blocks may result in non-optimum tiles at the

boundaries of blocks, decreasing performance. This is even worse for situations where

the ratio between the block size and task size decreases due to a limited amount of

on-chip memory or an increasing number of processing units results in smaller tasks.

These two cases are particularly evident on modern many-core architectures. Figure 6.5

illustrates different scenarios for the amount of data in border tiles (highlighted). The

worst scenario is when the number of processing elements (PEs) is increased and the

best one is when blocks are not used. On the other hand, an SS that uses just tasks

will decrease the penalty due to border tiles but will decrease load balancing in cases

where the number of tasks is not a multiple of the number of processing elements.

In contrast, DS has the ability to deal with these unbalanced scenarios that

decrease the size of border tiles. The partitioning of data into blocks is not required

and each processing element request a new task as soon as it finishes the previous one.

Assuming a similar overhead, DS will be able to produce equal or better scheduling

than SS given the fact that the assignation of task is given at run time. Further analysis

of how to deal with shared resources and how to reach a competitive overhead on DS

will be discussed in the following sections.

42

6.4.2 Load Balancing in Scenarios with Shared Resources

We have analyzed an ideal scenario where tasks of the same size would take the

same amount of time to complete. Unfortunately, this does not take into account the

indirect interaction between tasks given by shared resources involving arbitration of

third parties and starvation.

Some functional units are shared in order to diminish the required chip area and

power consumption, saving room to include, for example, more PEs that can increase

the overall performance. Examples of these functional units are Floating Point Units

and special purpose units, such as specialized DSP blocks. Sharing these resources

impose limitations, especially in SIMD programs. While one PE is using the shared

resource, others are stalled waiting for that resource. A context switch or task migration

can alleviate the impact, but this behavior introduces unexpected variations in the cost

of tasks (e.g. time for completion).

Memory, the most commonly shared resource, acts as an efficient method of

communication between PEs. Several techniques have been employed to improve the

way memory resources are shared, such as multiple memory banks to allow simultane-

ous access to variables in different banks and caches to reduce the number of memory

requests. It is common that both memory banks and caches are shared by several

PEs to reduce the complexity of the architecture at the price of slightly reducing the

benefit.

Interconnects provide the mechanism for accessing some of these resources. Ac-

cording to their type and size, interconnects have complex arbitration rules that control

the use of these resources. Shared memory and its interconnections with the PEs are

normally the biggest source of uncertainty with respect to a task’s cost. The growing

number of PEs has made these structures very complex and their modeling involves

stochastic processes [63, 64], making the cost of a task a random variable that is also

a function, among other things, of other parameters in the architecture.

Statistics about the average costs and variances of tasks can be found to adjust

the parameters of the SS. However, there are several aspects that limit the effectiveness

43

of this approach: 1) The number of tasks is limited, so the disparities made by the

variations in cost may not be overcome. These limitations may be due to the nature

of the problem itself. 2) The load on each port of the crossbar or memory bank

may vary, particularly when the size of a block of memory is not a multiple of the

memory line size. A critical case would be where one memory bank is accessed by all

processors. 3) The scenario becomes even more complex when we model the process

as non-stationary, taking into account that memory transaction patterns can change

in the same application over time.

In the end, the simple model for SS is just an approximation that works very

well for scenarios where the demand for shared resources is low because the stochastic

component is negligible. For high performance scenarios, where these resources are

required to be used at full capacity, congestion and arbitration require a more accurate

model. However, a highly accurate model that considers a significant number of the

variables that describe the behavior of the architecture, including the interactions of

shared resources and their arbitration, is impractical for SS given the difficulty of

producing such a model, the overhead of using the model to compute an optimal

partition and the intrinsic limitations of the model.

Alternatively, DS performs the distribution of tasks at runtime allowing it to

deal with all possible variations. With a competitive overhead, DS will be able to

deliver better performance than SS, even for highly regular applications running under

the previously described conditions.

6.4.3 Low Overhead Fine grained Dynamic Scheduling

Dynamic Scheduling has been explored extensively for Instruction Level Par-

allelism and its advantages are well known [3, 65]. However, its implementation has

traditionally required special hardware support.

For Task Level Parallelism, software implementations are preferred. When all

tasks to be executed are similar and the parallel architecture is homogeneous, SS has

been the preferred choice because the overhead for scheduling is only paid once and is

44

largely independent of the data size whereas the overhead of dynamic scheduling grows

linearly with the data size.

The overhead of DS can negate any advantages over SS if the implementation

is not well designed. Unfortunately, special hardware support at the functional unit

level is also impractical for general purpose many-core architectures.

Dynamically scheduling multiple, similar, tasks can be achieved with a single

integer variable that is sufficient to uniquely identify a task in its set. A piece of code

that implements Dynamic Scheduling in this manner is showed in Figure 6.6.

1 // Globals
2 int TotalNumTasks;
3 int TaskIndex;
4 // Scheduling Function
5 int GetNewTask(int* Index){
6 return (atomic_add(&Index, 1));
7 }
8 ...
9 // Scheduler algorithm on each PE

10 int i;
11 i = GetNewTask(&TaskIndex);
12 while (i<TotalNumTasks){
13 Execute_Task(i);
14 i = GetNewTask(&TaskIndex);
15 }
16 ...

Figure 6.6: Code Fragment for a DS implementation

The bottleneck of this algorithm is the function GetNewTask(.). Specifically,

it is the serialized access over the variable TaskIndex. We will use the throughput µ

(maximum number of requests that can be serviced per unit of time) over the variable

TaskIndex to determine the tradeoffs between task granularity and number of PEs.

The lower bound for the size of a task can be obtained by considering that during the

execution of a task, on average, all other (P −1) processors will request one task. Since

45

the duration of the execution of a task T is given by f(T), the lower bound for the

average size of a task is

f (T) ≥ P − 1

µ
(6.1)

Equation 6.1 shows that, as the number of PEs increases, a matching increase

in throughput is required to guarantee scalability. Also, fine granularity of optimized

tasks on a many-core environment requires the highest maximum throughput for the

variable TaskIndex in order to avoid contention and lost performance under DS.

Unfortunately, implementations of the function GetNewTask that use locks or

“inquire-then-update” approaches have very low throughput [39, 66]. The main rea-

son is that, for a lock implementation, the algorithm will 1) obtain a lock, 2) read

and update the variable TaskIndex and 3) release the lock. A lock-based implemen-

tation of GetNewTask needs at least two complete roundtrips to memory, limiting its

throughput to µ = 1
2q

where q is the minimum latency for a memory operation. Simi-

larly, an “inquire-then-update” approach, such as Compare and Swap (CAS), requires

TaskIndex to remain unchanged for at least 2 memory roundtrips, resulting in the

same throughput as in the previous case.

We propose taking advantage of the support provided by in-memory atomic

operations. In this case, each memory controller has an ALU that allows it to execute

atomic operations directly inside the memory controller, without help from a thread

unit, avoiding unnecessary roundtrip delays. In this case, the use of the in-memory

atomic addition allows the throughput to be limited only by the time k taken by the

memory controller to execute the operation, resulting in a throughput of

µ =
1

k
(6.2)

Cyclops-64 (C64) is an example of a many-core architecture that provides ad-

equate hardware support for Dynamic Scheduling. In C64, implementations that use

in-memory atomic additions enjoy a significant throughput increase because atomic

46

operations in C64’s memory controller take k = 3 cycles, whereas a roundtrip to on

chip shared memory requires q = 30 cycles. It is a theoretical improvement of 20X

over the throughput obtained using simple software implementations. In practice, the

throughput will be lower because the memory controller is shared with the actual com-

putation of the tasks. Nevertheless, this high throughput allows the overhead of DS to

remain competitive with the traditional SS approach.

6.4.4 Example: On-chip SRAM Dense Matrix Multiplication

SS is suboptimal because it does not consider two main sources of imbalance

in a many-core environment: 1) The amount of work is a function of how the block is

tiled and what fraction of tiles does not have optimum size. 2) Possible stalls due to

arbitration of shared resources.

The unpredictable effects of resource sharing are a formidable challenge for SS. A

static block partition exacerbates problems, especially when the number of Processing

Elements (PE) is increased. Despite the simplicity and regular behavior in computation

and data access of MM, static techniques cannot overcome these problems. At that

point, DS arises as a feasible solution able to alleviate the overhead and scalability

problems of SS.

We propose a work-stealing approach for MM in on-chip (SRAM) where the

computation of optimum size tiles in matrix C are scheduled dynamically using atomic

in-memory operations. The proposed DS has the following advantages over SS:

1. A carefully designed DS can be managed with low overhead using atomic in-
memory operations, specifically, atomic increment/decrement. In-memory op-
erations can complete in very few cycles (e.g. 3 cycles on C64), allowing more
requests to be completed per unit of time and avoiding unnecessary roundtrips
to memory.

2. The dynamic approach load-balances optimally in the presence of stalls due to
arbitration of shared resources, increasing the efficiency by keeping all threads
working.

3. Since the work unit is the optimal size tile, the number of non-optimum size tiles
is minimized and it does not depend on the number of PEs.

47

The first and second advantages suggest that DS will have a better performance

than SS and the maximum performance will be reached when the amount of data is

big enough to feed all processors in parallel.

The third advantage implies that DS will overcome SS especially when the size

of matrix m is limited or the number of PEs increases. Thanks to the in-memory

computation capabilities of C64 there is little contention and overhead due to the use

of DS as described in Figure 6.6.

Due to the advantages explained before, it is feasible to expect a better scala-

bility when using DS for a broad range of values of m and PE.

6.5 Dynamic Percolation

Our target operation is dense Matrix Multiplication (C = A× B) for matrices

with size m × m. For bigger sizes, we propose a separation of the problem into two

orthogonal subproblems: 1) optimizing Matrix Multiply in SRAM moving operands

between SRAM and Registers and 2) moving data between DRAM and SRAM.

To extend the matrices to DRAM we simply partition matrices A, B and C

into n× n blocks Ai,k, Bk,j and Ci,j that fit in SRAM. This is similar to the blocking

performed in traditional cache hierarchies. Yet, C64 has no automation of data move-

ment by caches or DMA engines but instead must use Thread Units (TUs) associated

to Processing Elements (PEs). This means we have a trade off between compute and

data movement.

Each block of C is calculated by

Ci,j =

m
n
−1∑

k=0

Ai,k ·Bk,j (6.3)

Considering the limitation of bandwidth in the crossbar and the unpredictable

effects of resource sharing, we must devise a schedule that considers both computation

and data movement efficiently.

For that reason, we must use TUs to transfer the data. These computational

TUs must be orchestrated with data movement TUs to enforce the data dependencies:

48

work cannot be done before a matrix is loaded and a matrix cannot be unloaded until

work using it is completed. Further, TUs performing data movement should help with

computation if there is no data to move.

A straightforward static schedule for the MM algorithm detailed previously

would synchronize tasks using barriers and would parallelize each task. To compute

the whole matrix C, the tasks detailed in Figure 6.7 would be executed m2

n2 times.

1 : Initialize Ci,j to 0 on SRAM

2 : Compute the block Ci,j =
∑m

n −1
k=0 Ai,k ·Bk,j.

2 : This can be subdivided in 2 subtasks:

2a: Copy Ai,k and Bk,j from DRAM to SRAM.

2b: Compute a partial Ci,j and accumulate.

3 : Copy Back the block Ci,j calculated.

Figure 6.7: Tasks for computing one block Ci,j ∈ C

Although task 2b is implemented efficiently, as described in section 5, a di-

rect implementation of task 2, with barriers between tasks 2a and 2b, would waste

resources while TUs are waiting on barriers. Further, it would be inefficient for all

TUs to copy data at the same time given the limited DRAM bandwidth. A dynamic

scheduling approach replaces the barriers with finer-grained signals while still enforcing

data dependencies.

We introduced Dynamic Percolation, where data movement tasks and compu-

tation tasks were assigned dynamically. Helper Threads (HT) are in charge of the data

movement tasks and Computation Threads (CT) are in charge of the computation

tasks. Computation and data movement tasks are overlapped by a pipelined schema

using a double buffer in SRAM (e.g. buffers F1 and F2). Moreover, the distribution

of computation tasks and data movement tasks will vary in the course of Dynamic

Percolation. A set of simple rules for creation (based on data dependencies) and issue

of tasks helps the dynamic scheduler keep threads working efficiently on a computation

task or a data movement task:

1. Task Creation rules:

49

(a) A set of computation tasks on buffer F1 is created and ready to be fired
when all the data movement tasks for buffer F1 are complete. The same is
true of buffer F2.

(b) A set of data movement tasks for buffer F1 are created and ready to be fired
when computation is complete for the data buffer F1. The same is true of
buffer F2.

2. Task Issue rules:

(a) A set of tasks (computation or data movement) are scheduled dynamically
between the threads that belong to a set of that type of task (CT or HT).

(b) When a HT has finished and all data movement tasks of a buffer have been
issued, it becomes a CT for the current actively computed buffer.

(c) There is a maximum number of HT that can run in parallel to avoid con-
tention on DRAM bandwidth.

(d) When a CT has finished and all tasks of that set (e.g. on buffer F1) have
been issued, it becomes a HT for the set of data movement tasks on that
buffer when that set is created presuming that the maximum number of
HT has not been reached. Otherwise it becomes a CT for the next set of
computation tasks (e.g. on buffer F2).

The Dynamic Scheduler for each set of tasks is implemented by using atomic

in-memory operations, specifically, in-memory atomic addition. The main advantage

of this implementation is the low overhead given by the low latency of in-memory

operations. They avoid unnecessary roundtrips to memory and they provide the nec-

essary synchronization thanks to the atomicity supported by the hardware. Under

normal conditions (e.g. no unexpected failures of any components in the chip) a pos-

sible scenario for stalls is given by rule 2d: a CT stalls when it becomes a CT of

the next set of computation tasks (e.g. buffer F2) while the buffer’s data movement

tasks have not finished. This condition can be easy solved if the size of the HT set

is large enough to guarantee that the data movement tasks finish before their associ-

ated computation tasks. This parameter is architecture dependent and it is related to

the compute/bandwidth ratio and the size of on-chip buffers. A rough starting point

estimation is given by eq. (6.4), where NHT is the maximum number of helper threads:

DataMoved

Bandwidth(NHT)
≤ FLOPS Computed

Performance(P −NHT)
(6.4)

50

The tasks in Figure 6.7 can be classified into two groups: 1) Computation tasks

(2b) and 2) Data movement tasks (1, 2a, 3). Also, there is a hierarchy of tasks. At

the highest level, tasks 1 − 3 are related with blocks Ci,j (Initialize, Compute, Copy

Back) while at the next level down, tasks 2a and 2b are specific for computing one

block Ci,j using several blocks Ai,k and Bk,j (Copy, Compute). We will analyze each

level separately, starting with the inner level: tasks for computing a block Ci,j, and

continuing with the outer level: tasks for computing the whole matrix C.

6.5.1 Computation of one block Ci,j

Data is percolated as shown in figure Figure 6.8. Tasks 2a map to the data

movement tasks and tasks 2b map to the computation tasks. In the initialization step,

we create the first set of data movement tasks and create the second set when all data

movement tasks in first set have been issued.

Copy
Blocks A

and B

Flow
Dependency
Anti
Dependency
Output
Dependency
Helper
Thread Tasks
Computation
Thread Tasks

…

Buffer F1 for A and B

Compute
partial result

Block C

Copy
Blocks A

and B

Compute
partial result

Block C

Copy
Blocks A

and B

Compute
partial result

Block C

Copy
Blocks A

and B

…

Buffer F2 for A and B

Compute
partial result

Block C

Copy
Blocks A

and B

Compute
partial result

Block C

Copy
Blocks A

and B

Figure 6.8: Dynamic Percolation for Computation of one block Ci,j

51

6.5.2 Computation of matrix C

The process of computing the whole matrix involves a Hierarchical Dynamic

Percolation, where tasks 2 are a subset of the percolation model for tasks 1 - 3 as shown

in Figure 6.9. However, at this level, all tasks in task 2 are considered computation

tasks. There are two data movement tasks (1 and 3) where task 1 of the next outer

loop iteration is dependent on task 3 of the current iteration. In the initialization

step, we only initialize Ci,j and do not copy it back until the first computation task is

completed.

Under the assumption that the number of HTs at both levels have been chosen

properly to do the data movement tasks in less time than the computation tasks, the

Dynamic Percolation for MM not only allows runtime redistribution between helper

threads and computational threads to achieve better utilization of TUs, but also its

dynamic behavior can efficiently manage the unpredictable effects of resource sharing

(e.g. arbitration of crossbar network ports and limited off-chip bandwidth). This is

a challenging problem on many-core architectures that, as discussed previously, SS

cannot overcome.

Initialize
Block C

Flow
Dependency
Anti
Dependency
Output
Dependency
Helper
Thread Tasks
Computation
Thread Tasks

…

Buffer F1 for C

Compute
Block C

Copy Back
Block C

Buffer F2 for C

Initialize
Block C

Compute
Block C

Copy Back
Block C

Initialize
Block C … Compute

Block C

Copy Back
Block C

Initialize
Block C

Compute
Block C

Figure 6.9: Dynamic Percolation for Computation of matrix C

52

The performance of the DRAM MM with respect to the SRAM MM is expected

to be slightly lower because now some threads are not doing computation and the cost

of data movement has to be included. This cost depends on the maximum number of

HTs allowed at each task level, the bandwidth for memory transfers, and the size of

blocks on SRAM.

6.6 Experimental Evaluation

In this section, we analyze the advantages of DS over SS for very regular work-

loads under the presence of shared resources and hundreds of Processing Elements

(PEs). We have illustrated different scenarios with fine grain tasks in order to compare

the traditional SS and a low overhead DS. Our results show that applications with

many similar tasks scale better, and can take advantage of a low overhead DS, when

the PEs are sharing resources and the amount of tasks is limited.

6.6.1 Experimental Testbed

We have chosen C64, a many-core processor architecture described in Section 4,

as the testbed architecture because it has a large number of processors sharing many

diverse resources including, but not limited to, an on-chip memory, a crossbar switch

and shared FPUs. In addition, it supports in-memory atomic addition, an essential

component for a low overhead DS implementation as described in section 6.4.3.

Our experiments were compiled with ET International’s C64 C compiler, version

4.3.2, with compilation flag -O3. C64 processor chips are, as of the writing of this paper,

available only to the US Government. For that reason, we ran our experiments with

FAST [67], a very accurate simulator that has been shown to produce results that are

within 10% of those produced by the real hardware. The simulator includes all the

behaviors related to the arbitration of shared resources.

We ran three different tests. The first is a microbenchmark that performs a

memory copy of a vector in shared memory and computes a checksum on the elements

of the vector. The second is a highly optimized Dense Matrix Multiplication using both

53

on-chip and off-chip memory. The third test is a Sparse Vector Matrix Multiplication

with variable parameters such as sparsity and variance of number of elements between

columns. All benchmarks were implemented with an SS strategy that distributes work

uniformly and a low-overhead DS that uses in-memory atomic addition.

6.6.2 Memory Copy microbenchmark

The tasks in this microbechmark process 256 bytes of data from on-chip memory

as follows: First, the PE copies a chunk of data from on-chip memory to local memory.

Then, it computes the checksum of the bytes and the chunk is stored back to another

location in on-chip memory. Note that all tasks perform the same amount of work

but the arbitration of shared resources, like the crossbar switch, can result in varying

performance as described in Section 6.4.2. We report the relative speed up of the DS

approach with respect to its SS counterpart using the same number of PEs (Thread

Units). We use different numbers of tasks to study and compare the behavior of SS

and DS.

Figure 6.10 clearly shows the trade offs between DS and SS with respect to the

number of PEs. As expected, when the number of PEs is small, DS cannot compete

with SS and demonstrates a slowdown, with the worst case being 27% for 32 PEs.

After 24 PEs, a smaller number of tasks start to give better performance with DS and

after 48 PEs all the datasets favor DS. The maximum relative speed up is 137%, which

is reached with the smallest problem size and the maximum number of PEs.

We further studied the scalability of SS and DS with the maximum number of

PEs allowed. Figure 6.11 shows the number of tasks per microsecond using different

numbers of tasks. We note how DS scales better for cases with a limited number of

tasks, quickly reaching the limit imposed by crossbar congestion. At the same time,

SS shows poor performance when compared to DS for every case.

54

-30%

-10%

10%

30%

50%

70%

90%

110%

130%

150%

1 2 4 6 8 12 16 24 32 48 64 96 128156

R
e

la
ti

ve
 S

p
ee

d
 U

p

Thread Units

500 Tasks

1000 Tasks

2000 Tasks

4000 Tasks

Figure 6.10: Relative Speed Up of DS vs. SS

6.6.3 Dense Matrix Multiplication

Dense Matrix Multiplication (DMM) exemplifies the type of highly regular and

embarrassingly parallel application where SS seems to be the better choice over DS.

We use, for our baseline, the Highly Optimized DMM for C64 using on-chip memory as

described in Section 6.1 and detailed in [61]. We further increased the performance to

58.95 GFLOPS by using the Percolation explained in Section 6.3. Based on the obser-

vations made in Section 6.4, we implemented a DS for DMM using the same optimized

register tiling described in [61]. With the implementation of DS, the maximum per-

formance and scalability with respect to the number of PEs (Thread Units) increased

significantly, as detailed in Figure 6.12.

55

0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000 7000

Ta
sk

s
p

e
r

m
ic

ro
se

co
n

d

Task Number

SS DS

Figure 6.11: Scalability for 156 PEs

The maximum performance reached is 70.87 GFLOPS, which is 88.86% of the

theoretical peak performance. It is important to note the highly linear scalability

with the number of PEs whereas the SS implementations start to show problems after

only a hundred PEs. We further studied the scalability with respect to the matrix

sizes. Figure 6.13 shows that the performance of DS increases significantly for smaller

sized problems, with near maximum performance being reached using matrices of sizes

200× 200. Note that the optimized SS version would be able to reach a slightly better

performance than the DS version, given a suitably large problem size because of the

constant overhead of SS. However, on-chip memory places an upper bound on the

problem size making DS preferable for all implementations that use on-chip memory

56

 -

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100 120 140 160

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Thread Units

SS Baseline

SS Optimized

DS

Figure 6.12: Performance for a DMM of size 486× 486

only.

We also studied the impact of the scheduling with larger matrices using off-chip

memory. Because C64 has a software managed memory hierarchy, the programmer

is in charge of the data movement between off-chip and on-chip memory. In order

to sustain the performance reached in on-chip memory, overlapping of computation

and data movement was used by implementing a double buffering schema. We deter-

mined, experimentally, that 8 PEs dedicated to data movement was enough to keep

the remaining PEs working on computation.

Two versions of the DMM were implemented. In the static version, all tasks

(computation and data movement) were determined and assigned statically from the

57

 -

 10.0

 20.0

 30.0

 40.0

 50.0

 60.0

 70.0

 80.0

0 100 200 300 400 500

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Size m

SS-Baseline

SS Optimized

DS

Figure 6.13: Scalability for a DMM with 144 PEs

beginning of execution. The necessary synchronization between tasks was performed

using the low latency hardware barriers available on C64. In the dynamically scheduled

version, tasks are available after satisfying their dependencies in a dataflow inspired

manner [68] with a Dynamic Percolation that takes advantage of the in-memory atomic

operations available in C64.

The results in figure 6.14 show the high scalability and excellent performance

reached by the Dynamic Scheduling implementation, whereas the Static version is

not able to surpass half the theoretical peak performance of C64. Furthermore, the

scalability of the SS implementation decreases after 120 PEs.

58

 -

 10

 20

 30

 40

 50

 60

0 20 40 60 80 100 120 140 160

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Thread Units

Static Scheduling and Percolation

Dynamic Scheduling and Dynamic
Percolation

Figure 6.14: Scalability for a DMM of size 6480× 6480

6.6.4 Sparse Vector Matrix Multiplication

Sparse linear algebra applications present additional challenges to their dense

counterparts, including variable memory access patterns and other difficulties related

to the particular structure of the sparse matrices. We use the Sparse Vector Matrix

Multiplication (SpVMM) defined by equation 6.5 where A is a sparse matrix of size

m× n, and v and w are vectors of lengths m and n respectively.

wj =
∑

Ai,j 6=0

viAi,j (6.5)

The sparse matrix A is stored using the Compressed Spare Column format

(CSC). A task is defined as the computation of one element of w. Two parameters

59

were varied to explore different behaviors of the SpVMM: The sparsity s varies in the

range [0− 1] and defines the number of non-zero elements. The non-zero elements are

distributed uniformly across columns with a normalized variance u in the range [0−1].

The matrix is generated randomly without any particular spatial locality

Figure 6.15 shows the relative speed up of DS with respect to its SS counterpart

with the same characteristics. All the matrices have n = 400. The results are reported

for different sizes of the tasks m and sparsity of the matrix s. In addition, the experi-

ments were made using 3 possible values of the normalized variance u = {0.1, 0.5, 0.9}.

The results illustrate how, with a high variance of task sizes, DS overcomes SS even

with few PEs. If the variance between tasks is decreased, SS has better performance

than DS when the number of PEs is small but SS cannot scale properly when the

number of PEs increases. Even in the case of very similar tasks (u = 0.1), DS has

higher performance than SS for 128 PEs.

-6.0%

-3.0%

0.0%

3.0%

6.0%

9.0%

12.0%

15.0%

2 8 32 128 2 8 32 128 2 8 32 128

0.9 0.5 0.1

R
e

la
ti

ve
 S

p
e

e
d

 U
p

Number of PEs

m=600, s=0.4 m=600, s=0.5 m=900, s=0.05 m=1200, s=0.1 m=1600, s=0.1

Normalized Variance u

Figure 6.15: Relative Speed Up of DS vs. SS for SpVMM

60

Chapter 7

PERFORMANCE MODELING OF MANY-CORE ARCHITECTURES
UNDER DYNAMIC SCHEDULING AND RESOURCE CONSTRAINTS

As explained previously in chapter 6, new trends in computer architecture have

posed new paradigms in the area. The race to peta-scale and exa-scale computers

requires a challenging increase to hundreds or even thousands of independent processing

elements inside a single chip and these requirements have motivated several changes

on modern many-core architectures at both the hardware and software levels such as

simplification of individual elements in processor chips in current many-core processors

and new programming models.

The scenarios found in current many-core processors have prompted new pro-

gramming models that look for better opportunities to exploit parallelism. For exam-

ple, the limited amount of on-chip memory, shared by an increasingly large number of

processors, has motivated the use of finer-grained tasks. Synchronization mechanisms

have become more important. Asynchronous and data-driven models have increased

the variety of mechanisms employed. Program execution models are evolving from

legacy models, such as OpenMP [69] and MPI [70], to data-flow oriented execution

models with finer granularity, such as the codelet execution model [31], SWift Adap-

tive Runtime Machine (SWARM) [36] and the Time Iterated Dependency Flow Ex-

ecution Model (TIDeFlow) [71, 72], to exploit parallelism for extreme-scale machines.

These new execution models require performance modeling tools in order to leverage

the design process of new applications and to determine better strategies to exploit

task parallelism on this new type of architectures.

There are several approaches for performance models that achieve varying levels

of accuracy at the expense of increased complexity. For example, Dwork’s very powerful

61

mathematical model [73] has limited applicability to large systems given its complexity.

King’s simpler model [74], on the other hand, uses Timed Petri Nets to model coarse

programs but achieves limited accuracy. Yet other approaches, such as Anglano’s [75],

focus on modeling specific details, such as communication, and do not attempt to

address a more general case.

The evolution to multi-core and many-core chips has imposed new challenges for

the traditional methods used to model computer architectures. In particular, perfor-

mance modeling under resource coordination conditions remains challenging, especially

with fine-grain task parallelism under new execution models. To this point, we have

explored timed Petri nets [76] as a way to model many-core programs with resource

coordination conditions. Our target is the co-design of hardware and software, the

modeling of algorithms and the impact of particular optimizations under an environ-

ment constrained by the architecture.

We propose applying the concept of timed Petri nets [76] to model the perfor-

mance of parallel applications on new many-core architectures. The applications that

we target are based on the execution of independent, fine-grained tasks called Codelets.

We also consider resource constraints in our modeling. We show how to map different

common code optimizations into Petri nets and how to model some specific architec-

tural constrains in parallel algorithms. We compare our predictions of performance

with performance measurements on a real many-core architecture, the average error

of our model was 4.4%. We also use our performance model to analyze trade offs be-

tween the number of threads used, the available memory bandwidth, and the amount

of available memory. In addition, we use timed Petri nets to select better algorithm

strategies under particular architecture specifications.

This chapter is organized as follows: Section 7.1 introduces the main motivations

for our approach to performance modeling, Section 7.2 provides relevant background

on many-core architectures, scheduling and Petri nets, and Section 7.3 describes in

detail how to model the performance of fine-grained parallel applications on many-core

architecture environments with resource constrains using timed Petri nets. Finally,

62

experimental results validating our model and analyzing different trade offs for several

algorithmic approaches are presented on Section 7.4.

7.1 Motivation

Early experiences with the optimization of programs for many-core architec-

tures have prompted the research community to direct their efforts toward finding the

techniques required to optimize many-core programs under architectural constraints.

As the field of parallel computing advances, architectures with over 100 independent

hardware thread units are emerging. And due to the difficulty of programming for and

optimizing these machines, studying the underlying algorithm via performance models

will vastly increase the speed and efficiency with which algorithms can be implemented

on, and optimized for, many-core architectures.

Performance models are a powerful tool to select which optimization techniques

should be applied to an algorithm; they allow evaluation of specific optimizations

without the cost of a full implementation.

We have performed a survey of existing performance modeling techniques, used

for parallel algorithms, to identify their advantages and limitations.

Many performance modeling approaches, such as Anglano’s work [75], focus on

parallel programs designed to be executed on heterogeneous clusters. While Anglano

also models the behavior of the parallel program with Timed Petri Nets, queuing

theory is used to model the effects of resource contention on execution time. Because

of a focus on communication, the petri net models used in Anglano’s work generally

consist of segments, which are portions of the computation in between communication

statements. While accurate, this model focuses on the cost of communication and does

not take into account other sources of resource contention. In addition, it is designed to

work with coarse grain tasks. In contrast, the problem we consider is that of a shared

memory system.

Dwork et al. [73] previously approached this problem from the perspective of

63

a formal model in which individual memory operations, such as read, write, and read-

modify-write, were considered. Dwork et al. present a very powerful mathematical

model, that despite its accuracy, is impractical due to its complexity. Our work,

instead, utilizes a layer of abstraction to maintain a high degree of accuracy while vastly

simplifying the resulting model. With this layer of abstraction, we are potentially able

to support much larger systems, such as many-cores, that require additional resources

to be modeled.

At the opposite side of the spectrum is King and Pooley [74] who utilized

techniques to transform a UML diagram into an architecture and implementation-

independent timed Petri net. The resulting performance model achieves simplicity at

the cost of degraded accuracy.

A compromise must also be reached between granularity and complexity. For

example, Chen and Aamodt [77] model cache contention and throughput of multi-

threaded systems through the use of an analytical cache contention model and Markov

chains. While advanced, this model is only designed for applications where threads

do not communicate, although the authors have indicated that this can be extended

through a two-level model in which the upper-level model models synchronization over-

head. Many-core architectures rely very heavily upon fine-grain synchronization, so any

model must take this into account.

Hong and Kim’s work on integrated power and performance models for GPU

architectures [78, 79] is a recent and novel work that uses empirical data and powerful

equations to model the power and performance of applications on GPU architectures.

In their work, Hong and Kim model parallelism and contention at the warp level for

nVidia GPU architectures. They have obtained a highly accurate model for execution

time [78] aided by a detailed understanding of the underlying architecture and program

execution model. By combining this model with power measurement techniques, the

performance of an application with respect to execution time and power consumption

can be measured [79]. However, Hong and Kim’s model, while powerful, is designed

with GPU architectures in mind and relies upon the specific scheduler’s ability to

64

schedule warps, avoiding stalls to a fair degree throughout preemption, and maintaining

a high degree of accuracy. As such, Hong and Kim’s results show that overall trends

are modeled quite well, but fluctuations and other interesting behavior are not readily

available. The impressive amount of threads that this model is able to handle is

leveraged in the groupings of threads into warps and blocks, that follow fairly regular

patterns in the execution, reaching a fair complexity in the analytical model. A more

complex case where more than one hundred treads are running independent pieces

of code (e.g. with different program counters) using very fine grain tasks is another

different but very interesting trend not cover at all by this kind of analytical models.

From our survey of previous work, we are able to deduce the characteristics

required by a performance model for applications on many-core architectures. To

simplify the resultant model, we must start from the algorithm, not the architecture.

This has the added bonus of creating an architecture-independent model, at least during

the first stages of the model, as per King and Pooley’s work. Furthermore, the model

must be fine-grained, but not so fine-grained as to potentially become too complex, as

with Dwork et al.’s work. Most importantly, our approach must be able to model all

forms of resource contention.

We considered many approaches. A mathematical model, such as the one pro-

posed by Dwork et al. [73], would allow for the performance to be computed rapidly.

However, such models are largely dependent upon the profiling of existing implemen-

tations and applications. Another option considered was queuing theory. Queuing

theory, while powerful, is not a perfect fit. To create an accurate queuing network, the

parameters of the system must be understood with highly detail. For a specific archi-

tecture, those parameters can be thoroughly studied. However, our target is to model

the co-design of hardware and software, and for that we need to perform a careful

study of both the application and the architecture.

Based on this, we have found that Timed Petri Nets are a feasible solution to

model the performance of applications in this new environment. Timed Petri nets are a

good choice because they are able to represent the features in many-core architectures

65

as well as the methods for execution. In particular, Petri nets are able to model large

numbers of processing elements that execute tasks following a dynamic schedule in

an environment with several kinds of resource coordination conditions. And, by using

Petri nets to perform a detailed simulation, we are able to study the nuanced behavior

of the code prior to implementation, as seen in Section 7.4.

It is worth noting that the optimization of parallel programs on many-core archi-

tectures has been extensively studied in the past. However, there are very few studies

on architectures with more than 100 independent hardware thread units. Cyclops-64

(Chapter 4) is one of such architectures. With its 160 independent hardware thread

units, it is an ideal architecture to explore the new trends in computer architecture.

The study of Cyclops-64 (C64) has helped to reveal some challenges for future

generations of many-cores. During the last couple of years, several efforts have been

made to study the optimization of a large amount of Cyclops-64 applications [80, 61, 45,

47, 60] to determine the most useful compiler techniques. Unsurprisingly, these studies

showed that tiling at the register level [61, 81] in conjunction with techniques that

hide the latency of memory operations [80] were required to achieve high performance.

However, the results reached by these studies are still far from the theoretical maximum

performance of the chip. Further studies showed the importance of scheduling fine

grained tasks in the presence of shared resources [82] or the possibilities for scalability

in future many-cores [83, 84].

Scheduling and granularity have become essential parameters for many-cores.

Light Dynamic Scheduling of very fine grained tasks with hundreds of threads sharing

large amounts of resources are new scenarios for optimization and modeling of parallel

algorithms. Classical techniques that targeted coarse grained programs with static

scheduling are not competitive in these environments. For example, even fine grained

static scheduling fails when the amount of data to be processed is limited. One of the

main reasons for these large differences is the variation in the completion time of tasks,

even in the case where the amount of work per task was the same. This was shown in

the case of a tiled matrix multiplication program, where the variation of the execution

66

time of identical, small tasks, can be as large as ±22%. These differences are related

to the influence of shared resources and their arbitration schemas [80].

As a solution, new program execution models [31, 36] with support for fine grain

parallelism are built to express data-driven applications under resource coordination

conditions. This has been one of the key motivations for the revolutionary designs

proposed as part of the DARPA UHPC project [85].

Having in mind these new needs for modeling under the new scenarios explained,

Timed Petri Nets provide a good balance between intuition and scalability. Transitions

correspond to codelets, as described in Section 7.2.1. This allowed us to create our

clear methodology by which to map applications to Timed Petri Nets, as described

in Section 7.3.4. The complexity of the resulting model is solely dependent upon the

complexity of the algorithm and the number of different shared resources, not the

system itself.

A Petri net model has a high degree of scalability, for the purposes of many-core

architectures. This is because the Petri net scales well with the architecture itself. For

example, the differences between a system with five thread units and a system with fifty

thread units will be the number of tokens in the Place corresponding to available thread

units. In addition, efficient solutions of these timed Petri Nets are a well-researched

topic [86, 87, 88], so their simulation is not a constraint.

7.2 Background

This section provides further detail on topics of interest discussed in the following

sections. Section 7.2.1 defines the concept of a codelet and Section 7.2.2 discusses the

foundations of Petri nets. In addition, architectural details about Cyclops-64 can be

found on Chapter 4 while additional information about Dynamic Schedulers can read

in Chapter 6

67

7.2.1 The Codelet Execution Model

The Codelet Execution Model (CXM) [31] is motivated by new trends in proces-

sor and system architecture, driven by power and complexity, that point toward very

high-core-count designs and extreme software parallelism to solve exascale-class prob-

lems. This research explores a fine-grain, event-driven model in support of adaptive

operation of these machines. The CXM breaks applications into codelets (small bits

of functionality) and dependencies (control and data) between these objects. It then

uses this decomposition to accomplish advanced scheduling, to accommodate code and

data motion within the system, and to permit flexible exploitation of parallelism in

support of goals for performance and power.

In this model, programs are decomposed into snippets of code (codelets) and

their dependencies. The natural breaks between codelets provide several opportunities

to observe and adapt the execution of a program. The Codelet Program Execution

Environment provides a runtime system and system software in which the adaptability

benefits of codelets can be realized. It relies on existing work in data flow theory [6]

to provide strong theoretical results that guarantee forward progress in the program.

7.2.2 Petri Nets

Petri nets are a mathematical tool, proposed by Carl Adam Petri’s disserta-

tion [89], that use directed, weighted, bipartite graphs to model a variety of systems.

Petri nets can be used to represent and analyze parallel, concurrent, asynchronous or

stochastic systems.

Since its presentation in Petri’s dissertation, Petri nets have enjoyed significant

amount of attention. In 1989, Murata [90] compiled an excellent publication explaining

Petri nets and presenting their most relevant applications.

A Petri net graph is composed of two kinds of nodes (places and transitions).

When modeling systems, places usually represent conditions that must be met while

transitions represent events that happen. In graphical representations, places are usu-

ally shown as circles and transitions as rectangles. Having two types of nodes allows

68

greater expressiveness than traditional dataflow graphs. For example multiple arcs can

go from a single place to different transitions; where the place represents a resource

shared by many tasks (the transitions). This type of scenarios has been a limitation

for dataflow graphs.

Arcs in a Petri net graph can only go from places to transitions or vice versa.

The weight of an arc is used as a shorthand to represent several equivalent parallel arcs

between two nodes in a graph. An arc with no labeled weight is equivalent to an arc

of weight one.

The state of a Petri net graph is called its marking. The initial state of a Petri

net is called its initial marking, M0. The marking (state) of each place is a nonnegative

integer that represents a number of tokens in the place. Usually, the marking of a place

is represented by drawing tokens, as dots, inside the circle that represents the place.

The marking of a program is defined by a vector that contains the marking of each

place in the graph.

The operational semantics of a Petri net can be defined by three simple rules.

First, a transition is enabled if each input arc is connected to a place with a token.

Second, enabled transitions may or may not fire. Finally, when firing a transition,

one token is removed from the associated place for each input arc, and the transition

produces one token on each output arc. The excellent survey by Murata [90] contains a

more comprehensive explanation of the operational semantics of Petri nets along with

several examples.

Figure 7.1 shows an example of how to model the execution of y = a+ b+ c in

a system with only one adder.

Petri nets, though powerful in modeling programs and concurrent operations, are

not complete enough to model synchronization and scheduling, because no assumptions

are made about the duration of transitions. This restriction is removed by timed Petri

nets [76], where an amount of time has been assigned to the transitions in the Petri

net graph.

Timed Petri nets can be deterministic or stochastic. Deterministic timed Petri

69

+

a

b +c

Adder

y

a+b

Figure 7.1: A Petri net model of the computation of y = a+ b+ c in a system with
only one adder.

nets have a deterministic time associated with each transition. In contrast, in stochastic

timed Petri nets, each transition has a random firing time.

7.3 Solution Method

The rise of new program execution models that manage fine-grained tasks using

dynamic scheduling show the need for a performance modeling tool for modern many-

core architectures. We propose applying the concepts of timed Petri nets to develop

an efficient and accurate alternative to model the behavior of High Performance Ap-

plications under these new environments. The flexibility of timed Petri nets can be

adapted to several scenarios where shared resources are the main constraints.

In this section we will first introduce the description and behavior of basic

blocks in timed Petri nets and then we will explain how to construct more complex

programs using a Dense Matrix Multiplication algorithm with several levels of tiling

as an example. Finally, we will explain a general methodology for generation of timed

Petri nets based on pseudo-code or source code.

70

7.3.1 Basic actors in timed Petri nets

In general, tasks of a particular process are modeled as transitions in timed

Petri nets. In our particular case, Codelets, as defined in section 7.2.1, are modeled as

transitions with durations defined by their execution time. In addition, auxiliary tran-

sitions are required for the appropriate behavior and correct construction of programs

under this model. The following are the different types of auxiliary transitions:

7.3.1.1 Init

This transition has a single input arc and one or more output arcs with a cu-

mulative weight of W . It is used to instantiate the creation of several parallel Codelets

ready to be fired, but it does not necessarily mean they will be executed in parallel.

The transition duration is related to the details of the particular architecture and the

specific software implementation of the runtime. It has been shown that, for partic-

ular cases, this can be done with high efficiency because several similar tasks can be

scheduled with complexity O(1) [37].

7.3.1.2 Clean

This transition has an input arc of weight W and a single output arc. Its

purpose is to represent the synchronization process of a set of Codelets. The transition

duration depends on the synchronization methods available in the architecture, ranging

from high-overhead software barriers that use locks, to better mechanisms that use

hardware barriers, or other lighter implementation of asynchronous constructs using

native atomic operations. Previous studies [39, 82] have shown that in-memory atomic

operations can be used to implement very lightweight synchronization under scenarios

with hundreds of threads and fine grained tasks.

7.3.1.3 Done

The Done transition is used to handle for loops. It has a single input and two

outputs that are mutually exclusive. At a functional level, it can be described as a

71

decreasing counter. After each decrement, the transition will produce a token on the

output arc labeled True (T) if the counter has reached 0. Otherwise, the transition

will produce a token on the output arc labeled False (F). A possible implementation

using the init and clean transitions is shown on Figure 7.2. The transition duration is

related to the time that is spent checking the counter value.

7.3.1.4 Schedule

The Schedule transition is used to model the behavior by which the scheduling

process assigns a limited amount of resources (e.g. threads) to Codelets. The Schedule

transition has a single input and a single output and its transition duration is related

to the overhead of the scheduler assigning these resources.

7.3.1.5 Other auxiliary constructs

There are other several useful constructs that can be modeled with Petri nets.

For example, an if-else statement can be modeled by a Done transition. However, the

if-else has an implementation that is slightly different due to the necessity to verify

the conditional statement. Particular details about other synchronization constructs

such as mutexes and semaphores can be found in [91].

I

n

i

t

W1

C

l

e

a

n

1W

D

o

n

e

1

1

1

F

T

C

l

e

a

n

1N

C

l

e

a

n

1

1

1
N-1

I

n

i

t

1

1

1

F

T

(a)

(b)

(c) (e)

S

c

h

e

d

11

(d)

Figure 7.2: Basic Actors (a) Init Transition. (b) Clean Transition. (c) Done Transi-
tion. (d) Schedule Transition. (e) Detailed Petri net of a Done Transition
in a for a loop with N iterations.

72

7.3.2 Expressing concurrency

The ability to expressing both serial and concurrent sequences of tasks is essen-

tial to HPC programs. We were able to express parallel programs using the basic Petri

net actors described in Section 7.3.1. In our Petri net representation, we have modeled

Codelets as transitions. In order to examine different scenarios, we use a two-level

tiled Dense Matrix Multiplication C = A×B with matrices in off-chip memory of sizes

M ×M . In order to provide locality, each matrix in the Dense Matrix Multiplication

program has been divided into Blocks of size N ×N that fit in on-chip memory. Fur-

thermore, each Block has been divided into Tiles of size L × L while each Codelet is

in charge of computing one Tile of C.

Figure 7.3 shows a pseudo algorithm for the Dense Matrix Multiplication. Notice

that all the data movements (e.g. Copy and Copy Back), the initialization of Ci,j and

the computation of partial results of Ci,j can be expressed as a set of parallel tasks using

Codelets. We will use a bottom up approach to model the behavior of this algorithm

using timed Petri nets.

DenseMatrixMultiply (A[M,M], B[M,M], C[M,M])

1 : for i = 0 to M
N − 1 and j = 0 to M

N − 1
2 : Initialize Block Ci,j = 0 on on-chip memory.

3 : for k = 0 to M
N − 1

4 : Copy Blocks Ai,k and Bk,j from off-chip memory to on-chip memory.

5 : Compute partial result of Block Ci,j+ = Ai,k ×Bk,j

6 : end for

7 : Copy Back the Block Ci,j from on-chip memory to off-chip memory

8 : end for

Figure 7.3: Pseudo algorithm for Dense Matrix Multiplication

7.3.2.1 Parallel for loop - On Chip Matrix Multiplication

With blocks A, B and C in on-chip memory, computing a partial result of Block

C is just another matrix multiplication. There are W 2 =
(
N
L

)2
concurrent tasks that

may execute in parallel. A parallel for loop using Petri nets can be implemented

73

using the Init and Clean transitions. Figure 7.4 shows the model of an on-chip matrix

multiplication using Petri nets.

I

n

i

t

1

C

l

e

a

n

1
Compute

Tile

1 1W^2 W^2

Figure 7.4: Petri net model for on-chip matrix multiplication

7.3.2.2 Serial for loop - Computing a whole block from off-chip memory

In order to compute a whole Ci,j block, it is necessary to compute partial results

by copying blocks from A and B and computing smaller matrix multiplications that

fit in on-chip memory. This is the sequential process represented by lines 3 − 6 of

Figure 7.3. This will require parallel for loops for the compute and copy Codelets in

addition to a serial for loop that can be expressed using the Done transition. Figure 7.5

shows how this can be implemented using Petri nets. Notice that the Copy task can

be execute by R Codelets. The selection of an appropriate R depends on specific

architecture characteristics but, in general, a higher number of parallel Codelets is

desired to increase throughput. However, there are two main problems with selecting

a large R: 1) The increased scheduling overhead when large number of tasks are used.

2) The limited amount of available resources (such as memory bandwidth) can cause

a degradation in performance. We will discuss this problem with more detail in the

following subsections.

74

I

n

i

t

1

C

l

e

a

n

1
Compute

Tile

1 1
D

o

n

e

1

1

1

F

T

S

t

a

r

t

1 W^2 W^2
I

n

i

t

1

C

l

e

a

n

1
Copy

Blocks

1 1R R

Figure 7.5: Petri net model for computation of one block of matrix multiplication
with operands in off-chip memory

7.3.3 Implementation of Performance Optimizations and Modeling of Re-

source Constraints

Performance optimization is of paramount importance for HPC programs. It is

required that the proposed modeling approach be able to express the most important

and common optimizations. In addition, many-core architectures are characterized

by the increasing number of shared resources. It is imperative that a performance

model captures these architectural details in order to obtain high accuracy and to find

possible bottlenecks in specific parallel implementations. Fortunately, Petri nets are a

good candidate to model the different types of interactions of these hardware resources.

Figure 7.6 shows a higher performance version of the matrix multiplication shown in

Figure 7.5. This version also models some very common resource constraints (repre-

sented by the dotted arcs) found in many-core architectures. The following paragraphs

will explain, in detail, the modifications introduced.

7.3.3.1 Double Buffering and Pipelining

The Copy Blocks task in Figure 7.5 is a bottleneck of the algorithm because no

computations can be done until the data required is in on-chip memory. A solution to

this problem is to implement a pipelined double buffering strategy where the two types

of tasks are interleaved: While the first buffer’s R threads are copying the blocks needed

from off-chip memory, the remaining threads are executing the computation of tiles over

the blocks in on-chip memory in the second buffer. Under this dynamic schema, data

is available when the computation needs it and the Codelets for computation and data

75

movement are redistributed dynamically at runtime, avoiding losses in performance

because of stalls.

This can be modeled using petri nets by duplicating the net responsible for a

single buffer, shown in Figure 7.5, so as to represent multiple buffers. This is shown

in Figure 7.6, where the top and bottom sequential for loops each represent a single

buffer.

I

n

i

t

1

C

l

e

a

n

1
Compute

Tile

1 1
D

o

n

e

1

1

1

F

T

S

t

a

r

t

1

W^2 W^2
I

n

i

t

1

C

l

e

a

n

1
Copy

Blocks

1 1R R

I

n

i

t

1

C

l

e

a

n

1
Compute

Tile

1 1
D

o

n

e

1

1

1

F

T

1

W^2 W^2
I

n

i

t

1

C

l

e

a

n

1
Copy

Blocks

1 1R R

S

c

h

e

d

1 1
I

n

i

t

1

C

l

e

a

n

2

1

P

Q

HIGH

HIGH LOW

LOW

P

Q

Figure 7.6: Petri net model for computation of one block of matrix multiplication
with operands in off-chip memory using double buffering with pipelining
for Blocks of A and B matrices. It also includes resource constraints on
the number of PEs equal to P and the number of memory banks equal
to Q. Resource constraints are highlighted using dotted arcs and the
priorities for resource assignment are in Italic

7.3.3.2 Resource Constraints

Resource constraints always limit the intrinsic parallelism of applications. The

most important one is the number, P , of Processing Elements (PEs) available in the

whole system. Another significant constraint is the Memory Bandwidth, which is

closely related to the number of memory banks. While the former is a very strict

constraint in non-preemptive systems, the latter can be violated at the expense of a

decrease in performance because of the increasing delay in memory transactions.

76

There are scenarios where different groups of Codelets are competing for a lim-

ited amount of PEs, this is the case of the optimized Matrix Multiplication with double

buffering described in section 7.3.3.1. While the dependencies between computation

and data movement in the same buffer make them mutually exclusive, computation

Codelets on the first buffer are competing for PEs with data movement Codelets on

the second buffer and vice versa. In addition, it is possible that the number of Codelets

for Compute tiles W 2 is larger than the available number of PEs so all of them can

not be fired in parallel, some have to wait until more PEs are available. By definition,

each Codelet requires one PE in order to be fired. Figure 7.6 shows how the Schedule

transition is used to model the assignment of PEs to each one of the four Codelets.

In addition, the copy block Codelets are competing for memory bandwidth. An

upper bound on the number of memory banks used can be established because each

copy block Codelet is a serial process that move data from off-chip memory to on-chip

memory. It can be said that, under controlled conditions, the limit in the memory

bandwidth is reached when the amount of copy Codelets is equal to the number of

memory banks in the architecture. This ideal scenario supposes that each Codelet is

accessing data on a different memory bank and that the copy Codelet is highly op-

timized. In practice, the limit on the number of parallel copy Codelets before the

competition for memory bandwidth decreases the performance is lower because of po-

tential bank conflicts between concurrent Codelets. Figure 7.6 assumes an architecture

with Q memory banks. The schedule transition is not used because this is not a re-

source managed by the scheduler or the runtime system. We are merely preventing

contention that will decrease the overall performance.

7.3.3.3 Priorities

While the dependencies between computation and data movement in the same

buffer make them mutually exclusive, computation Codelets on the first buffer are

competing for PEs with data movement Codelets on the second, and vice versa. A

simple policy of first come first served will not be helpful because the large ratio

77

between the number of computation Codelets and data movement Codelets favors

computation. In practice, it is necessary to favor data movement, the bottleneck

of the algorithm [92]. This is the motivation behind the introduction of priorities

for the assignment of resources. Figure 7.6 shows that the Copy Blocks Codelets

have high priority while the Compute Tile Codelets have low priority. The expected

result is that, with a sufficient number of Codelets copying data (keeping in mind the

memory bandwidth constraints), there will always be data available on the buffers for

the compute Codelets. In addition, if there are no copy tasks ready to fire, all available

PEs will be assigned to compute Codelets.

7.3.3.4 Composability - The Complete Off-Chip Memory Matrix Multipli-

cation

Until now, Figure 7.6 only modeled the computation of one block of C. This

corresponds to lines 3− 6 in Figure 7.3. This petri net is merely a building block for a

larger model. Several approaches have been studied in the past for the structuring and

composability of Petri nets [93]. For our purpose of performance modeling, we found

that the concept of macro-transitions suits our needs. A macro-transition is a sub net

where transitions constitute the boundary of the subnet.

I

n

i

t

1

C

l

e

a

n

1Copy

Back

Block

1 1
D

o

n

e

1

1

1

F

TS

t

a

r

t

1

S S
I

n

i

t

1

C

l

e

a

n

1
Init

Block

1 1S S

1
I

n

i

t

1 C

l

e

a

n

2

1

HIGH HIGH

Compute

Block

LOW

11

I

n

i

t

1

C

l

e

a

n

1Copy

Back

Block

1 1
D

o

n

e

1

1

1

T

F

S S
I

n

i

t

1

C

l

e

a

n

1
Init

Block

1 1S S

HIGH HIGH

Compute

Block

LOW

11

Figure 7.7: Petri net model for computation of matrix multiplication with operands
in off-chip memory using double buffering with pipelining for C blocks.
For simplicity, resource constraints are not included.

Figure 7.7 shows an optimized version of the Petri net used to model the Dense

Matrix Multiplication in Figure 7.3. The initialization and copy back of block C

78

is executed by S concurrent Codelets. For performance purpose a double buffering

strategy, such as the one described in Section 7.3.3.1, is required to avoid the bottleneck

of memory bound Codelets. Although resource constraints are not shown in the figure,

priorities are still required to avoid stalls due to a lack of data to process in the buffers.

7.3.4 Methodology for generation of timed Petri nets with resource coor-

dination conditions

The generation of a Timed Petri net model for a particular parallel algorithm can

be summarized in Figure 7.8. We will illustrate our methodology for the generation of

a Timed Petri net using a kernel for simulation of an electromagnetic wave propagation

using the Finite Difference Time Domain algorithm in 1 Dimension (FDTD1D), the

pseudo-code is shown in Figure 7.9.

Pseudo-code
or Program
source code

Codelet
Characterization

Architecture
Constraints

Untimed
Petri Net

Architecture
Semi-

Independent
Timed PN

Specific Timed PN
with Resource
Coordination

Conditions

Figure 7.8: Methodology for generation of a Timed Petri net model with resource
coordination conditions using pseudo code or source code

The first step requires the source code program of the algorithm or a simple

pseudo-code that shows the data and control flow of the codelets involved. The gener-

ation of the untimed Petri net need to identify some features of the algorithm: 1) The

parallel constructs (e.g. parallel for). 2) The codelets (e.g. fine grain tasks) involved

in each parallel construct. For our example, there is a total of 3 (Copy Tile, Compute

Tile E and Compute Tile H). and 3) The control flow and data flow inside each parallel

construct and between parallel constructs.

79

FDTD (double *E, double *H, int N, int Timesteps, int NT,

int TileSizeconst double k1, const double k2) % NT=NumTiles

1 : for t = 0 to Timesteps do

2 : parallel for i = 0 to NT do

3 : CopyTile (i, E, H, TileSize)

4 : ComputeTileE (i, E, H, TileSize, k1, k2)

5 : parallel for i = 0 to NT do

6 : ComputeTileH (i, E, H, TileSize, k1, k2)

7 : end for

Figure 7.9: Pseudo algorithm for Finite Difference Time Domain

According to Figure 7.9, our example involves 2 parallel for loops, each one with

NT tasks, the first one runs serially two codelets: Copy Tile and Compute Tile E. The

second one runs Compute Tile H. These two parallel loops are mapped as highlighted

shapes in Figure 7.10. The two parallel for loops run serially with an external for loop

that is controlled by the external feedback and the Done transition. At this point,

we have an untimed Petri net that just includes the codelets with control and data

flow of the program represented by continuous arcs (the untimed Petri net block in

Figure 7.8).

The second step is to determine the timing of the transitions that represent the

codelets. It will require some information about the architecture such as instruction

timing. Several methods can be used to characterize the codelets, from code profiling

and simulation to analytical models based on instruction timing. The result will be a

timed Petri net semi-independent of the architecture. At this point, the Petri net does

not include information about the architecture constraints (e.g. number of memory

banks, number of threads).

The final step is to use the timed Petri net and add the constraints of the specific

architecture in order to obtain a specific timed Petri net with resource coordination

conditions. For our example, we are using two constraints: The architecture has Q

shared memory banks and P PEs available. These constraints are represented by

tokens and initialized by the first Init transition in the model. Figure 7.10 shows in red

80

the place that model the memory banks, a pair of arcs from and to every Codelet that

implies data movement is required because all of them are sharing a limited amount of

these shared resource. In our example, the Copy Tile codelet is using extensively the

memory. For the shared PEs, two places (highlighted in green on Figure 7.10) and the

Schedule transition (See Sec. 7.3.1.4) are used to model this constraint: every Codelet

can take one token from the last place while they return the token to the first place

after finishing execution.

I

n

i

t

1

C

l

e

a

n

1
Compute

Tile H

1 1
D

o

n

e

1

1

1

F

T

S

t

a

r

t

1

NT NT
I

n

i

t

1

C

l

e

a

n

1
Copy

Tile

1 1NT 1

1

S

c

h

e

d

1 1
I

n

i

t

1

C

l

e

a

n

1

P

Q

HIGH LOW

Q

Compute

Tile E

1 NT

LOW

P

Figure 7.10: Petri net model for computation of Finite Difference Time Domain
benchmark

7.4 Experiments

This section will present several experiments, with different characteristics and

complexity, that were designed to validate our model and demonstrate our ability to

study different trade-offs in many-core architectures. First, in Section 7.4.1 we show

the accuracy of our approach by using Petri nets to compare our performance model

with real measurements on a many-core architecture and with an analytical model pro-

posed in the literature [78]. We used several applications: a highly optimized parallel

implementation for Matrix Multiplication with hierarchical tiling across the memory

hierarchy, a 1-Dimension, and a 2-Dimension algorithm for the solution of Maxwell’s

Equations using multiple tiling schemes, for the last two applications we evaluated two

different tiling techniques. Second, we study the impact of some architectural modifi-

cations in Section 7.4.2. Finally, we test two LU Factorization algorithms in order to

81

determine the best fit and trade-offs for the architecture in Section 7.4.3.

We have selected the Cyclops-64 architecture because it has a large amount of

independent processing elements and due to its particular characteristics in terms of

resource sharing. In addition, Cyclops-64 offers support to the codelet execution model

using features such as in-memory atomic operations that allow efficient implementation

of a light dynamic scheduling. More details about Cyclops-64 architecture have been

explained in Section 4. For the purpose of rapidly obtaining data over a range of input

parameters, such as transition delay, topology, and the interconnection of elements

inside of the timed Petri nets, we utilized a sequential branch of PICASim [94].

7.4.1 Verification of Model and Evaluation of Performance Optimizations

To ensure the validity and accuracy of our approach, we modeled two different

algorithms that have been previously implemented and executed on a modern many-

core architecture. This provides us with a benchmark so that we can evaluate the

accuracy of our model. We also conducted an evaluation-driven performance optimiza-

tion for the second application.

7.4.1.1 Dense Matrix Multiplication

First, we modeled a highly sophisticated Dense Matrix Multiplication program,

that had several levels of tiling, dynamic scheduling, and other optimizations, in

Cyclops-64. In Section 7.3.2 we studied Dense Matrix Multiplication with support

for off-chip memory and double buffering, as seen in Figures 7.6 and 7.7. As a first

step in the development of this algorithm, a highly optimized version, designed solely

for problems that fit in on-chip memory, was also developed, as seen in Figure 7.11. For

the particular case of Cyclops-64, each Compute Tile codelet operates on a Tile of 6×6

for maximum locality, offering large amounts of parallelism with very fine grainularity,

making its modeling a significant challenge. The codelets used for Matrix Multiply

were manually optimized using assembly language with proper instruction scheduling

and loop unrolling.

82

I

n

i

t

1

C

l

e

a

n

1
Compute

Tile

1 1W^2 W^2

S

c

h

e

d

1 1

1

1 1

P

I

n

i

t

1

S

t

a

r

t

1

P

C

l

e

a

n

1

Figure 7.11: Dense Matrix Multiplication optimized for On-Chip Memory

To obtain the duration of the Compute and Copy Codelets, we profiled the exe-

cution of these algorithms and used mathematical models to determine their duration

as a function of the problem size and other system parameters. In addition, we used

architectural parameters to determine the duration of the basic actors explained in Sec-

tion 7.3.1. For example, the dynamic scheduling was implemented with the in-memory

atomic addition. The latency of this operation is 3 cycles, and it is supported by each

one of the 8 memoy banks in Cyclops-64.

We simulated the execution of these algorithms on Cyclops-64 through the use

of our previously described timed Petri net simulator, timing information collected

during profiling, and our knowledge of the architectural parameters in Cyclops-64.

With this, we were able to recreate our previously obtained data and compare our

Petri net simulations with the results obtained via detailed architectural simulations.

In addition, we used Hong and Kim’s Analytical model as described in [78] in order to

compare with other alternatives for modeling.

The results can be seen in Figure 7.12. It shows how the performance of our

specialized on-chip memory Dense Matrix Multiply scales with the number of threads

fixed at 156 and the problem size varied. Of particular note is that our model matches

the “jagged” line seen in the experimental results. This shows that our petri net

model closely matches the behavior of the algorithm, as opposed to just the overall

trend. On the other side, the analytical model has a higher error and just follows the

83

 -

 10.0

 20.0

 30.0

 40.0

 50.0

 60.0

 70.0

 80.0

0 100 200 300 400 500 600 700

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Size m

Measured

Performance Model using Petri
Nets
Hong and Kim's Analytical Model

Figure 7.12: On-Chip Memory Dense Matrix Multiplication

overall trend. When small tiles are used, the analytical model is able to closely predict

the behavior of the program. However, the maximum performance is subestimated,

perhaps due to their method of counting instructions as a way to analyze a codelet.

A more detailed study of the assembly code of our kernel revealed that instruction

scheduling is extremely important to hide latencies of long latency instruction such

as loads and stores from on-chip memory. This drawback of the analytical technique

can not be noticed on other architectures such as GPUs because the scheduler takes

advantage of preemption to hide these latencies when possible. The average error

of our Petri net model is 2.5% vs. 19.0% of error using Hong and Kim’s model. The

behavior of the analytical model also evidences how challenging it is to model fine-grain

programs under resource constrains.

84

 -

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100 120 140 160

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Thread Units

Measured

Performance Model

Figure 7.13: Off-Chip Memory Dense Matrix Multiplication with Double Buffering

We use these results to leverage the performance modeling of off-chip memory

Dense Matrix Multiply, a more complex case. This case uses an on-chip memory Matrix

Multiplication and data movement between off-chip memory and on-chip memory using

Double Buffering and Dynamic Percolation. We compare the performance produced

by our model with the results of simulation. Unfortunately, Hong and Kim’s analytical

model is designed for SIMT programs, while the optimizations implemented in our

program require MIMD capabilities. Figure 7.13 demonstrates how, for a given problem

size, the performance varies as an increasing number of threads are made available. The

average error is 1.0% showing that our method is highly competitive.

For the on-chip memory version we extended the sizes of the matrix beyond

the maximum capacity of Cyclops-64 (e.g. matrices of 486 × 486) in order to see the

85

scaling of performance with respect to matrix sizes. As expected, the performance

does not increase. This means that our on-chip implementation is limited by the serial

performance of the Codelets.

7.4.1.2 Finite Difference Time Domain Solution of Maxwell’s Equations

Next, we considered a more complex and challenging problem: a finite difference

time-domain (FDTD) solution for the propagation of electromagnetic waves given by

Maxwell’s Equations, as described in previous work by Orozco and Gao [60] using

the algorithm of Figure 7.9. More specifically, we modeled four different kernels. We

modeled the FDTD in 1-Dimension and in 2-Dimensions and we tested two different

tiling strategies: Overlapped tiling where extra computations are done along the time

dimension and the spatial dimensions in order to decrease communication between tiles

and increase locality, and Diamond tiling where memory operations are minimized.

The 1 dimensional implementation computes 4000 timesteps of a problem of

size 10000 while the 2 dimensional application computes 500 timesteps of a problem of

size 1000× 1000. The tile sizes used were 256 and 24× 24 for the implementations in

1 and 2 dimensions respectively. These tile sizes were chosen so that they used all the

available on-chip memory.

Using the techniques described in Section 7.3.4, we generated a Petri Net model,

as seen in Figure 7.10. It is worth noting that, due to the nature of the program, this

one Petri Net represents the behavior of all four kernels. The only differences are the

weights of the arcs, the number of tiles required to cover the overall space according

to the tiling selected, and the duration of the computation and communication stages.

This problem is particularly interesting in that we were able to demonstrate how

our model is capable of taking into account the complexities that arise when applying

specific optimizations, such as new tiling schemes, to real scientific applications. Also,

the amount of data required and the complexity of each codelet is larger than in other

examples.

86

 0.03

 0.06

 0.13

 0.25

 0.50

 1.00

 2.00

 4.00

0 20 40 60 80 100 120 140 160
Ex

e
cu

ti
o

n
 T

im
e

 (
se

c)

Thread Units

Diamond Tiling - Measured Performance

Diamond Tiling - Petri Net Performance

Overlapped Tiling - Measured Performance

Overlapped Tiling - Petri Net Performance

Figure 7.14: FDTD in 1 Dimension

Figures 7.14 and 7.15 show the comparison of our model’s predicted performance

with that of the measured performance. The model for diamond tiling follows the

measured performance with a very high degree of accuracy, for both 1 Dimension and

2 Dimensions. For overlapped tiling there are some discrepancies, but the overall trend

is followed quite closely. The average error for this benchmark is 9.6%. Also, we

can corroborate the advantages of diamond tiling over overlapped tiling for 1 and 2

dimensions.

7.4.2 Extrapolation of Results on Similar Architectures

One possible use of our approach based on Petri net modeling is to study how

different architectural features will influence an algorithm’s performance and behavior.

Our approach allows one to examine algorithm trade offs with respect to memory size,

87

 0.5

 1.0

 2.0

 4.0

 8.0

 16.0

 32.0

0 20 40 60 80 100 120 140 160

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Thread Units

Diamond Tiling - Measured Performance

Diamond Tiling - Petri Net Performance

Overlapped Tiling - Measured Performance

Overlapped Tiling - Petri Net Performance

Figure 7.15: FDTD in 2 Dimensions

memory bandwidth, and scalability with respect to number of threads. Using our

previous models for dense matrix multiplication, we considered how such trade offs

would affect the algorithms.

To provide a baseline for comparison, we first extended our results for off-chip

memory Matrix Multiply under the assumption that a Cyclops-64 chip contains up

to 1000 independent thread units. This can be seen in Figure 7.16. While there

are diminishing returns after 450 threads, it is worth noting that the performance

continues to increase for the same problem sizes, even up to 800 threads. This is due

to the benefits of our double buffering and dynamic scheduling.

To study the effects of a larger on-chip memory, we considered a case where the

size of on-chip memory is doubled while the amount of off-chip memory remains the

88

 -

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

0 200 400 600 800 1000

P
e

rf
o

rm
an

ce
(G

FL
O

P
S)

Thread Units

Peak Performance

Performance Model Using C64 features

Performance Model for Double Size on-chip Memory

Performance Model for Double Memory Bandwidth

Figure 7.16: Study of New Features on Dense Matrix Multiplication

same. This results in larger block sizes, influencing the duration of the Compute and

Copy Codelets as well as the values of W and R, while leaving the overall input size un-

modified. This is demonstrated in Figure 7.16. While the asymptote at approximately

250 GFLOPS is reached sooner (at approximately 600 threads as opposed to 800), the

maximum performance remains the same. This is because, with so many threads, the

limiting factor is memory bandwidth. This is also coherent with the results of Figure

7.12 where we show that, for 156 threads, increasing the size of on-chip memory does

not improve performance.

However, with our approach we can easily investigate the benefits of increased

memory bandwidth. To do this, we considered the original problem size for off-chip Ma-

trix Multiplication, modified to have twice as much memory bandwidth. We achieved

89

this by doubling the R and Q parameters in Figure 7.6 and altering the Copy Codelet’s

duration accordingly. The results of this can be seen in Figure 7.16. As expected, an

increase in memory bandwidth allows for more threads to be utilized concurrently in

the Copy Codelets, resulting in increasing performance out to at least 1000 threads.

7.4.3 Preliminary Analysis of New Algorithms

An additional benefit of our approach is that we are able to model architectural

trade offs with respect to new algorithms. We demonstrate this by modeling multiple

versions of the tiled LU Factorization algorithm for factorization of a matrix A as the

product of a lower triangular matrix L and an upper triangular matrix U , our imple-

mentation uses optimized synchronization using low latency hardware barriers [47].

First, we consider a naive LU Factorization, as seen in Figure 7.17. Then, we

examine the benefit of a more complex algorithm that utilizes lookahead techniques

in Figure 7.18. For readability’s sake, we did not show the resource coordination

conditions, but each compute codelet requires a single token corresponding to a thread

unit, as per Figure 7.11. Each petri net corresponds to an LU Factorization of a Matrix

of size (N ·B)× (N ·B). Where B is the size of the Block processed by a Codelet and

N is the number of Blocks per dimension. For this particular case B = 6.

The LU Factorization is an iterative algorithm. Because of its nature, the

amount of work varies with each iteration. Obviously, this presents a challenge for our

Petri net model because it results in arcs with variable weights. This is represented

in our graph as N − j − 1, with j representing the current iteration. An estimation

of the transition duration for the Codelets was determined by counting the arithmetic

operations and the data required, supposing that instructions were correctly scheduled

to avoid stalls.

The results of the LU Factorization are shown in Figures 7.19 and 7.20. Figure

7.19 is a plot of the speed-up for LU modeled with 156 thread units for varying problem

sizes. Figure 7.20 considers a fixed matrix size and varies the number of threads.

90

Start

1

1

Init

1

1

Compute

Diag.

Block

Clean

1

1

1

1

Init
11

Init

1

Compute

Row

Block

Clean

1

N-j-1

N-j-1

Init

1

Compute

Col

Block

Clean

1

N-j-1

N-j-1

Init

1 1

Clean

2

1

1

1

Compute

Inner

Block

Clean

1

(N-j-1)
2

(N-j-1)
2

F
Done

1

1

T

1

1

Figure 7.17: Petri Net Modeling of LU Factorization

91

Start

1

1

Init

1

1

Compute

Diag.

Block

Clean

1

1

1

1

Init
11

Init

1

Compute

Row

Block

Clean

1

N-j-1

N-j-1

Init

1

Compute

Col

Block

Clean

1

N-j-1

N-j-1
1 1

Clean

2

1

1

F
Done

1

T

1

1

Init
11

Init

1

Compute

Inner

Block

Clean

1

Init

1

Compute

Inner

Block

Clean

1

1

1
1 1

Clean

2

1

(N-j-1) - 1
2

(N-j-1) - 1
2

Compute

Diag

Block

1

1

Figure 7.18: Petri Net Modeling of LU Factorization with Lookahead of 1

92

 -

 20

 40

 60

 80

 100

 120

 140

0 50 100 150 200 250 300 350 400 450

Sp
e

ed
 U

p

Matrix Size

Peak Performance

Naïve LU

Lookahead LU

Figure 7.19: Predicted Results for LU Factorization - Speed-Up For 156 Threads
Relative to Matrix Size

Figure 7.19 demonstrate that, even the fine grain tasking implemented, both

algorithms share the same limitations on scalability with the matrix size for a fixed

number of threads. On the other side, Figure 7.20 shows that while for few threads

there are not significant differences between both algorithms, the lookahead of 1 pro-

vides benefits in performance when using more than 100 threads. In addition, the

scalability of both algorithms with respect to the number of threads and the maximum

performance increment with the matrix size.

With these results, we are able to make informed decisions regarding the design

and optimization of the LU Factorization algorithm on Cyclops-64. While a lookahead

of 1 still provides some benefits at cost of complexity in the implementation, it is an

indication of how we can continue to improve the algorithm. With this information, we

93

 -

 100

 200

 300

 400

 500

 600

0 200 400 600 800 1000

Sp
e

e
d

 U
p

Thread Units

Peak Performance

Naïve Implementation for Size 240

Lookahead of 1 for Size 240

Naïve Implementation for Size 390

Lookahead of 1 For Size 390

Figure 7.20: Predicted Results for LU Factorization - Speed-Up Relative to the Num-
ber of Threads

can examine the benefits of a larger lookahead as well as other optimization techniques.

And, by examining the benefit of many of these optimizations with our model, we are

able to save time by avoiding the costly process of coding and profiling our algorithms

on the actual Cyclops-64 machine.

94

Chapter 8

POWER AWARE TILING TRANSFORMATIONS

The rapid progress of technology has made possible the integration of large

number of processing cores on a single chip. As a consequence, parallel computing

design has turned of special interest to the scientific community. Indeed, many-core

and multi-core architectures have risen as the solution to most of the issues facing

the field of high-performance computing. Energy efficiency and power consumption

have become an imperative requirement, the design of new generation of exa-scale

supercomputers is restricted to feasible power requirements [95, 96].

Integration of processors on a chip becomes challenging at different levels. From

the point of view of semiconductor manufacturing process, new technologies and ma-

terials are needed for increasing the number of transistors per area. The integration of

hundreds of processors on a single chip under area constraints and the significant in-

crease on leakage current requires the redesign of traditional uniprocessor architectures

with deep pipelines, complex branch prediction hardware and a cache-based memory

hierarchy.

Particularly, traditional parallel programming methodologies have been focus-

ing on improving performance and they assume cache-based parallel systems exploiting

temporal locality. However, the data location and replacement in the cache is controlled

by hardware making difficult a fine control and wasting energy [43, 44]. As a result,

innovative architectures have arisen; one, unique on its type, is the IBM Cyclops-64

(C64) many-core-on-a-chip system. C64 contains 160 hardware Thread Units (TU)

and it has a software-managed memory hierarchy where the data movement between

different levels of the hierarchy is managed by the programmer. It saves the die area

of hardware cache controllers and over-sized caches. Although this might complicate

95

programming at their current stage, these systems provide more flexibility and oppor-

tunities to improve not only performance but also energy efficiency.

Several studies focusing on increasing the performance of a broad range of ap-

plications have been done on this architecture (e.g. Matrix Multiplication, LU Factor-

ization, Fast Fourier Transform, etc) [61, 45, 46, 47], but none of these techniques has

directly considered the energy efficiency as a goal. Despite of that, some of them have

provided evidence of the power efficiency of C64 [61, 68].

In this chapter, we develop an energy consumption model for many-core archi-

tectures with software-managed memory hierarchy. The energy consumption model

depends of the number and type of instructions executed and the total execution time

of the application. We use the C64 many-core architecture to illustrate that our model

is scalable with the number of hardware thread units and it considers stalls produced

by data dependencies or arbitration of shared resources.

We also propose a general methodology for designing tiling techniques for energy

efficient applications. The methodology proposed is based on an optimization problem

that produces optimal tiling and sequence of traversing tiles minimizing the energy

consumed and parameterized by the sizes of each level in the memory hierarchy. We

show two different techniques for solving the optimization problem for two different ap-

plications: Matrix Multiplication (MM) and Finite Difference Time Domain (FDTD).

Our experimental evaluation uses a real IBM Cyclops-64 chip (C64) that proves the

accuracy of our energy consumption model and shows that the techniques proposed

reduce the total energy consumption and also increase the power efficiency.

8.1 Energy Consumption Model on a Many-Core Architecture

In this section we will propose a model for energy consumption on general

purpose many-core architectures with software-managed memory hierarchy. Given our

special interest on scalability, C64 (described in Section 4) seems the only one that has

more than one hundred hardware threads and it has already been built.

96

Our energy consumption model has two main components. The first one is

called static energy Es, it comes from the leakage currents and other units that work

continuously such as the clock. This component is a function of time t.

The second one is called dynamic energy Ed, it is the energy consumed by each

functional unit in the execution of some instruction without the leakage component.

It is related with the power consumption of transistors on registers and logic during

switching, also called dynamic power.

Based on that, given a program Λ with K instructions Ij, the energy consumed

can be expressed by:

ET (Λ) = Es(t) +
K∑
j=1

Ed (Ij) (8.1)

Clearly, the model can be detailed even more because the power dissipated by

leakage current is constant (given the absence of mechanism for reducing voltage or

turning off functional units in C64) and also other units are always working at the

same frequency (given the absence for changing this parameter). In other words Es is

linear with time.

In a similar way, instructions that use the same resources doing a similar amount

of work, like the hierarchy explained on section 4.2, consume the same amount of energy.

This linearity helps us to express our energy consumption model by:

ET (Λ) = e0 · t+
M∑
i=1

ei ·N (Ci) (8.2)

Where e0 is the static power dissipated, and ei for i = 1, . . . ,M is the energy

consumed by one instruction of class Ci. The function N(·) counts the number of

instructions in the program Λ that belong to a given class. This class can have only

one instruction (e.g. when the kind of processing and the functional units that it

uses are unique like integer multiplication) or multiple instructions (e.g. when they

are similar in terms of amount of work and use the same resources like all the logical

operations)

97

This model also considers the case of shared resources and overlapping, ex-

tremely important on many-core. First, each instruction represents the use of some

resources for some task and it would take similar time. In a scenario of contention

(e.g. the crossbar network for accessing memory), the amount of work made by the

functional units will be the same but the time will increase. This will be reflected on

the increase in the term that correspond to static energy. In a similar way, in the same

processor multiple units can work in parallel (e.g. Floating Point Unit and Integer

Unit) taking less time to complete the tasks compared with the sequential execution,

as a result the term for static energy will decrease but the dynamic energy will remain

similar. Even more important, for a chip with more than a hundred of processors, the

dynamic energy terms reflect the energy per instruction regardless of whether it was

executed in parallel with others or serially.
In Addition, it is natural to think than some instructions (or group of them)

consumes more energy than others, some cases are:

• An operation that requires more computations than another of the same type.
(e.g. integer multiplication vs. integer addition).

• An operation that uses a more complex hardware than another one. (e.g. float-
ing point addition vs integer addition, on-chip memory operations vs integer
operations).

• An operation that uses off-chip resources compared with one that only uses on-
chip resources (e.g. load from DRAM vs load from SRAM).

8.2 Tiling Techniques for Energy Efficient Applications

In this section we will analyze the problem of designing tiling techniques for

energy efficiency. Although instruction scheduling techniques are able to hide latency

of operations, this kind of techniques are not useful here because dynamic energy Ed

can not be hidden. We propose to find a feasible tiling that minimizes the total energy

cost by minimizing the energy contribution of the most energy hungry instructions.

The optimization problem proposed is based on two facts: (1) Memory opera-

tions on off-chip memory are the most expensive in terms of energy, followed by on-chip

memory operations. (2) There is not a dependency between different latencies for the

98

same operation (e.g. contention of memory operations) and the dynamic energy it

consumes. These two facts will be proved on section 8.3.1.

Our objective is to find the tiling T described by its parameters L and the

sequence of traversing tiles S that minimize the consumed Dynamic Energy Ed on Γ

processors by the subset of most energy hungry instructions IE subject to the data

stored DH at each level H of the memory hierarchy cannot exceed the maximum

memory size available MemH max and the tiling allows parallel computation without

communication between tiles. According to our model described on eq. (8.2), this

Dynamic Energy Ed for a problem Λ is function of the number of instructions N(Λ, Ij)

with Ij ∈ IE and its energy coefficients ej. This can be expressed as the optimization

problem:

min
T (L,S)

Ed (IE) =
∑
Ij∈IE

(ej ·N (Ij))

s.t. DH (Λ,Γ, T) ≤ MemH max

T is parallel

(8.3)

Given the fact that memory operations are the most energy hungry instructions

on most architectures and particularly on the C64 many-core architecture. The partic-

ular optimization problem using the Load LD and Store ST instructions for off-chip

memory (DRAM) and on-chip memory (SRAM) is:

min
T (L,S)

e1N(LDdram) + e2N(STdram) + e3N(LDsram) + e4N(STsram)

s.t. DH (Λ,Γ, T) ≤ MemH max

T is parallel

(8.4)

Where N(LD) and N(ST) are also function of Λ, Γ, T .

The optimization problem described by 8.3 and 8.4 cannot be easily solved. Even

more, there is not guarantee of analytical solution. The following subsections will show

99

two approaches for solving these kind of optimization problems for two kind of appli-

cations: Matrix Multiplication (MM) and Finite Difference Time Domain (FDTD).

8.2.1 Matrix Multiplication

Despite Matrix Multiplication (MM) algorithms have been studied extensively,

the many-core architecture design space has not yet been explored in detail. MM

is extremely important on scientific applications that use linear algebra. Our target

operation is the multiplication of dense square matrices A×B = C, each of size m×m

using algorithms of running time O(m3). We will focus on matrices that fit in on-chip

memory SRAM and the memory operations will be load and store from SRAM to

registers. For this case, the optimization problem on 8.4 becomes:

min
T (L,S)

e3N(LDsram) + e4N(STsram)

s.t. R (Λ,Γ, T) ≤ Rmax

T is parallel

(8.5)

An optimal partition for a load-balanced distribution between processors P

assumes blocks C ′ ∈ C of size n × n
(
n = m√

Γ

)
. Each block is subdivided in tiles

C ′i,j ∈ C ′ of size L2 × L2. Based on the data dependencies, the required blocks A′ ∈ A

and B′ ∈ B of sizes n ×m and m × n are subdivided in tiles A′i,j ∈ A′ and B′i,j ∈ B′

of sizes L2 × L1 and L1 × L2 respectively. Each tile can be calculate using C ′i,j =∑m/L2

k=1 A′i,k ·B′k,j.

The number of loads and stores can be calculated analytically for each one of

the 6 alternatives for traversing tiles that can be summarize on two sequences S1, S2.

The specific optimization problem now becomes:

min
L∈{L1,L2},
S∈{S1,S2}

f (m,Γ, L, S) =

2e3
L2
m3 + e4m

2 if S = S1(
e3+e4
L1

+ e3
L2

)
m3 + e3

(√
Γ− 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax, L1, L2 ∈ Z+

(8.6)

100

Analyzing the piecewise function f , it can be easily shown that S1 sequence has

an smaller objective function than S2 under the conditions e4
e3
≤
√

Γ−1 and L2

L1
≥ e3

e3+e4
.

The first one is easily satisfied if Γ is big enough, the second one can be satisfied when

L2 ≥ L1 and it can be verified with the solution.

We will solve the integer optimization problem using the branch and bound

technique. Since f only depends on L2, we minimize the function f by maximizing L2.

Given the constraint, L2 is maximized by minimizing L1. Thus L1 = 1, we solve the

optimum L2 in the boundary of the constraint and round off it. The solution of Eq.

(8.6) is:

L1 = 1, L2 =
⌊√

1 +Rmax − 1
⌋

(8.7)

The solution satisfies the constraints and also proves the hypothesis L2 ≥ L1,

finishing the branch and bound process. This result is not completely accurate, since

we assumed that there are not remainders when we divide the matrices into blocks and

subdivide the blocks in tiles. Despite this fact, they can be used as a good estimate.

For comparison purposes, C64 has 63 registers and we need to keep one register

for the stack pointer, pointers to A,B,C matrices, m and stride parameters, then

Rmax = 63 − 6 = 57 and the solution of Eq. (8.7) is L1 = 1 and L2 = 6. Table 8.1

summarizes the results in terms of dynamic energy consumed by LDs and ST s for the

tiling proposed and other 2 options that fully utilizes the registers and have been used

in practical algorithms: inner product of vectors (L1 = 28 and L2 = 1) and square tiles

(L1 = L2 = 4). As a consequence of using sequence S1, the dynamic energy of ST s

is equal in all tiling strategies. As expected, the tiling proposed consumes minimum

energy: approximately 6 times less than the inner product tiling and 1.5 times less

than the square tiling.

8.2.2 Finite Difference Time Domain

The Finite Difference Time Domain (FDTD) [97] technique is a common al-

gorithm to simulate the propagation of electromagnetic waves through direct solution

101

Table 8.1: Ed consumed by memory operations for MM

Memory Operations Inner Product Square Optimal

Loads 2e3m
3 e3

2
m3 e3

3
m3

Stores e4m
2 e4m

2 e4m
2

of Maxwell’s Equations. FDTD was chosen to illustrate the techniques presented here

since it is easy to understand, it is widely used, and it can be easily written for multiple

dimensions. Specifically, we will study FDTD in one dimension i of size m and q time

steps. The data is read directly from off-chip memory with tiles on on-chip memory.

For this case, the optimization problem on eq. 8.4 becomes:

min
T (L,S)

e1N(LDdram) + e2N(STdram)

s.t. Memsram (Λ,Γ, T) ≤ Memmax

T is parallel

(8.8)

The solution of this problem is based on the analysis of its Data Dependency

Graph (DDG) that can be detailed on Figure 8.1. Our solution is inspired by [81]

where they find the tiling that maximize the data reuse. Because the number of useful

computations can not be decreased by the tiling. For a FDTD problem of size fixed size,

maximize the data reused is equivalent to minimize the number of memory operations

N(LDdram) + N(STdram). In addition, given the regularity of the DDG, a tiling that

saves energy will not load extra data for doing extra computations. It means that the

number of loads and stores will be the same. In that order the ideas, the diamond

tiling showed on Figure 8.2 solves the optimization problem given by eq. 8.8

Table 8.2 summarizes the results in terms of dynamic energy consumed by LDs

and ST s for the tiling proposed and other 3 well-known techniques [98]. The unit for

the tile size L is the node E[i], H[i]. Clearly, Diamond tiling for FDTD has the smallest

coefficients.

102

Figure 8.1: DDG for FDTD 1D

8.3 Experimental Evaluation

This section describes the experimental evaluation of the proposed energy con-

sumption model given in section 8.1 and the tiling techniques for energy efficiency

analyzed in section 8.2.

8.3.1 Evaluation of the Energy Consumption Model

The energy coefficients ei where obtained using measurements of current and

voltage from the power supplies in a real chip. The instantaneous power P [t] at time t

Table 8.2: Ed consumed by memory operations for FDTD

Memory Operations Naive Split Overlapped Diamond

Loads e1qm
9e1
2L
qm 9e1

L
qm 2e1

L
qm

Stores e2qm
9e2
2L
qm 3e2

L
qm 2e2

L
qm

103

Figure 8.2: Diamond Tiling

can be calculated using P [t] = v1[t] · i1[t] + v2[t] · i2[t], the average power P̄ is estimated

by the mean of several samples of P [t] and the total energy consumed is ET = P̄ · t.

A test bed for the ISA of C64 was created for the estimation of the energy coeffi-

cients ei of (8.2). The test bed include multiple programs, each one with a known num-

ber of instructions for a subset of the ISA. The estimation of e0 = 63.11W was straight

forward calculated only measuring the consumption of the system on standby. Notice

that while e0 is estimated in Watts, ei for i > 0 is estimated in Joules/Instruction.

The dynamic energy Ed for a program Λ running in parallel on Γ processors

with a fixed number of instructions of class Ij per processor can be estimated by eq.

8.9

Ed(Λ, Ij,Γ) =
(
P̄ − e0

)
· t (8.9)

The results for a representative subset of the ISA are shown on Figure 8.3.

As shown on Figure 8.3, load and store on DRAM (ldddram, stddram) are the most

104

2.0E+0

2.0E+1

2.0E+2

2.0E+3

2.0E+4

2.0E+5

2.0E+6

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

ldddram stddram lddsram
stdsram faddd fmuld
fmad mull add
and mov li
no-op

Figure 8.3: Overall comparison of selected ISA

energy hungry, followed by load and store on SRAM (lddsram, stdsram), the difference

of energy consumption between DRAM and SRAM operations is almost 2 orders of

magnitude. Figure 8.4 proves the linearity of energy consumption with Γ. It details

that after memory operations, floating point operations (fmaddd, fmuld and fmad) and

difficult integer operations (mull) consumes similar energy. Integer, logical and register

movement operations (add, and, mov, li) are on the bottom of the list. The instruction

that consumes less is no-op as expected.

The remainder energy coefficients e can be extrapolated using a linear regression

from the Ed estimated for each instruction. We used a model with intercept at origin

given the assumption that no dynamic energy is consumed on standby. The resultant

105

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

0 20 40 60 80 100 120 140 160

Energy (uJ)

Processors

lddsram stdsram

faddd fmuld

fmad mull

add and

mov li

no-op

Figure 8.4: Comparison for On-chip Mem. Op., FPU Op. and Integer/Logical Op.

coefficients e for a subset of the ISA is shown on Table 8.3. The table also includes the

coefficients of determination R2 for measuring the variability between the data and the

model proposed. As expected, a linear approximation with the number of processors

models accurately Ed, its coefficients R2 are really close to 1, it corroborates that

there is not dependency between the latency of the operation and the dynamic energy

consumed. Some additional aspects to highlight are: (1) Instead DRAM operations

consume similar energy, a load from SRAM consumes almost twice the energy of an

store to SRAM. (2) Despite the floating point fused-multiply-add (fmad) consumes a

little bit more energy than a simple floating point multiply (fmuld) or floating point

add (faddd), notice that one fmad executes a multiply and an addition. At the end, an

106

Table 8.3: Energy Coefficients e and R2

Instruction e[pJ/Operation] R2

ldddram 48924.10 0.999
stddram 51488.99 0.998
lddsram 964.65 0.997
stdsram 548.31 0.999
fmad 245.27 0.997
faddd 178.30 0.995
fmuld 210.15 0.996
mull 225.43 0.998
add 127.65 0.998
and 126.69 0.998
mov 105.48 0.996
li 86.01 0.997

no-op 39.66 0.936

fmad saves around 63% of energy compare with separates fmuld and faddd. (3) Integer

and floating point multiplication cost similar, the same is true for logical and simple

integer operations. The last two observations confirms the high correlation between the

energy consumption of an instruction and the related hardware and functional units

the instruction requires.

8.3.2 Evaluation of the Energy Efficient Tiling

We will use the Matrix Multiplication (MM) explained before for showing the

advantages of the tilings that solve the optimization problems of section 8.2. First, we

will compare the estimated energy consumption using the coefficients of section 8.3.1

with the measured energy based on voltage and current on the real chip. Second, we

will compare energy consumption of the tiling proposed with other well known tiling

techniques.

For MM we use a matrix size that fits on SRAM, we compare our approach

(OptT) with the register tiling based on dot product (DPT). Both methods uses as-

sembly for taking advantage of the complete register file. For FDTD, the tile size is the

maximum possible that fits on SPM, we compare our diamond tiling (DmT) with 3

well-known techniques: A rectangular tiling (naive) (NT), the overlapped tiling (OT)

that uses redundant computations in order to tile time and space dimensions and split

107

tiling (ST) that uses multiple shapes for fully partitioning the iteration space [98].

Figure 8.5 compares the energy consumption measured with the energy pre-

dicted by our model for the MM application. We can see how the predictions are highly

close to the measured value for the dynamic and static components. The average error

of our model for Ed and ET is 26.6% and 0.82% respectively. We also noticed how the

tiling proposed decreases substantially the dynamic and total energy consumption in

56.52% and 61.21% on average. An interesting result that can be extrapolated from

the measurements of performance and power is that the power efficiency [MFLOPS/W]

increases between 2.62 and 4.13 times for this test example. For the FDTD applica-

tion, figure 8.6 shows the effectiveness of diamond tiling for decreasing the total and

dynamic energy with respects to the other tiling techniques. The total average energy

reduction was 81.26%, 57.27% and 15.69% compared with split tiling, overlapped tiling

and naive tiling respectively. Also our energy consumption model is accurate to the

real behavior of the application, the average error is 7.3% for ET .

108

1E+1

1E+2

1E+3

1E+4

1E+5

0 20 40 60 80 100 120 140

Energy (mJ)

Processors

EsP-DPT EdP-DPT EtP-DPT

EsP-OptT EdP-OptT EtP-OptT

EsM-DPT EdM-DPT EtM-DPT

EsM-OptT EdM-OptT EtM-OptT

Figure 8.5: Energy consumption (Static Es, Dynamic Ed and Total Et) vs Predicted
model P and Measured M using different tilings for MM with m = 300

109

1E+3

1E+4

1E+5

1E+6

1E+7

0 10 20 30 40

Energy (mJ)

Processors

EtP-NT EtM-NT EdM-NT

EtP-OT EtM-OT EdM-OT

EtP-ST EtM-ST EdM-ST

EtP-DmT EtM-DmT EdM-DmT

Figure 8.6: Energy consumption (Static Es, Dynamic Ed and Total Et) vs Predicted
model P and Measured M using different tilings for FDTD with m =
100k and q = 500

110

Chapter 9

ENERGY OPTIMIZATIONS IN THE CONTEXT OF MANY-CORE
ARCHITECTURES

Recently, the many-core revolution brought forward by advances in computer

architecture has reached another wall. In the past, major efforts and progress have been

made in order to achieve high performance on many-core chips. In particular, opti-

mizations have been developed to improve the number of Floating Point Operations per

Second. However, recent developments have shifted the focus to other constraints [80]

such as energy consumption. The design of the new generation of exa-scale supercom-

puters is restricted by power requirements [95, 96]. As a result, Energy efficiency and

power consumption have become an imperative.

Energy efficiency is limited by many factors. From the point of view of semicon-

ductor manufacturing processes, the integration of hundreds of independent processors

on a single chip within a given area results in an increase in temperature and leakage

current. This, in turn, results in more energy and transistors dedicated toward cooling

and a deep rethinking of traditional architectures.

An interesting case study is the IBM Cyclops-64 many-core architecture [99]

(described in Chapter 4). Many-core with a software-managed memory hierarchy where

the programmer controls data movement are a feasible alternative to improve energy

efficiency at the cost of a higher complexity with respect to programmability.

Extensive studies on performance for the Cyclops-64 have been performed in

the past (e.g. Matrix Multiplication, FFT, LU Factorization, etc) [61, 62, 47, 81]

and the impact of particular compiler optimization techniques have been described

in detail [80, 82, 39, 100, 92]. energy efficiency has only recently been studied with

early efforts resulting in a scalable energy consumption model for Cyclops-64 [101]. A

111

deep understanding of this model can allow for the design of specific optimizations to

decrease energy consumption. This particular model has been described in Chapter 8

In this Chapter, we study and implement several techniques to target energy

efficiency on many-core architectures with software managed memory hierarchies. We

use the LU factorization as a case of study for techniques proposed. We study the im-

pact of these techniques on the Static Energy and the Dynamic Energy using a scalable

energy consumption model described by Garcia et. al. [101]. The main contributions

of this chapter are: First, the modeling and analysis of energy consumption and energy

efficiency for LU factorization; second, the study and design of instruction-level and

task-level optimizations for the reduction of Static and Dynamic energy; third, the

design and implementation of an energy aware tiling for the LU factorization bench-

mark; and fourth, the experimental evaluation of the scalability and improvement in

energy consumption and energy efficiency of the proposed optimizations using the IBM

Cyclops-64 many-core. The proposed optimizations for energy efficiency increase the

power efficiency of the LU factorization benchmark by 1.68X to 4.87X, depending on

the problem size, with respect to a highly optimized version designed for performance.

The rest of this chapter is organized as follows. In Section 9.1, we discuss the

basics of a parallel LU factorization algorithm. In Section 9.2, we study the impact of

several optimizations in the Static and Dynamic Energy. Finally, in Section 9.3, we

present the experimental evaluation of the proposed optimizations.

9.1 LU Factorization

The LU factorization is a matrix factorization which represents the product of

two matrices; a lower triangular matrix, L, and an upper triangular matrix, U. This

algorithm is often used in linear systems in order to solve linear equations. Assuming

A to be a square matrix, it can be represented as A = L × U . This type of LU

factorization is called without pivoting and is the one presented in this document.

An LU factorization with pivoting performs a permutation of the rows or columns of

the matrix A using one of several strategies such as Partial Pivoting, Partial Scaled

112

Pivoting, Total Pivoting, or Total Scaled Pivoting. A comprehensive study of different

pivoting strategies for LU factorization can be found in [102].

Because the LU factorization is a well studied algorithm, there are many vari-

ations such as the Linpack benchmark [103], High Performance Linpack (a parallel

version of Linpack) [104], and the SPLASH-2 suite [105].

The classical approach for parallel LU factorization in cache-based systems uses

fixed-size blocks that fit into cache to distribute the workload among threads. As

shown in Figure 9.1, in the first step of the algorithm the matrix A is divided into one

Diagonal block and several Column, Row, and Inner blocks. Each block is assigned to

one processing element, which further divides the block into tiles in order to improve

data reuse and locality. At this point, the Diagonal block is computed individually by

one processing element, followed by a concurrent computation of the Column and Row

blocks. Once all the Column and Row blocks have been computed, the Inner blocks

are processed. In the second step of the algorithm, the Inner blocks of the previous

step are grouped again into one Diagonal block and several Column, Row, and Inner

blocks, which are computed following the rules previously mentioned. This is repeated

until there is only one Inner block, which is processed as a Diagonal block in the last

step. The progression of steps following this classical approach is illustrated at the

top of Figure 9.1. As can be seen, the number of blocks (i.e. the number of tasks

assigned to the processing elements) decreases as the algorithm moves forward. This

is translated into an increasing number of processing elements becoming idle, which

lowers the performance of the application.

The Dynamic Repartitioning technique proposed by Venetis and Gao [47] uses

varying-size blocks in each step of the algorithm in order to optimize the distribution

of work among processing elements. As shown at the bottom of Figure 9.1, the size of

the blocks is calculated at the beginning of each iteration of the LU factorization. This

size is calculated as a function of the number of processing elements, so each processing

element has at least one assigned task (i.e. one block to process). This optimization

has been proved to increase the overall performance up to 2.8X in systems with a

113

Classical Approach:

Fixed-Size Blocks

Dynamic

Repartitioning

Diagonal Block

Column Block

Row Block

Inner Block

Step 1

Step 2 Step 3

Figure 9.1: Progress in each step of LU Factorization

software managed memory hierarchy [47].

9.2 Energy Optimizations

In this section we will study the impact of several optimizations on the energy

consumption of the LU factorization algorithm targeting systems with software man-

aged memory hierarchy such as C64. The impact of these optimizations can affect

the two sources of energy consumption described in Section 8.1: Static Energy Es and

Dynamic Energy Ed. Our baseline implementation is the LU factorization without

pivoting by Venetis and Gao [47]. They used the Dynamic Repartitioning technique

described in Section 9.1 and implemented a carefully designed register tiling. All their

optimizations were targeting high performance.

While the increase in performance obtained by Venetis and Gao is reflected in

savings of Static Energy, this high performance LU implementation has some draw-

backs from the Energy consumption point of view: First, its register tiling focuses on

increasing locality and it is not aware of the energy consumption of each instruction.

Second, the static distribution of work does not consider the variance in completion

time of processing similar tasks in presence of shared resources such as memory, cross-

bar interconnections, and FPUs. And finally, the hierarchical division into blocks and

114

further into tiles, produces an increasing amount of smaller tiles in the borders of each

block, which can hurt not just the performance but also the energy consumption.

9.2.1 Energy Aware Tiling design

To reduce the Dynamic Energy consumption of the LU factorization, we will

focus on the instructions that contribute the most to it. Using the Energy consump-

tion model described in Section 8.1, we characterized the Dynamic Energy of the LU

Factorization implementation optimized for performance by Venetis and Gao [47] using

the traces generated during the simulation of the application on a C64 architecture and

a matrix of 840× 840 allocated in on-chip memory.

0

0.05

0.1

0.15

0.2

0.25

4 16 64 128 156

D
yn

am
ic

 E
n

e
rg

y
(J

)

Number of Processors

Energy Other Memory Operations

Energy Logical Operations

Energy Loads and Stores in SRAM

Energy Integer Ops

Energy Floating Point Ops

Figure 9.2: Dynamic Energy Distribution for LU factorization of 840× 840

Figure 9.2 shows how the Dynamic Energy of the LU factorization increases with

the number of processors. As can be seen, Loads and Stores on the on-chip memory

115

(SRAM) are the instructions with the largest contribution to the Dynamic Energy;

this contribution also increases with the number of processors. On the other hand, the

Energy of Floating point operations remains constant and the contribution of integer,

logical, and other memory operations is not significant.

In order to minimize the Dynamic Energy Ed for a particular algorithm Λ, we

propose to minimize the energy contribution of the most power hungry operations, in

this case Loads LD and Stores ST with energy coefficients e1 and e2. The minimization

is done on a set of possible tilings T with parameters S and L (e.g. shape and tile

size). The optimization problem is shown in Eq.(9.1) [106].

min
T (L,S)

Ed (Λ, T) ≈ e1 |LD|+ e2 |ST|

subject to R (Λ, T) ≤ Rmax, T is parallel

(9.1)

There are two constraints in the optimization problem: The registers used by

the tiling (R(Λ, T)) need to fit in the available registers Rmax and the tiling has to allow

parallel execution. The former avoids unnecessary energy consumption produced by

register spilling and the later prevents solutions with low performance due to increasing

execution time produced by inability to exploit task parallelism.

In order to solve this problem for LU factorization, we analyze the energy con-

sumption of each type of block (Diagonal, Row, Column and Inner) with sizes M0×M0,

M0 ×M1, M2 ×M0 and M2 ×M1 respectively. Each block is assigned to a processor

and further divided into tiles. There are 3 cases of sequences to traverse the tiles (e.g.

S0, S1 and S2) for each type of block [106]. A detailed explanation of the procedure to

find the optimum tiling for the Inner block and a summary of the results for the other

type of blocks are presented in the next paragraphs.

Inner Blocks: For the computation of an Inner block, a Row block and a

Column block are required. Row, Column and Inner blocks are divided into tiles of

L0 × L1, L2 × L0 and L2 × L1 respectively. The three possible sequences of traversing

tiles reuse tiles on a different operand: The Row block (case S0), the Column block

116

(case S1) and the Inner block (case S2). The problem formulation for the Dynamic

Energy is shown in Eq. 9.2.

min
L∈{L0,L1,L2},
S∈{S0,S1,S2}

f (L, S) =

e1M0M1

(
M2

L0
+ M2

L1
+ 1
)

+ e2M0M1M2

L0
if S = S0

e1M0M2

(
M1

L0
+ M1

L2
+ 1
)

+ e2M0M1M2

L0
if S = S1

e1M1M2

(
M0

L1
+ M0

L2
+ 1
)

+ e2M1M2 if S = S2

s.t. L0L1 + L0L2 + L1L2 ≤ Rmax, L0, L1, L2 ∈ Z+

(9.2)

The the non-linear optimization problem was solved using the Karush Kuhn

Tucker conditions. We assumed all the variables being positive and M0, M1 and M2

being bigger or equal than L0, L1 and L2. In addition, we used the fact that M1 and

M2 are equal to M0 or M0 + 1. We found that the best solution was to reuse the Inner

tile (case S2) with parameters L0 = 1, L1 = N and L2 = N , with N2 + 2N ≤ Rmax.

In this case, an Inner block is computed by dividing it into tiles of N × N elements

and loading each Inner tile into the registers, which act as accumulators for the partial

results. Each partial result is calculated from a pair composed of one tile of N × 1

elements of the corresponding Column block and one tile of 1 × N elements of the

corresponding Row block. The registers used as accumulators are stored back into

memory only when there are no more pairs of Column and Row tiles to process. An

example of this process is shown in Figure 9.3

Row Blocks: To compute a Row block, this is divided into tiles of N × N

elements (with N being the same as for the Inner block). The process followed to

compute each Row tile is similar to the one used for an Inner tile. The main difference is

that the computation of a Row tile requires tiles of N×1 elements of the corresponding

Diagonal block and tiles of 1×N elements that have been previously processed in the

current Row block. Each Row tile to be processed is loaded into the registers, which

are used as accumulators for the partial results of the computation of each pair of

Diagonal and Row tiles. These registers are stored back into memory when there are

no more pairs to process.

117

Step 1:

Load Inner tile

into Registers

Step 2:

Process all the Corresponding

Column and Row Tiles;

Accumulate Partial Results in

Registers

Step 3:

Store Registers

back into Memory

when all Column and

Row tiles have

been processed

Ri

Rj

Rk

…

Ri

Rj

Rk

…

∑ Compute

Ri

Rj

Rk

…

Inner Tile

NxN

Row Tile

1xN

Column Tile

Nx1

Inner Tile

NxN

Figure 9.3: Optimum Energy-Aware Tiling for an Inner Block

Column Blocks: To compute a Column block, this is also divided into tiles of

N × N elements. Each Column tile is computed using tiles of 1 × N elements of the

corresponding Diagonal block and tiles of N × 1 elements that have been previously

processed in the current Column block. In order to minimize the Dynamic Energy of

loads and stores, each Column tile to be processed is firstly loaded into registers. Then,

these registers are used as accumulators for the partial results computed for each pair

of Diagonal and Column tiles. When there are no more pairs to process, the content

of the registers used as accumulators is stored back into memory.

Diagonal Block: A Diagonal block can be seen as another matrix A′ that

needs to be LU-factorized. Consequently, the Diagonal block can be divided into tiles

of N × N elements, labeled as Diagonal, Column, Row, and Inner tiles. They can

be latter processed following the same rules used in the computation of the matrix A

and the same traversing of tiles previously described for the Column, Row, and Inner

blocks.

9.2.2 Minimizing Static Energy using Pipelining

The design of specific tilings for energy consumption already targets Dynamic

Energy. However, the long latency of memory operations with respect to the latency

118

of arithmetic operations can produce stalls, where each processor is waiting for data

required for computation. This scenario becomes worse if hundreds of threads, starva-

tion of shared resources and bandwidth limitations are considered [106]. This behavior

can increase the Static Energy consumption due to increasing latency produced by

contention.

In order to successfully minimize the impact of Static Energy, further optimiza-

tions were done to the implementation of the tilings described in Section 9.2.1. Each

for loop was software-pipelined and unrolled twice, using different registers for each

unrolled iteration if possible and sharing registers when necessary.

Following Figure 9.3, a for loop iteration computes a partial result for an Inner

tile of N ×N elements using a Row tile of 1×N elements and a Column tile of N × 1

elements; the next iteration uses a different Row tile and a different Column tile to

compute the next cumulative partial result of the same Inner tile. Consequently, a for

loop that has been unrolled twice requires at least N2 + 4N registers. Since additional

registers are required in the loop iterations for loop control and pointers (a pointer for

the Row tiles and a pointer for the Column tiles; no pointer is necessary inside the

loop for the Inner tile since this tile is the same for all the iterations), some registers

were shared between iterations in order to decrease the requirement in the number of

registers.

To diminish the impact of this register-sharing, the instructions of the loop were

later properly interleaved to ensure that memory-related instructions (i.e. loads and

stores) were already completed at the moment the registers involved in such operations

were used in a arithmetic instruction, decreasing the execution time to directly impact

the static energy.

9.2.3 Dynamic Task Scheduling for Energy Reduction

At this point, the fine-grain tasks have been optimized in order to decrease

energy consumption while using the performance-oriented Static scheduling proposed

by Venetis and Gao [47]. Even though the Dynamic Repartition technique is meant to

119

perform an optimized distribution of work among processing elements, it does not take

into account the undesirable delays produced by the competition of access to shared

resources (e.g. competition for memory bandwidth on shared memory). This results

in variations in the completion time between tasks of the same size. As a consequence,

the energy consumption per task will not be uniform. This variation will be most

significant with fine-grained tasks, such as the tiles described for LU factorization. In

the end, a static distribution of limited work, even for cases of very regular tasks,

will result in scenarios where the unbalanced distribution of work will have a negative

impact on the Static Energy consumption. In addition, division of blocks into tiles

produces a set of smaller border tiles per block that are suboptimal in terms of energy

consumption.

In order to overcome these problems, a Dynamic Scheduling of tasks was used

in the LU factorization, using the tile as a unit of work assigned to each processing

element, instead of a block. First, the matrix is divided into tiles of N ×N elements,

which are processed following the LU factorization algorithm, that is, first the Diagonal

tile, then all the Column and Row tiles, and finally all the Inner tiles. However, in this

case, the assignment of tiles is not made statically (as in Venetis and Gao [47]) but in

a first-come first-served basis: A tile is assigned to a processing element as soon as the

processing element becomes available (i.e. as soon as the processing element finishes

the computation of the previous assigned tile) and the tile dependencies are satisfied.

Dividing the matrix in tiles of N × N leads to a significant amount of tasks,

which could increase the overhead of the implementation and reduce the data reuse.

Nevertheless, the Dynamic Scheduling of tasks has ultimately a positive impact in

the Static Energy consumption of the application since it ensures a better workload

balance by keeping the number of idle processors low. This is ultimately translated in

a reduction of the execution time of the application. In addition to this, the overhead

associated with Dynamic Scheduling is diminished thanks to the support of in-memory

atomic operations in the C64 [82]. Using an in-memory atomic operation such as

L ADD, a Dynamic Scheduler can be easily implemented with a counter for the number

120

of tasks. Every time a processor is available, it asks for a new task and increments

the counter. Since this increment is performed atomically in memory, additional round

trips are avoided increasing the throughput of this counter.

To increase the data reuse with Dynamic Scheduling and to avoid that a Diag-

onal tile of N ×N becomes a bottleneck for the whole algorithm (since no tile can be

processed until that tile is computed), the size of the Diagonal tile can be increased to

bN × bN with b ∈ N and b ≥ 2, while the sizes of other tiles remain as N × N . This

reduces by b the number of steps required to compute the LU factorization. The use

of a tile as a unit of work for the Dynamic Scheduling, instead of a block, decreases

significantly the number of suboptimal border tiles, decreasing the Dynamic Energy

too.

9.3 Experimental Evaluation

This section describes the experimental evaluation of the proposed optimizations

targeting energy consumption and power efficiency described in Section 9.2. We have

used the IBM C64 platform described in Chapter 4 and the energy estimations using

the model described in Section 8.1. All benchmarks were written in C with hand-tuned

assembly for the register tiling. Benchmarks were compiled with ET International’s

C64 C compiler with compilation flags -O3.

We implemented several versions of LU factorization using on-chip shared mem-

ory. The power-aware tiling proposed in Section 9.2.1 uses N = 6 given the 64 registers

per Thread Unit (TU) available in Cyclops-64. Also, for the Dynamic Task Scheduling

described in Section 9.2.3, we used b = 2 so the Diagonal tile is 12 × 12. The Static

Energy coefficient e0 was computed using measurements on a real chip and the number

of TUs used, having in mind that 4 additional TUs are reserved: 1 for executing the

runtime system and other 3 for managing the communication with other chips using a

3D mesh.

Our first set of experiments uses a matrix of 840×840, the maximum size that fit

in on-chip memory. We study the scalability of Dynamic Energy (Figure 9.4) and Total

121

 0.0625

 0.1250

 0.2500

 0.5000

 1.0000

1 4 16 64 128 156

D
yn

am
ic

 E
n

e
rg

y
(J

)

Thread Units

Baseline - Dynamic Repartitioning

+ Energy Aware Tiling

+ SW Pipelining

+ Dynamic Task Scheduling

Figure 9.4: Dynamic Energy vs. Thread Units for a matrix of 840× 840

Energy (Figure 9.5) using different number of TUs. As expected, our Energy Aware

tiling decreases the Total Energy with respect to the baseline version that uses Dynamic

Repartitioning. This is also true for the Dynamic Energy up to 128 TUs. The software

pipelining do not significantly impact the Dynamic Energy because the instructions

executed are practically the same but this technique decreases Total Energy because

the total execution time and the Static Energy decreases. In addition, we noticed that

the Dynamic Energy consumption of our Dynamic Task Scheduling does not vary with

the number of TUs. The reason is that the size of the basic unit of work, the tile,

is function of architectural parameters such as the number of registers but it is not

function of the number of TUs like the blocks used in Dynamic Repartitioning. Our

approach using Dynamic Scheduling seems useful for decreasing dynamic energy and

122

 0.0625

 0.1250

 0.2500

 0.5000

 1.0000

 2.0000

 4.0000

 8.0000

 16.0000

 32.0000

 64.0000

 128.0000

 256.0000

 512.0000

1 4 16 64 128 156

To
ta

l E
n

e
rg

y
(J

)

Thread Units

Baseline - Dynamic Repartitioning

+ Energy Aware Tiling

+ SW Pipelining

+ Dynamic Task Scheduling

Figure 9.5: Total Energy vs. Thread Units for a matrix of 840× 840

total energy when the number of TUs surpasses 128. In addition, we noticed that total

energy and dynamic energy of the baseline implementation using 1 TU are particularly

high, compared with higher number of threads. The reason is that the Diagonal register

tiling used in the Diagonal block calculation is highly inefficient compared with the

other tilings; a serial execution computes an LU Factorization as a single Diagonal

block and exposing this fact.

We also study the impact of the optimizations proposed in terms of Power

Efficiency (the ratio between performance and power consumption) in order to examine

the trade offs between performance and power consumption. Figure 9.6 shows the

scalability of the Power Efficiency with respect to the matrix size using the maximum

number of TUs available, while Figure 9.7 shows the scalability of the Power Efficiency

123

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1,024.0

2,048.0

120 360 600 840

P
o

w
e

r
Ef

fi
ci

e
n

cy
 (

M
FL

O
P

S/
W

)

Matrix Size

Baseline - Dynamic Repartitioning
+ Energy Aware Tiling
+ SW Pipelining
+ Dynamic Task Scheduling

Figure 9.6: Power Eff. vs. Matrix Size for TU = 156

with respect to the number of TUs for the biggest matrix that fits on SRAM.

For different matrix sizes on Figure 9.6, all the proposed optimizations increase

the power efficiency. The increase in power efficiency for the LU factorization varies

between 1.68X and 4.87X with respect to a highly optimized version that targets per-

formance (Our baseline that uses Dynamic Repartitioning). The major returns of

the techniques proposed are reached with small matrices. The optimization with the

higher impact is the Dynamic Task Scheduling: between 1.2X and 3.5X to the power

efficiency.

A careful comparison of the behavior between Power efficiency (Figure 9.7) and

Performance (Figure 9.8) shows similarities when few threads are used. For the baseline

implementation, as well as for the Energy-aware tiling and the Software Pipelining

124

0.0

100.0

200.0

300.0

400.0

500.0

600.0

1 4 16 64 128 156

P
o

w
e

r
Ef

fi
ci

e
n

cy
 (

M
FL

O
P

S/
W

)

Thread Units

Baseline - Dynamic Repartitioning
+ Energy Aware Tiling
+ SW Pipelining
+ Dynamic Task Scheduling

Figure 9.7: Power Eff. vs. TUs for Matrix Size 840× 840

optimizations, the power efficiency drops after 128 TUs. This is related to the fact

that even though the execution time and Static Energy decreases for an increasing

number of TUs in all three implementations, the Dynamic Energy increases because

these optimizations schedule tasks based on blocks. In contrast, the Power Efficiency

of the Dynamic Task Scheduling optimization increases properly with the number of

TUs because this type of scheduling does not only scales in terms of performance and

Static Energy but also because it keeps the Dynamic Energy constant with the number

of TUs.

For the C64 architecture there is a big correlation between the performance and

the energy efficiency using few TUs given the high contribution of the static energy

to the total energy budget. However, this scenario changes when more TUs are used.

125

 -

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 4 16 64 128 156

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Thread Units

Baseline - Dynamic Repartitioning

+ Energy Aware Tiling

+ SW Pipelining

+ Dynamic Task Scheduling

Figure 9.8: Performance vs. TUs for Matrix Size 840× 840

While all the techniques proposed improve the performance (as seen in Figure 9.8), the

power efficiency decreases after 64 TUs or 128 TUS for the Static scheduling techniques

(as seen in Figure 9.7). On the other hand, the Dynamic Task scheduling scales in

Performance and Power Efficiency.

126

Chapter 10

TRADEOFFS BETWEEN PERFORMANCE AND ENERGY
OPTIMIZATIONS FOR MANY-CORE ARCHITECTURES

While Chapters 5, 6 and 7 focused on Performance optimizations and model-

ing and Chapters 8 and 9 focused on Energy Consumption, we have seen that both

optimizations are related. However, optimizing for performance is not necessarily the

same as optimizing for energy consumption. This Chapter studies some scenarios that

reflect the trade offs between performance and energy optimizations for many-core

architectures.

10.1 Optimizing for Energy is More Difficult than Optimizing for Perfor-

mance

There is a clear relation between Performance and Energy optimizations through

time as shown in equation 8.1. This equation can be simplified as:

ET = Es(t) + Ed (10.1)

Equation 10.1 shows that the total energy consumption ET of an application

has two major components. The Static Energy Es is related to leakage currents and,

in general, it is proportional to execution time t. The Dynamic Energy Ed is related

to the type of tasks performed (e.g. instructions executed).

As we can see, any performance optimization is indirectly modifying the total

energy consumption through a decrease of Static Energy [107]. However, Improvements

in total energy consumption for optimizations targeting performance and without im-

pact in the Dynamic Energy will be lower than improvements in Performance. For

example, assuming the energy consumption of an application can be split half for

127

static energy and half for dynamic energy, a potential performance optimization that

decreases the execution time by 50% (performance speed up of 2X), will decrease the

energy consumption just by 25% (asumming not significant change in the dynamic

energy consumption).

Many performance optimizations fall in this scenario, where the instructions,

computations or tasks are just reordered to provide a better utilization of resources,

while the amount of total work remains the same. Some examples are Instruction

Scheduling, Loop Unrolling, Software Pipelining and Percolation.

All these performance optimizations reflect the fact that Latency can be hidden

but Energy cannot. Reordering work for better utilization will not decrease the Energy

associate to the work performed, just the energy associate to the time spent.

In some other cases, performance optimizations can hurt the Dynamic Energy

consumption, diminishing the returns in energy savings. An example is the Dynamic

Repartitioning presented by Venetis and Gao in [47]; as shown in the motivating ex-

ample in Chapter 9 and detailed in Figure 9.2. It can be seen that this optimization

targets a better load balancing and parallelism for better performance by keeping the

amount of computational work equal (e.g. Floating Point Operations) but when the

number of thread units is increased, the number of memory operations required also

increases, affecting the Dynamic Energy consumption significantly. It increases 6̃5%

going from 4 TU to 156 TU. This negative effect reflects more or less in the total energy

consumption based on the proportion between Static and Dynamic Energy. While the

amount of parallelism increases on new systems and applications performance get close

to theoretical peak performance, the dynamic energy becomes significant with respect

to the static energy.

The importance of optimizations that also target Dynamic Energy such as Power

Aware Tiling was explained in Chapters 8 and 9. This type of tiling keeps the amount

of computational work similar (and the dynamic energy associated to this work) while

decreasing the energy consumption of memory operations (commonly the most power

hungry operations), having also a positive impact on Static Energy and allowing further

128

optimizations targeting Performance.

10.2 Trade offs between Performance and Energy Optimizations

While Energy efficiency and power consumption became more and more im-

portant in all the spectrum of computing ranging from mobile and embedded systems

to future exascale computing, performance drops are not an option, current design

constraints are looking for maximum performance and minimum energy consumption.

Unfortunately this two requirements are not necessarily pointing in the same direction

but also they are not orthogonal.

For example, taking the Matrix Multiplication of square matrices under a three

level memory hierarchy (Registers, on-chip SRAM and off-chip DRAM), designing a

tiling in registers and SRAM that is optimum for performance requires: First, mini-

mize the number of memory operations in SRAM and DRAM. And second, hide the

latency of this optimum number of memory operations using the strategies described

in Chapters 5 and 6.

The solution for the tiling in registers has been described in detail in section

5.2.2 and it just depends of a parameter L where 2L+L2 ≤ R and R is the number of

registers in each thread unit.

Assuming the matrix multiplication A×B = C of matrix sizes m×m and tiling

in on-chip memory SRAM of sizes Z × Y , Y ×Z and Z ×Z for matrices A, B and C.

The proposed optimization problem is:

min
Y,Z

LDDRAM (Y, Z, L,m) + STDRAM (Y, Z, L,m)

+ LDSRAM (Y, Z, L,m) + STSRAM (Y, Z, L,m)

s.t. SRAM (Y, Z) ≤ SRAMmax

(10.2)

An analytical calculation of the number of loads and stores per memory level

129

will simplify equation 10.2 as follows:

min
Y,Z

(
4

Z
+

1

LY
+

2

L

)
m3 + 5m2 s.t. 2Y Z + Z2 ≤ SRAMmax (10.3)

Because L and m are known in equation 10.3, the final optimization problem is:

min
Y,Z

1

Z
+

1

4LY
s.t. 2Y Z + Z2 ≤ SRAMmax (10.4)

On the other side, designing an energy aware tiling for the same problem, min-

imizing the energy consumption of most hungry instructions using the techniques and

models described in Chapters 8 and 9, can be formulated by this optimization problem:

min
Y,Z

e1LDDRAM (Y, Z, L,m) + e2STDRAM (Y, Z, L,m)

+ e3LDSRAM (Y, Z, L,m) + e4STSRAM (Y, Z, L,m)

s.t. SRAM (Y, Z) ≤ SRAMmax

(10.5)

Where e1, e2, e3 and e4 are the dynamic energy consumption coefficients for

Loads from DRAM, Stores to DRAM, Loads from SRAM and Stores to SRAM respec-

tively.

min
Y,Z

(
2(e1 + e4)

Z
+

e3

LY
+

2e3

L

)
m3 + (e1 + e2 + e3 + 2e4)m2

s.t. 2Y Z + Z2 ≤ SRAMmax

(10.6)

Because L and m are known in equation 10.6, the final optimization problem is:

min
Y,Z

1

Z
+

e3

2(e1 + e4)LY
s.t. 2Y Z + Z2 ≤ SRAMmax (10.7)

A numerical analysis of equation 10.7 can show that using tall and skinny SRAM

blocks in matrix A with short and wide SRAM blocks in matrix B (small Y and large

Z) will reduce the contribution of dynamic energy of these operations. However, it is

130

important to notice that this rectangular shapes on the blocks may affect the perfor-

mance due a decrease in the task size and extra overhead of the dynamic scheduler.

These type of effects cannot be easily captured on the optimization problems proposed.

Beyond to optimizing for just performance or energy, it is of interest to know,

for a particular optimization, the trade offs between performance and energy consump-

tion. A more relaxed requirement than maximum performance or minimum energy

consumption, is to explore how much energy savings can be obtained by allowing an

small decrease in performance. A qualitative and quantitative analysis is performed in

the next section.

10.3 A Case of Study for Performance and Energy Consumption Trade

offs

This section will show the trade offs between the performance and the energy

consumption of a rectangular block applied to on-chip SRAM for the parallel matrix

multiplication algorithm. The platform used is the IBM Cyclops-64 described in sec 4, a

real chip was used for the performance and energy measurements while the break down

between static and dynamic energy was done using the model explained in Chapter 8.

It is assumed that the blocks are of size n × m, m × n and n × n and fit in

on-chip SRAM.

Figure 10.1 shows the normalized expected performance (blue line). The x axis

starts with very wide and short block in matrix A and tall and skinny block in matrix

B (small n and large m). The x axis ends with very tall and skinny block in matrix A

and wide and short block in matrix B (large n and small m). In the middle of the x

axis, all the blocks of matrices A, B and C are square.

The performance expected has been divided in 4 regions P , Q, S and T . First,

region P has very low performance because an small n and large m produce very few

and large parallel tasks, the number of tasks is not enough to feed all the processors;

the performance increases as n increases. Region Q is characterized because there

are enough fine-grain parallel tasks and the maximum performance is reached in this

131

Figure 10.1: Projection of Performance and Dynamic Energy vs. size of the rectan-
gular tiling for Matrix Multiplication

region. The number of parallel tasks keeps growing in region S while tasks size is

decreasing, it starts affecting the performance due to the overhead of the scheduler.

The overhead of the dynamic scheduler in region T is too big and it affects significantly

the performance.

Due to the expected smooth change in performance in region S and the varia-

tions of dynamic energy produced by the changes in the size of the rectangular tiling

according to section 10.2, this region shows a potential for a good trade off between

performance and energy consumption.

Normalized measurements of Performance and Energy Consumption (Dynamic

and Total) for a C64 chip are shown in Figure 10.2. Measurements of performance

follow the expected behavior described in Figure 10.1. The maximum performance is

reached by an square tiling (n = 264 and m = 264) but also that is the point of maxi-

mum dynamic energy consumption. It is important to notice that as the parameter n

132

n

Figure 10.2: Normalized Performance, Dynamic Energy and Total Energy vs. size
of the rectangular tiling for Matrix Multiplication

in the rectangular tiling is increased, the performance and dynamic energy decrease but

on a different rate. It gives the opportunity to exploit a trade off between performance

and energy consumption around the region S described previously.

The normalized total energy is also shown in Figure 10.1. The trade off between

static and dynamic energy can be noticed here. A very small n constraints the amount

of parallelism and affects the performance, making dominant the static energy compo-

nent and increasing the energy consumption. In addition, the contribution of dynamic

energy to the total energy is significant on the regions where the performance is high

(e.g. regions Q and S), making feasible to make significant energy saving sacrificing a

minimum in performance. For example, sacrificing a 10% in performance using n = 396

133

and m = 66 produces a decrease in total energy of 42%

These type of trade offs are profitable because the energy savings are higher than

the drops in performance, a parameterized tiling in conjunction with a profiling in terms

of energy and performance can help similar applications to obtain this type of benefits.

Also, a self-aware system able to monitor energy consumption and performance can

allow a real time control of this type of trade off.

134

Chapter 11

RELATED WORK AND EXTENSIONS

This section explains some of the most related research that has influenced the

development of this thesis and possible extensions to this work. Some of these works

are very close and they arisen as collaborations around common interests while others

are independent past or parallel efforts in the area.

The optimization of parallel applications is widely spread in the community.

Most of the strategies are focused to GPGPUs; while the list of related work is very

extensive, some useful general references are [108, 109, 110, 111] and some specific works

for particular type of algorithms are [112, 113, 114, 115]. Also an increasing amount of

work in optimization on the Intel Xeon Phi Co-processor [116, 117, 118], also known

as MIC, faces most of the challenges analyzed in this thesis. The solutions proposed

in this work can benefit a wide range of present and future many-core architectures

where large amount of parallelism is exposed and there are plenty of shared resources.

This research used heavily the IBM Cyclops-64 many-core architecture and the

software tool-chain and simulator designed for this system [67, 119, 120]. Previous to

this effort, several applications were targeted for been optimized for performance [45,

46, 47, 121, 122], all of them used static techniques and reached speedup compared

to naive versions but they failed to reach performance comparable to the theoretical

peak performance of the architecture. All this previous work motivated the use of

dynamic techniques, the improving of previous static optimizations and better use of

shared resources. The performance optimizations and lightweight fine-grained dynamic

scheduling proposed will benefit a broad spectrum of applications beyond the ones

studied in this work.

135

Dynamic Scheduling has been studied for other many-core architectures. The

Intel Larabee many-core architecture implements task scheduling entirely with soft-

ware, allowing for a lightweight Dynamic Scheduling [123]. In conjunction with two

other research projects at Intel (The The 80-core Tera-scale research chip program

[124, 125] and the Single-Chip Cloud Computer initiative [126, 127]), Larabee has

evolved into the Many Integrated Core (MIC). However, this thesis provides evidence

indicating the importance and complexity of task scheduling on many-cores, even un-

der homogeneous workloads, and how hardware support can be leveraged to drastically

reduce the overhead of more complex scheduling policies under finer grain scenarios. In

general, runtime implementations are focused on scheduling loads that are frequently

heterogeneous, based on queues, and focused on locality. One of the most popular

examples is Cilk [128]. Other approaches include EARTH [28] and Habanero [129].

The contribution of this thesis is more focused on explaining the challenges of schedul-

ing fine-grained homogeneous tasks on many-core architectures and, in the process,

showing some limitations of Static Scheduling with regard to scalability and shared

resources, and how those limitations are overcome by Dynamic Scheduling.

Several approaches consider the task scheduling problem as a Bin-Packing prob-

lem. Different scheduling techniques have been proposed according to the desired

optimization function. Good summaries can be found in [130, 131]. Most are not ar-

chitecture aware and do not consider the overhead and arbitration of shared resources,

which is especially important for finer granularity. They have been useful for coarse

grained tasks and distributed systems providing boundaries for optimum scheduling

strategies under these scenarios.

The Dynamic optimization techniques proposed and the particular implemen-

tation and benefits of lightweight fine-grained dynamic scheduling have been used in

related research on dataflow inspired runtime systems [72, 37, 100, 39]. Also, other

many-core runtime systems have similar roots and have been close to this work such as

DARTS and SWARM [132, 133, 36]. There are other multiple parallel efforts that have

pointed to Dynamic Schedulers under many-core as the base for scalable fine-grained

136

runtime systems such as Habanero, Concurrent Collections (CnC) and the Open Com-

munity Runtime (OCR) [134, 135, 136, 137, 138, 139, 140] and also for specialized

libraries for HPC such as the Parallel Linear Algebra Software for Multi-core Archi-

tectures (PLASMA) and the Matrix Algebra on GPU and Multi-core Architectures

(MAGMA) [141, 142, 143, 144].

Many approaches to performance modeling of multi-threaded programs are

based on statistical models of the system and application. Examples of this include the

work of Lee [145] and Marin [146]. While they differ in their approach, both works use

predictive models to make performance predictions across the entire parameter space.

Jacquet et al. also create statistical models of the performance of parallel programs

through the use of queuing simulation tools [147]. This work provides detailed mod-

eling of the performance of multiprocessor architectures and key insights into how to

reduce contention. However, this thesis is primarily focused on the performance of

specific algorithms on parallel architectures. Tarvo and Reiss’s work [148] also utilizes

simulation to model the performance of a program with a high degree of accuracy.

Tarvo and Reiss’s work, much like our own, does not require a large degree of training

data and can provide accurate results with a comparatively small amount of data. The

key difference between our work and Tarvo and Reiss’s are the applications being tar-

geted. Our work focuses on performance modeling of the algorithms used in scientific

computing whereas their work focuses on applications that make heavy use of I/O and

other features of the Linux OS.

Petri nets have long been used to model concurrency with resource dependen-

cies. Govindarajan et al. previously utilized time Petri nets to model multithreaded

multiprocessor architectures [149]. Govind et al. would later build upon this work to

model a commercial network multithreaded multiprocessor with Petri nets [150]. While

similar, the key difference between these works and our own is that Govindarajan mod-

els the system whereas we model the algorithm. While Govindarajan’s approach has

the potential for highly accurate results, each model is inherently architecture specific.

137

Our approach instead makes the model algorithm specific with the transition dura-

tions based upon the underlying architecture. Nguyen and Apon used Petri nets to

model the dependencies and latencies of the Linux file system [151] whereas Gilmore

et al. used PEPA nets, Petri nets combined with stochastic process algebra, to model

secure web services. Furthermore, Kavi and Chen utilized petri nets to model parallel

programming structures, such as mutexes and semaphores, to identify race conditions

and deadlocks [91].

Fine-grained dataflow inspired systems are also a feasible solution for scalable

parallel and modular simulator. A promising approach is the PCA Inspired Computer

Architecture Simulation framework (PICASim) [94]

Energy consumption on traditional architectures has been extensively studied

[152]. Most of the research has focused on systems with caches [153]. Accurate but

highly complex models and techniques for reducing energy consumption has been pro-

posed for uniprocessor architectures. They uses precise information about the hardware

and are based on elaborated instruction scheduling [154, 152]. As a consequence the

extrapolation to many-core architectures is highly difficult and not scalable with the

number of hardware threads. Energy efficiency on multiprocessors has been focused on

the hardware design, including hardware features like power saving off-chip memory or

dynamic voltage selection [155].

With respect to power efficiency, this thesis made particular emphasis on op-

timization of dynamic energy; it complements all the efforts in energy optimizations

through performance. Several efforts have focused on dynamic voltage and frequency

scaling [156, 157, 158], this type of techniques offers a very good trade off between

power and performance. The techniques explored here can work on top of these for

additional energy savings.

As previously mentioned, the modeling of and optimization for energy con-

sumption is a well researched topic. Many models focus on scheduling and are based

on the overall amount of work per unit time [152] or energy [159]. These approaches

yield a simplified model that is comparatively easy to use. However, the options and

138

optimizations are limited by the coarse-grained approach.

In contrast, fine-grain approaches [160], like our own, exchange complexity for

the potential optimizations that can be applied. Previous works utilized highly accu-

rate, but highly complex, techniques to reduce energy consumption on uniprocessor

architectures. This focus on the individual core worked well for uniprocessor archi-

tectures but it is unclear how well it will scale for multi-cores. Additionally, these

models do not fit with the comparatively recent worldwide pursuit of energy efficiency

on multiprocessors.

Large distributed systems face similar challenges for energy efficiency. Due

to high cost of communication between nodes, impact in performance and energy of

communication avoiding algorithms (including an important subset known as 2.5D al-

gorithms) has become an important research area for distributed systems [161, 162,

163, 164]. The techniques presented in this thesis are complementary to these opti-

mizations because our studies are focused on shared memory architectures and they

are targeting optimizations at node level. It is still an open problem the integration

of these two levels of parallelism on a single mathematical framework that allows the

simultaneous optimization of both.

Hardware mechanism for monitoring and controlling power consumption are

still too coarse for many-core architectures and they are more oriented to Thermal

Management [165, 166, 167]. In addition, power and energy estimations were done

through performance monitoring of events [168, 169]. Recently, finer granularity of

performance counters and specific hardware counters for power and energy monitoring

with additional power related features are available on commercial CPUs; an example

is the Intel RAPL (Running Average Power Limit). This interface provides platform

software with the ability to monitor, control, and get notifications on SOC power

consumptions. Since its first appearance on Sandy Bridge, more features have being

added to extend its usage. In RAPL, platforms are divided into domains for fine

grained control. These domains include package, DRAM controller, CPU core (Power

Plane 0), graphics uncore (power plane 1), etc. [170, 171, 172].

139

While most studies have focused on showing potential tradeoffs between Perfor-

mance and Energy consumption, there are few of them that emphasize the importance

of finer granularity in the control variables [157, 173]. In addition, most studies require

inconvenient careful profiling or other offline techniques. Accurate real-time managing

of tradeoffs between Performance and Energy Consumption is still and open question.

This thesis opens the door to this area through a qualitative and quantitative analysis

of some tradeoffs and gives valuable elements to continue this path; promising scalable

fine-grained strategies for managing these tradeoffs in future parallel technologies are

suggested in the work of Landwehr et. al. [174].

This thesis has focused on two major challenges of parallel computing and their

tradeoffs: Performance and Energy Consumption. Fault tolerance and Resiliency arise

as a third component that need to be modeled, optimized and balanced with perfor-

mance and energy requirements on present and future many-core architectures. Exten-

sive literature that describe the challenges and feasible solutions in the area of Fault

Tolerance has been published recently [175, 176, 177, 178, 179, 180, 181]. Lately there

is a particular interest on scalable fine-grained strategies [182, 183].

140

Chapter 12

SUMMARY AND CONCLUSIONS

The development of new processors with hundreds, or even thousands, of in-

dependent processing units through the path to exa-scale systems have brought new

challenges to several areas of computer science and computer engineering. Evaluation

and reformulation of traditional methodologies used for traditional serial architectures

is required given the new scenarios of present and future parallel architectures.

This thesis provided an analysis of new scenarios found in many-core architec-

tures, proposing new methodologies and solutions that leverage the increasing amount

of shared resources and the requirement of fine grain tasks to exploit the parallelism

available in hardware in order to increase the performance and energy efficiency of

these architectures.

An introduction to the general challenges of Computer Architecture and the

motivation for the study of parallel computing are presented in Chapter 1. Background

particularly related with Dataflow is detailed in Chapter 2.

The Problem Formulation of this thesis is addressed in Chapter 3. The following

questions summarize the objectives of these research:

1. Which is the impact of low-level compiler transformations such as tiling and
percolation to effectively produce high performance code for many-core architec-
tures?

2. What are the tradeoffs of static and dynamic scheduling techniques to efficiently
schedule fine grain tasks with hundreds of threads sharing multiple resources
under different conditions in a single chip?

3. Which hardware architecture features can contribute to better scalability and
higher performance of scheduling techniques on many-core architectures on a
single-chip?

141

4. How to effectively model high performance programs on many-core architectures
under resource coordination conditions?

5. How to efficiently model energy consumption on many-cores managing tradeoffs
between scalability and accuracy?

6. Which are feasible methodologies for designing power-aware tiling transforma-
tions on many-core architectures?

A representative architecture that reflects the trends in parallel computing is the

IBM Cyclops-64 (C64). An overview of this platform is presented in Chapter 4. C64

architecture features have been used through this thesis for the experimental evaluation

as a representative of modern many-core architectures.

Chapter 5 studied the impact of low-level compiler transformations such as tiling

among others to effectively produce high performance code.

This Chapter presented an static methodology to design algorithms for many-

core architectures with a software managed memory hierarchy taking advantage of

the flexibility these systems provide. The techniques presented were applied to design

and implement a Dense Matrix Multiplication (MM) for the C64 Architecture. Three

strategies for increasing performance and show their advantages under this kind of

architecture were proposed.

The first strategy is a balanced distribution of work amount threads: the parti-

tioning strategy not only distributes the amount of computation as uniform as possible

but also minimizes the maximum block size that belongs to each thread. Experimental

results show that the partitioning proposed scales well with respect to the number of

threads for different sizes of square matrices and performs better than other similar

schemes.

The second strategy alleviates the total cost of memory accesses. We propose an

optimal register tiling with an optimal sequence of traversing tiles that minimizes the

number of memory operations and maximizes the reuse of data in registers. The imple-

mentation of the proposed tiling reached a maximum performance of 30.42 GFLOPS

142

which is almost 10 times larger than the maximum performance reached by the opti-

mum partition alone.

Finally, specific architecture optimizations were implemented. The use of multi-

ple load and multiple store instructions (ldm/stm) diminishes the time spent transfer-

ring data that are consecutive stored/loaded in memory. It was combined with instruc-

tion scheduling, hiding or amortizing the cost of some memory operations and high cost

floating point instructions doing other computations in the middle. After these opti-

mizations, the maximum performance of the MM algorithm is 44.12 GFLOPS which

corresponds to 55.2% of the peak performance of a C64 chip.

Chapter 6 shows that despite the careful implementation of additional static

techniques such as Percolation, it is not enough for reaching high performance in many-

cores. This Chapter examined the limitations of static techniques and the suitability

of dynamic optimizations for many-core architectures. First, it complements the set of

static optimizations studied in Chapter 5 using a Dense Matrix Multiplication (DMM)

as example. An exhaustive study and careful implementation of static optimizations

are not enough for exploiting the amount of parallelism on many-core architectures.

For example, the DMM achieves a performance under %80 of the teoretical peak per-

formance of the machine. Taken this experience as a motivating example, it is shown

that for highly regular and embarrassingly parallel applications, Dynamic Scheduling

(DS) is preferred over Static Scheduling (SS) in scenarios commonly found in many-core

architectures. These scenarios involve the presence of shared resources under different

arbitration policies, hundreds of processing units, and a limited amount of work.

It is also explained how these factors degrade the expected performance of SS

and how DS behaves better under these conditions. The presence of shared resources,

such as a crossbar switch, produces unexpected and stochastic variations on the dura-

tion of tasks that SS is unable to manage. In addition, a uniform mapping of work to

processors without considering the granularity of the tasks is not necessarily scalable

under limited amounts of work.

In addition, it is explained how the advantages of DS are further improved

143

by a low-overhead implementation using mechanisms provided by the architecture,

particularly in-memory atomic operations, diminishing the overall overhead of DS. As

a result, DS can remain efficient for finer task granularities.

These factors allow DS to scale better than SS as the number of processors

increase. We demonstrated how Dynamic Scheduling can overcome Static Scheduling

with regard to performance. We did this with a synthetic microbenchmark and two

applications. Using a Memory Copy microbenchmark, the tradeoffs of SS vs. DS are

exposed. Under scenarios with small amount of Hardware threads (e.g. less that 48),

SS overcome DS because SS is able to produce a balanced workload with minimum

overhead. However, increasing the number Thread Units makes SS schedule highly

unbalanced, loosing performance. DS is a feasible solution to manage these complex

scenarios and produces balanced workloads under more than a hundred Thread Units

with light overhead that allows to double the performance in some cases.

Sparse Vector Matrix Multiplication (SpVMM) was used to show the tradeoffs of

SS vs DS under heterogeneity of task controlling the variance of the sparsity distribution

for the matrix.

It is important to note that we were able to reach 70.87 GFLOPS for a Dense

Matrix Multiplication using a fine-grained DS under C64. This result approaches the

80 GFLOPS of theoretical peak performance, and is far greater than previous published

results for this architecture.

Chapter 7 addresses the problem of modeling high performance programs on

many-core architectures under resource coordination conditions.

In this chapter, we have demonstrated a technique to model the performance of

parallel applications on many-core architectures with resource coordination conditions.

Our approach, based on timed Petri nets, results in algorithm specific models that allow

us to account for the resource constraints of the system and the needs of the algorithm

itself.

With our approach, we were able to model the performance of a dense matrix

multiplication algorithm and a finite difference time-domain (FDTD) solution for the

144

propagation of electromagnetic waves given by Maxwell’s Equations in 1-Dimension

and 2-Dimensions on the IBM Cyclops-64 with a very high degree of accuracy, an

average error of 4.4% with respect to the actual performance of the algorithms. Fur-

thermore, because of the nature of our model, we were easily able to investigate how

our algorithms would perform on similar architectures.

Finally, we demonstrated how to use our approach to performance modeling

to investigate, develop, and tune algorithms for modern many-core architectures, we

compared two different tiling strategies for the FDTD kernel and we tested two different

algorithms for LU Factorization.

In Chapter 8, we developed an energy consumption model for many-core ar-

chitectures with software-managed memory hierarchy. We validated the accuracy of

this model with the C64 many-core architecture and we showed the model depends

of the number and type of instructions executed and the total execution time of the

application. An advantage is that this model is scalable with the number of hardware

thread units and consider stalls produced by data dependencies or arbitration of shared

resources.

We also proposed a general methodology for designing tiling techniques for en-

ergy efficient applications. The methodology proposed is based on an optimization

problem that produces optimal tiling and sequence of traversing tiles minimizing the

energy consumed and parametrized by the sizes of each level in the memory hierarchy.

We also showed two different techniques for solving the optimization problem for two

different applications: Matrix Multiplication (MM) and Finite Difference Time Domain

(FDTD). Our experimental evaluation shows that the techniques proposed reduce the

total energy consumption effectively, decreasing the static and dynamic component.

The average energy saving for MM is 61.21%, this energy saving is 81.26% for FDTD

compared with the naive tiling.

In Chapter 9, we studied and implemented several optimizations to target energy

efficiency on many-core architectures with software managed memory hierarchies using

LU factorization as a case of study. Our starting point was a highly optimized LU

145

factorization designed for high performance [47]. We analyzed the impact of these

optimizations on the Static Energy Es, Dynamic Energy Ed, Total Energy ET and

Power Efficiency. To facilitate this, we used the scalable energy consumption model

described in Chapter 8. We designed and applied further optimizations strategies at the

instruction-level and task-level to directly target the reduction of Static and Dynamic

Energy and indirectly increase the Power Efficiency. We designed and implemented an

energy aware tiling to decrease the Dynamic Energy. The tiling proposed minimizes

the energy contribution of the most power hungry instructions.

The proposed optimizations for energy efficiency increase the power efficiency

of the LU factorization benchmark by 1.68X to 4.87X, depending on the problem size,

with respect to a highly optimized version designed for performance. In addition, we

point out examples of optimizations that scale in performance but not necessarily in

power efficiency.

In Chapter 10, we showed tradeoffs between performance and energy optimiza-

tions for Many-core architectures. We explained how performance and energy con-

sumption are partially related through the Static Energy that depends on execution

time. However the Dynamic Energy component becomes significant while the amount

of parallelism increases and applications make efficient use of resources.

We also explained how energy optimizations are more challenging because a)

Performance optimizations just target directly the Static Energy component, with di-

minishing benefits for the total energy consumption. b) Some performance optimization

can affect negatively the Dynamic Energy component diminishing even more the bene-

fits for total energy. And c) While multiple performance optimizations target a better

use of resources by reordering instructions, computations or tasks in order to hide

latency, the amount of work performed and the energy associated to them keeps the

same. All these reasons, motivate a deeper look at strategies that optimize Dynamic

Energy such as the Power Aware Tiling explained in Chapter 8.

Finally, we showed how to exploit tradeoffs between performance and energy

using a parametric power aware tiling on a parallel matrix multiplication. We reached

146

42% energy saving allowing a 10% decrease in performance using a rectangular tiling

instead of an square tiling.

147

BIBLIOGRAPHY

[1] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits. Prentice-
Hall, 1996.

[2] J. Farrell and T. Fischer, “Issue logic for a 600-mhz out-of-order execution mi-
croprocessor,” Solid-State Circuits, IEEE Journal of, vol. 33, pp. 707 –712, may
1998.

[3] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”
IBM Journal of Research and Development, vol. 11, pp. 25 –33, jan. 1967.

[4] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar
processors,” in Proceedings of the 24th annual international symposium on Com-
puter architecture, ISCA ’97, (New York, NY, USA), pp. 206–218, ACM, 1997.

[5] G. Moore, “Cramming more components onto integrated circuits,” Proceedings
of the IEEE, vol. 86, pp. 82 –85, jan 1998.

[6] J. B. Dennis, “First version of a data flow procedure language,” in Programming
Symposium, Proceedings Colloque sur la Programmation, (London, UK), pp. 362–
376, Springer-Verlag, 1974.

[7] J. Rumbaugh, “A data flow multiprocessor,” IEEE Trans. Comput., vol. 26,
pp. 138–146, February 1977.

[8] A. Arvind and K. P. Gostelow, “The u-interpreter,” Computer, vol. 15, pp. 42–49,
February 1982.

[9] A. H. Veen, “Dataflow machine architecture,” ACM Comput. Surv., vol. 18,
pp. 365–396, December 1986.

[10] W. A. Najjar, E. A. Lee, and G. R. Gao, “Advances in the dataflow computational
model,” Parallel Computing, vol. 25, pp. 1907–1929, Dec. 1999.

[11] J. B. Dennis and D. Misunas, “A preliminary architecture for a basic data flow
processor,” in Proceedings of the 2nd Annual Symposium on Computer Architec-
ture (ISCA1974), pp. 126–132, December, 1974.

[12] Arvind and K. P. Gostelow, “The U-interpreter,” IEEE Computer, vol. 15, no. 2,
pp. 42–49, 1982.

148

[13] J. Dennis, G. Gao, and K. Todd, “Modeling the weather with a data flow super-
computer,” IEEE Transactions in Computers, 1984.

[14] G. R. Gao, “Maximum pipelining linear recurrence on static data flow comput-
ers,” International Journal of Parallel Programming, vol. 15, pp. 127–149, 1986.
10.1007/BF01414442.

[15] K. B. Theobald, “Adding fault-tolerance to a static data flow supercomputer,”
Tech. Rep. MIT/LCS/TR-499, MIT Lab. for Comp. Sci., Apr. 1991.

[16] D. Comte, N. Hifdi, and J.-C. Syre, “The data driven LAU multiprocessor system:
Results and perspectives,” in IFIP Congress, pp. 175–180, 1980.

[17] J.-L. Gaudiot, R. W. Vedder, G. K. Tucker, D. Finn, and M. L. Campbell, “A
distributed VLSI architecture for efficient signal and data processing,” IEEE
Trans. Computers, vol. 34, no. 12, pp. 1072–1087, 1985.

[18] J. E. Hicks, D. Chiou, B. S. Ang, and Arvind, “Performance studies of Id on the
monsoon dataflow system,” J. Parallel Distrib. Comput., vol. 18, no. 3, pp. 273–
300, 1993.

[19] Arvind and R. S. Nikhil, “Executing a program on the MIT tagged-token dataflow
architecture,” IEEE Trans. Computers, vol. 39, no. 3, pp. 300–318, 1990.

[20] Arvind, A. T. Dahbura, and A. Caro, “From Monsoon to StarT-Voyager:
University-Industry Collaboration,” IEEE Micro, vol. 20, no. 3, pp. 75–84, 2000.

[21] J. B. Dennis, “A parallel program execution model supporting modular software
construction,” in Proceedings of the Conference on Massively Parallel Program-
ming Models, MPPM ’97, (Washington, DC, USA), pp. 50–, IEEE Computer
Society, 1997.

[22] J. B. Dennis, “General parallel computation can be performed with a cycle-free
heap,” in Parallel Architectures and Compilation Techniques, 1998. Proceedings.
1998 International Conference on, pp. 96 –103, oct 1998.

[23] G. Gao, H. Hum, and J.-M. Monti, “Towards an efficient hybrid dataflow ar-
chitecture model,” in PARLE ’91 Parallel Architectures and Languages Eu-
rope (E. Aarts, J. van Leeuwen, and M. Rem, eds.), vol. 505 of Lecture
Notes in Computer Science, pp. 355–371, Springer Berlin / Heidelberg, 1991.
10.1007/BFb0035115.

[24] G. R. Gao, “An efficient hybrid dataflow architecture model,” J. Parallel Distrib.
Comput., vol. 19, pp. 293–307, Dec. 1993.

[25] H. H.-J. Hum, The super-actor machine: a hybrid dataflow/Von Neumann ar-
chitecture. PhD thesis, Montreal, Que., Canada, Canada, 1992. UMI Order No.
GAXNN-74897 (Canadian dissertation).

149

[26] R. A. Iannucci, “Toward a dataflow/von neumann hybrid architecture,” in Pro-
ceedings of the 15th Annual International Symposium on Computer architecture,
ISCA ’88, (Los Alamitos, CA, USA), pp. 131–140, IEEE Computer Society Press,
1988.

[27] R. A. Iannucci, G. R. Gao, R. H. Halstead Jr., and B. Smith, Multithread Com-
puter Architecture: A Summary of the State of the Art. The Kluwer International
Series in Engineering and Computer Science, Springer-Verlag GmbH, 1994.

[28] K. B. Theobald, EARTH: An Efficient Architecture for Running Threads. PhD
thesis, May 1999.

[29] H. Hum, X. Tang, Y. Zhu, G. Gao, X. Xue, H. Cai, and P. Ouellet, “Compiling
C for the EARTH multithreaded architecture,” in Proceedings of the 1996 Con-
ference on Parallel Architectures and Compilation Techniques, pp. 12–23, Oct
1996.

[30] H. Hum, O. Maquelin, K. Theobald, X. Tian, G. Gao, and L. Hendren, “A
study of the EARTH-MANNA multithreaded system,” International Journal of
Parallel Programming, vol. 24, no. 4, pp. 319–348, 1996.

[31] G. Gao, J. Suetterlein, and S. Zuckerman, “Toward an execution model for
extreme-scale systems -runnemede and beyond,” CAPSL Technical Memo 104.

[32] A. Kulkarni, M. Lang, and A. Lumsdaine, “GoDEL: a multidirectional dataflow
execution model for large-scale computing,” Data-Flow Execution Models for
Extreme Scale Computing (DFM 2011), 2011.

[33] L. Hendren, X. Tang, Y. Zhu, S. Ghobrial, G. R. Gao, X. Xue, H. Cai, and
P. Ouellet, “Compiling c for the EARTH multithreaded architecture,” Interna-
tional Journal of Parallel Programming, vol. 25, no. 4, pp. 305–338, 1997.

[34] J. B. Dennis, G. R. Gao, and X. X. Meng, “Experiments with the fresh breeze
tree-based memory model,” Computer Science - Research and Development,
vol. 26, pp. 325–337, Apr. 2011.

[35] A. Davis and R. Keller, “Data flow program graphs,” Computer, vol. 15, pp. 26
– 41, feb 1982.

[36] C. Lauderdale and R. Khan, “Towards a codelet-based runtime for exascale com-
puting: position paper,” in Proceedings of the 2nd International Workshop on
Adaptive Self-Tuning Computing Systems for the Exaflop Era, pp. 21–26, ACM,
2012.

[37] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. Gao, “Polytasks: A Compressed
Task Representation for HPC Runtimes,” in Proceedings of the 24th Interna-
tional Workshop on Languages and Compilers for Parallel Computing (LCPC

150

2011), vol. 7146 of Lecture Notes in Computer Science, (Fort Collins, CO, USA),
pp. 268–282, Springer-Verlag, Sep. 2011.

[38] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. Gao, “Polytasks: A Compressed
Task Representation for HPC Runtimes,” in Proceedings of the 24th International
Workshop on Languages and Compilers for Parallel Computing (LCPC 2011),
Lecture Notes in Computer Science, (Fort Collins, CO, USA), Springer-Verlag,
September 2011.

[39] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. Gao, “Toward high-
throughput algorithms on many-core architectures,” ACM Transactions on Ar-
chitecture and Code Optimization (TACO), vol. 8, pp. 49:1–21, Jan. 2012.

[40] M. Denneau and H. S. Warren Jr., “64-bit Cyclops: Principles of Operation,”
tech. rep., IBM Watson Research Center, Yorktown Heights, NY, April 2005.

[41] S. Coleman and K. S. McKinley, “Tile size selection using cache organization and
data layout,” in PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation, (New York, NY, USA),
pp. 279–290, ACM, 1995.

[42] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and
optimizations of blocked algorithms,” in ASPLOS-IV: Proceedings of the fourth
international conference on Architectural support for programming languages and
operating systems, (New York, NY, USA), pp. 63–74, ACM, 1991.

[43] D. Callahan and A. Porterfield, “Data cache performance of supercomputer appli-
cations,” in Supercomputing ’90: Proceedings of the 1990 ACM/IEEE conference
on Supercomputing, (Los Alamitos, CA, USA), pp. 564–572, IEEE Computer
Society Press, 1990.

[44] M. Kondo, H. Okawara, H. Nakamura, T. Boku, and S. Sakai, “Scima: a novel
processor architecture for high performance computing,” in High Performance
Computing in the Asia-Pacific Region, 2000. Proceedings. The Fourth Interna-
tional Conference/Exhibition on, vol. 1, pp. 355–360 vol.1, 2000.

[45] L. Chen, Z. Hu, J. Lin, and G. R. Gao, “Optimizing the Fast Fourier Transform on
a Multi-core Architecture,” in IEEE 2007 International Parallel and Distributed
Processing Symposium (IPDPS ’07), pp. 1–8, Mar. 2007.

[46] Z. Hu, J. del Cuvillo, W. Zhu, and G. R. Gao, “Optimization of Dense Matrix
Multiplication on IBM Cyclops-64: Challenges and Experiences,” in 12th Inter-
national European Conference on Parallel Processing (Euro-Par 2006), (Dresden,
Germany), pp. 134–144, Aug. 2006.

151

[47] I. E. Venetis and G. R. Gao, “Mapping the LU Decomposition on a Many-
Core Architecture: Challenges and Solutions,” in Proceedings of the 6th ACM
Conference on Computing Frontiers (CF ’09), (Ischia, Italy), pp. 71–80, May
2009.

[48] V. Strassen, “Gaussian Elimination is not Optimal,” Numerische Mathematik,
vol. 14, no. 3, pp. 354–356, 1969.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms. The MIT Press, 2nd ed., 2001.

[50] N. J. Higham, “Exploiting Fast Matrix Multiplication Within the Level 3 BLAS,”
ACM Transactions on Mathematical Software, vol. 16, no. 4, pp. 352–368, 1990.

[51] D. H. Bailey and H. R. P. Gerguson, “A strassen-newton algorithm for high-speed
parallelizable matrix inversion,” in Supercomputing ’88: Proceedings of the 1988
ACM/IEEE Conference on Supercomputing, (Orlando, Florida, United States),
pp. 419–424, 1988.

[52] D. Coppersmith and S. Winograd, “Matrix Multiplication via Arithmetic Pro-
gressions,” in Proceedings of the 19th Annual ACM symposium on Theory of
Computing (STOC ’87), (New York, NY, USA), pp. 1–6, 1987.

[53] L. E. Cannon, A Cellular Computer to Implement the Kalman Filter Algorithm.
PhD thesis, Montana State University, Bozeman, MT, USA, 1969.

[54] C.-T. Ho, S. L. Johnsson, and A. Edelman, “Matrix Multiplication on Hyper-
cubes Using Full Bandwidth and Constant Storage,” in Proceeding of the 6th
Distributed Memory Computing Conference, pp. 447–451, IEEE Computer Soci-
ety Press, 1991.

[55] Hyuk-Jae Lee and James P. Robertson and José A. B. Fortes, “Generalized Can-
non’s algorithm for parallel matrix multiplication,” in Proceedings of the 11th In-
ternational Conference on Supercomputing (ICS ’97), (Vienna, Austria), pp. 44–
51, ACM, 1997.

[56] D. H. Bailey, K. Lee, and H. D. Simon, “Using Strassen’s Algorithm to Accelerate
the Solution of Linear Systems,” Journal of Supercomputing, vol. 4, pp. 357–371,
1991.

[57] C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith, “GEMMW: A
Portable Level 3 Blas Winograd Variant Of Strassen’s Matrix-Matrix Multiply
Algorithm,” 1994.

[58] Sascha Hunold and Thomas Rauber and Gudula Rünger, “Multilevel Hierarchical
Matrix Multiplication on Clusters,” in Proceedings of the 18th Annual Interna-
tional Conference on Supercomputing (ICS ’04), (Malo, France), pp. 136–145,
2004.

152

[59] J. N. Amaral, G. R. Gao, P. Merkey, T. Sterling, Z. Ruiz, and S. Ryan, “Perfor-
mance Prediction for the HTMT: A Programming Example,” in Proceedings of
the Third PETAFLOP Workshop, 1999.

[60] D. A. Orozco and G. R. Gao, “Mapping the fdtd application to many-core chip
architectures,” in ICPP ’09: Proceedings of the 2009 International Conference
on Parallel Processing, (Washington, DC, USA), pp. 309–316, IEEE Computer
Society, 2009.

[61] E. Garcia, I. E. Venetis, R. Khan, and G. Gao, “Optimized dense matrix multipli-
cation on a many-core architecture,” in Proceedings of the Sixteenth International
Conference on Parallel Computing (Euro-Par 2010), (Ischia, Italy), August 2010.

[62] L. Chen and G. R. Gao, “Performance analysis of cooley-tukey fft algorithms for
a many-core architecture,” in Proceedings of the 2010 Spring Simulation Mul-
ticonference, SpringSim ’10, (San Diego, CA, USA), pp. 81:1–81:8, Society for
Computer Simulation International, 2010.

[63] I. Kaj, Stochastic Modeling in Broadband Communications Systems. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2002.

[64] M. Lin and N. McKeown, “The throughput of a buffered crossbar switch,” Com-
munications Letters, IEEE, vol. 9, pp. 465 – 467, may 2005.

[65] J. Stark, M. D. Brown, and Y. N. Patt, “On pipelining dynamic instruction
scheduling logic,” Microarchitecture, IEEE/ACM International Symposium on,
vol. 0, p. 57, 2000.

[66] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. R. Gao, “High throughput
queue algorithms,” CAPSL Technical Memo 103, January, 2011.

[67] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “FAST: A Functionally Accurate
Simulation Toolset for the Cyclops-64 Cellular Architecture,” in Workshop on
Modeling, Benchmarking, and Simulation (MoBS ’05). In conjunction with the
32nd Annual International Symposium on Computer Architecture (ISCA ’05),
pp. 11–20, 2005.

[68] E. Garcia, D. Orozco, R. Khan, I. Venetis, K. Livingston, and G. Gao, “A Dy-
namic Schema to increase performance in Many-core Architectures through Per-
colation operations,” in Proceedings of the 2013 IEEE International Conference
on High Performance Computing (HiPC 2013), (Bangalore, India), IEEE Com-
puter Society, Dec. 2013.

[69] L. Meadows, “Openmp 3.0 — a preview of the upcoming standard,” in Pro-
ceedings of the 3rd international conference on High Performance Computing
and Communications, HPCC ’07, (Berlin, Heidelberg), pp. 4–4, Springer-Verlag,
2007.

153

[70] R. L. Graham, “The mpi 2.2 standard and the emerging mpi 3 standard,” in
Proceedings of the 16th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface, (Berlin,
Heidelberg), pp. 2–2, Springer-Verlag, 2009.

[71] D. Orozco, TIDeFlow: A dataflow-inspired execution model for High Performance
Computing Programs. PhD thesis, 2012.

[72] D. Orozco, E. Garcia, R. Pavel, and G. Gao, “TIDeFlow: The Time Iterated
Dependency Flow Execution Model,” in Proceedings of Workshop on Data-Flow
Execution Models for Extreme Scale Computing (DFM 2011); 20th International
Conference on Parallel Architectures and Compilation Techniques (PACT 2011),
(Galveston Island, TX, USA), pp. 1–9, IEEE Computer Society, Oct. 2011.

[73] C. Dwork, M. Herlihy, and O. Waarts, “Contention in shared memory algo-
rithms,” J. ACM, vol. 44, pp. 779–805, Nov. 1997.

[74] P. King and R. Pooley, “Derivation of petri net performance models from uml
specifications of communications software,” in Specifications of Communication
Software, Proceedings of XV UK Performance Engineering Workshop, pp. 262–
276, Springer, 2000.

[75] C. Anglano, “Predicting parallel applications performance on non-dedicated clus-
ter platforms,” in Proceedings of the 12th international conference on Supercom-
puting, ICS ’98, (New York, NY, USA), pp. 172–179, ACM, 1998.

[76] C. Ramchandani, “Analysis of asynchronous concurrent systems by timed petri
nets,” 1974.

[77] X. Chen and T. Aamodt, “A first-order fine-grained multithreaded throughput
model,” in High Performance Computer Architecture, 2009. HPCA 2009. IEEE
15th International Symposium on, pp. 329 –340, feb. 2009.

[78] S. Hong and H. Kim, “An analytical model for a gpu architecture with memory-
level and thread-level parallelism awareness,” in Proceedings of the 36th annual
international symposium on Computer architecture, ISCA ’09, (New York, NY,
USA), pp. 152–163, ACM, 2009.

[79] S. Hong and H. Kim, “An integrated gpu power and performance model,”
SIGARCH Comput. Archit. News, vol. 38, pp. 280–289, June 2010.

[80] E. Garcia, D. Orozco, R. Khan, I. Venetis, K. Livingston, and G. R. Gao, “Dy-
namic Percolation: A case of study on the shortcomings of traditional optimiza-
tion in Many-core Architectures,” in Proceedings of 2012 ACM International
Conference on Computer Frontiers (CF 2012), (Cagliari, Italy), ACM, May 2012.

154

[81] D. Orozco, E. Garcia, and G. Gao, “Locality Optimization of Stencil Applica-
tions using Data Dependency Graphs,” in Proceedings of the 23rd International
Workshop on Languages and Compilers for Parallel Computing (LCPC2010),
vol. 6548 of Lecture Notes in Computer Science, (Houston, TX, USA), pp. 77–
91, Springer-Verlag, October 2010.

[82] E. Garcia, D. Orozco, R. Pavel, and G. R. Gao, “A discussion in favor of Dynamic
Scheduling for regular applications in Many-core Architectures,” in Proceedings of
2012 Workshop on Multithreaded Architectures and Applications (MTAAP 2012);
26th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2012), (Shanghai, China), IEEE, May 2012.

[83] M. Chu, R. Ravindran, and S. Mahlke, “Data access partitioning for fine-grain
parallelism on multicore architectures,” in In Proceedings of the 40th Annual
IEEE/ACM Symposium on Microarchitecture, 2007.

[84] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel tiled
linear algebra algorithms for multicore architectures,” Parallel Comput., vol. 35,
pp. 38–53, Jan. 2009.

[85] DARPA, “Ubiquitous high performance computing (UHPC) - DARPA-BAA-10-
37,” 2010. http://tinyurl.com/7lkeedl.

[86] R. German, C. Kelling, A. Zimmermann, and G. Hommel, “Timenet: a toolkit
for evaluating non-markovian stochastic petri nets,” Performance Evaluation,
vol. 24, no. 1, pp. 69 – 87, 1995. Performance Modeling Tools.

[87] J. Lilius, “Efficient state space search for time petri nets,” Electronic Notes in
Theoretical Computer Science, vol. 18, no. 0, pp. 113 – 133, 1998. MFCS’98
Workshop on Concurrency.

[88] G. Chiola and A. Ferscha, “Distributed simulation of timed petri nets: Exploiting
the net structure to obtain efficiency,” in In 14 th International Conference on
Application and Theory of Petri Nets, pp. 14–6, Springer Verlag, 1993.

[89] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Universit́’at Hamburg,
1962.

[90] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, pp. 541 –580, apr 1989.

[91] K. M. Kavi, A. Moshtaghi, and D.-J. Chen, “Modeling multithreaded applica-
tions using petri nets,” Int. J. Parallel Program., vol. 30, pp. 353–371, Oct. 2002.

[92] E. Garcia, R. Khan, K. Livingston, I. E. Venetis, and G. R. Gao, “Dynamic
percolation - mapping dense matrix multiplication on a many-core architecture,”
CAPSL Technical Memo 098, June, 2010.

155

[93] L. Gomes and J. P. Barros, “Structuring and composability issues in petri nets
modeling,” Industrial Informatics, IEEE Transactions on, vol. 1, pp. 112 – 123,
may 2005.

[94] R. Pavel, E. Garcia, D. Orozco, and G. R. Gao, “Toward a highly parallel frame-
work for discrete-event simulation,” CAPSL Technical Memo 113, April, 2012.

[95] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,
and K. Yelick, “Exascale computing study: Technology challenges in achieving
exascale systems,” DARPA Information Processing Techniques Office (IPTO)
sponsored study, 2008.

[96] J. Torrellas, “Architectures for extreme-scale computing,” Computer, vol. 42,
pp. 28 –35, Nov. 2009.

[97] K. Yee, “Numerical solution of inital boundary value problems involving
maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE
Transactions on, vol. 14, pp. 302–307, May 1966.

[98] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev,
and P. Sadayappan, “Effective automatic parallelization of stencil computations,”
SIGPLAN Not., vol. 42, no. 6, pp. 235–244, 2007.

[99] M. Denneau, “Cyclops,” in Encyclopedia of Parallel Computing: SpringerRefer-
ence (www. springerreference. com) (D. Padua, ed.), Springer-Verlag Berlin
Heidelberg, 2011.

[100] Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, Z. Budimlic, R. Pavel, G. Gao, and
V. Sarkar, “Hardware and Software Tradeoffs for Task Synchronization Using
Phasers on Manycore Architectures,” in Proceedings of the 17th International Eu-
ropean Conference on Parallel Computing (Euro-Par 2011), Part II, vol. 6853 of
Lecture Notes in Computer Science, (Bordeaux, France), pp. 112–123, Springer-
Verlag, Aug. 2011.

[101] E. Garcia, D. Orozco, and G. Gao, “Energy efficient tiling on a Many-Core Archi-
tecture,” in Proceedings of 4th Workshop on Programmability Issues for Hetero-
geneous Multicores (MULTIPROG-2011); 6th International Conference on High-
Performance and Embedded Architectures and Compilers (HiPEAC), (Heraklion,
Greece), pp. 53–66, January 2011.

[102] O. Y. Chen, “A comparison of pivoting strategies for the direct lu factorization,”
Electronic Proceedings of the Eighth Annual International Conference on Tech-
nology in Collegiate Mathematics Houston, Texas, November 16-19, 1995, Nov.
1995.

156

www.springerreference.com

[103] J. J. Dongarra and D. W. Walker, “Software libraries for linear algebra compu-
tations on high performance computers,” SIAM Rev., vol. 37, pp. 151–180, June
1995.

[104] J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark: past, present
and future,” Concurrency and Computation: Practice and Experience, pp. 803–
820, 2003.

[105] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 pro-
grams: characterization and methodological considerations,” SIGARCH Comput.
Archit. News, vol. 23, pp. 24–36, May 1995.

[106] E. Garcia, J. Arteaga, R. Pavel, and G. Gao, “Optimizing the LU Factorization
for Energy Efficiency on a Many-Core Architecture,” in Proceedings of the 26th
International Workshop on Languages and Compilers for Parallel Computing
(LCPC 2013), Lecture Notes in Computer Science, (Santa Clara, CA, USA),
Springer-Verlag, Sep. 2013.

[107] E. Garcia and G. R. Gao, “Strategies for improving Performance and Energy Ef-
ficiency on a Many-core,” in Proceedings of 2013 ACM International Conference
on Computer Frontiers (CF 2013), (Ischia, Italy), pp. 9:1–4, ACM, May 2013.

[108] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
m. W. Hwu, “Optimization principles and application performance evaluation
of a multithreaded gpu using cuda,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pp. 73–82, ACM,
2008.

[109] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[110] M. Pharr and R. Fernando, Gpu gems 2: programming techniques for high-
performance graphics and general-purpose computation. Addison-Wesley Pro-
fessional, 2005.

[111] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for high per-
formance computing,” in Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing, p. 47, IEEE Computer Society, 2004.

[112] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun, “Fast implementation
of dgemm on fermi gpu,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, p. 35, ACM,
2011.

[113] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton,
and W.-m. W. Hwu, “Program optimization space pruning for a multithreaded

157

gpu,” in Proceedings of the 6th annual IEEE/ACM international symposium on
Code generation and optimization, pp. 195–204, ACM, 2008.

[114] Y. Hung and W. Wang, “Accelerating parallel particle swarm optimization via
gpu,” Optimization Methods and Software, vol. 27, no. 1, pp. 33–51, 2012.

[115] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing cuda performance in 3d
stencil methods with annotated c,” in Proceedings of the international conference
on Supercomputing, pp. 214–224, ACM, 2011.

[116] J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high performance program-
ming. Newnes, 2013.

[117] G. Chrysos and S. P. Engineer, “Intel xeon phi coprocessor (codename knights
corner),” in Proceedings of the 24th Hot Chips Symposium, HC, 2012.

[118] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov,
G. Henry, A. G. Shet, G. Chrysos, and P. Dubey, “Design and implementa-
tion of the linpack benchmark for single and multi-node systems based on intel R©
xeon phi coprocessor,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, pp. 126–137, IEEE, 2013.

[119] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Toward a software infrastruc-
ture for the cyclops-64 cellular architecture,” in High-Performance Computing in
an Advanced Collaborative Environment, 2006. HPCS 2006. 20th International
Symposium on, pp. 9–9, IEEE, 2006.

[120] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gao, “A study
of the on-chip interconnection network for the ibm cyclops64 multi-core archi-
tecture,” in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, pp. 10–pp, IEEE, 2006.

[121] D. Orozco and G. Gao, “Mapping the fdtd application to many-core chip archi-
tectures,” in Parallel Processing, 2009. ICPP’09. International Conference on,
pp. 309–316, IEEE, 2009.

[122] W. Zhu, P. Thulasiraman, R. K. Thulasiram, and G. R. Gao, “Exploring financial
applications on many-core-on-a-chip architecture: A first experiment,” in Fron-
tiers of High Performance Computing and Networking–ISPA 2006 Workshops,
pp. 221–230, Springer, 2006.

[123] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan, “Larrabee: a many-core x86 architecture for visual computing,”
ACM Trans. Graph., vol. 27, pp. 18:1–18:15, August 2008.

158

[124] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin, “Programming the in-
tel 80-core network-on-a-chip terascale processor,” in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, (Piscataway, NJ, USA),
pp. 38:1–38:11, IEEE Press, 2008.

[125] S. Dighe, S. Vangal, N. Borkar, and S. Borkar, “Lessons learned from the 80-core
tera-scale research processor,” Intel technology journal, vol. 13, no. 4, 2009.

[126] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core scc processor: the
programmer’s view,” in Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
’10, (Washington, DC, USA), pp. 1–11, IEEE Computer Society, 2010.

[127] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and improvements
of programming models for the intel scc many-core processor,” in High Perfor-
mance Computing and Simulation (HPCS), 2011 International Conference on,
pp. 525 –532, july 2011.

[128] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou, “Cilk: an efficient multithreaded runtime system,” SIGPLAN Not.,
vol. 30, pp. 207–216, August 1995.

[129] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first schedul-
ing policies for async-finish task parallelism,” in Proceedings of the 2009 IEEE
International Symposium on Parallel and Distributed Processing, (Washington,
DC, USA), pp. 1–12, IEEE Computer Society, 2009.

[130] E. G. Coffman, Bounds on Performance of Scheduling Algorithms. In Computer
and Job Shop Scheduling Theory. New York: Wiley, 1976.

[131] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms
for bin packing: a survey, pp. 46–93. Boston, MA, USA: PWS Publishing Co.,
1997.

[132] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using a codelet
program execution model for exascale machines: position paper,” in Proceedings
of the 1st International Workshop on Adaptive Self-Tuning Computing Systems
for the Exaflop Era, pp. 64–69, ACM, 2011.

[133] J. Suettlerlein, S. Zuckerman, and G. R. Gao, “An implementation of the codelet
model,” in Euro-Par 2013 Parallel Processing, pp. 633–644, Springer, 2013.

[134] K. Knobe, “Ease of use with concurrent collections (cnc),” Hot Topics in Paral-
lelism, 2009.

159

[135] R. Newton, F. Schlimbach, M. Hampton, and K. Knobe, “Capturing and com-
posing parallel patterns with intel cnc,” in Proc. of 2nd USENIX Workshop on
Hot Topics in Parallelism (HotPar 2010), Berkley, CA, USA (June 2010), 2010.

[136] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: the new adventures
of old x10,” in Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pp. 51–61, ACM, 2011.

[137] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto, R. Raman,
J. Shirako, S. Taşırlar, Y. Yan, et al., “The habanero multicore software research
project,” in Proceedings of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, pp. 735–736,
ACM, 2009.

[138] “Open Community Runtime (OCR).” https://01.org/open-community-runtime.

[139] Intel, “Traleika Glacier X-Stack Project.” http://goo.gl/L69GfL.

[140] Department of Energy (DOE), “X-stack software.” http://www.xstack.org/.

[141] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov, “Numerical linear algebra on emerging architectures:
The plasma and magma projects,” in Journal of Physics: Conference Series,
vol. 180, p. 012037, IOP Publishing, 2009.

[142] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov, “The
impact of multicore on math software,” in Applied Parallel Computing. State of
the Art in Scientific Computing, pp. 1–10, Springer, 2007.

[143] F. Song, A. YarKhan, and J. Dongarra, “Dynamic task scheduling for linear alge-
bra algorithms on distributed-memory multicore systems,” in High Performance
Computing Networking, Storage and Analysis, Proceedings of the Conference on,
pp. 1–11, IEEE, 2009.

[144] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra solvers for
multicore with gpu accelerators,” in Parallel & Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,
pp. 1–8, IEEE, 2010.

[145] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A.
McKee, “Methods of inference and learning for performance modeling of parallel
applications,” in Proceedings of the 12th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, PPoPP ’07, (New York, NY, USA),
pp. 249–258, ACM, 2007.

160

[146] G. Marin and J. Mellor-Crummey, “Cross-architecture performance predictions
for scientific applications using parameterized models,” in Proceedings of the joint
international conference on Measurement and modeling of computer systems,
SIGMETRICS ’04/Performance ’04, (New York, NY, USA), pp. 2–13, ACM,
2004.

[147] A. Jacquet, V. Janot, C. Leung, G. R. Gao, R. Govindarajan, and T. L. Ster-
ling, “An executable analytical performance evaluation approach for early perfor-
mance prediction,” in Proceedings of the 17th International Symposium on Paral-
lel and Distributed Processing, IPDPS ’03, (Washington, DC, USA), pp. 268.1–,
IEEE Computer Society, 2003.

[148] A. Tarvo and S. P. Reiss, “Using computer simulation to predict the performance
of multithreaded programs,” in Proceedings of the third joint WOSP/SIPEW
international conference on Performance Engineering, ICPE ’12, (New York,
NY, USA), pp. 217–228, ACM, 2012.

[149] R. Govindarajan, F. Suciu, and W. Zuberek, “Timed petri net models of multi-
threaded multiprocessor architectures,” in Petri Nets and Performance Models,
1997., Proceedings of the Seventh International Workshop on, pp. 153 –162, jun
1997.

[150] S. Govind and R. Govindarajan, “Performance modeling and architecture ex-
ploration of network processors,” in Quantitative Evaluation of Systems, 2005.
Second International Conference on the, pp. 189 – 198, sept. 2005.

[151] H. Nguyen and A. Apon, “Hierarchical performance measurement and modeling
of the linux file system,” SIGSOFT Softw. Eng. Notes, vol. 36, pp. 73–84, Sept.
2011.

[152] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,”
in Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium
on, pp. 374 –382, Oct. 1995.

[153] H. Hanson, M. Hrishikesh, V. Agarwal, S. Keckler, and D. Burger, “Static energy
reduction techniques for microprocessor caches,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 11, pp. 303 – 313, June 2003.

[154] S. Lee, A. Ermedahl, and S. L. Min, “An accurate instruction-level energy con-
sumption model for embedded risc processors,” in LCTES ’01: Proceedings of
the ACM SIGPLAN workshop on Languages, Compilers and Tools for Embedded
Systems, (New York, NY, USA), pp. 1–10, ACM, 2001.

[155] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. Hashimi, “Energy optimization of
multiprocessor systems on chip by voltage selection,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 15, pp. 262 –275, Mar. 2007.

161

[156] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
and M. L. Scott, “Energy-efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling,” in High-Performance Computer
Architecture, 2002. Proceedings. Eighth International Symposium on, pp. 29–40,
IEEE, 2002.

[157] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and frequency
scaling for precise energy and performance tradeoff based on the ratio of off-
chip access to on-chip computation times,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 24, no. 1, pp. 18–28, 2005.

[158] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling
in chip-multiprocessors,” in Low Power Electronics and Design (ISLPED), 2007
ACM/IEEE International Symposium on, pp. 38–43, IEEE, 2007.

[159] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced cpu
energy,” Mobile Computing, pp. 449–471, 1996.

[160] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An accurate and fine
grain instruction-level energy model supporting software optimizations,” in Proc.
of PATMOS, Citeseer, 2001.

[161] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5 d matrix
multiplication and lu factorization algorithms,” in Euro-Par 2011 Parallel Pro-
cessing, pp. 90–109, Springer, 2011.

[162] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick, “Avoiding commu-
nication in sparse matrix computations,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pp. 1–12, IEEE, 2008.

[163] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-optimal
parallel and sequential QR and LU factorizations,” SIAM Journal on Scientific
Computing, vol. 34, no. 1, pp. A206–A239, 2012.

[164] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick, “Minimizing com-
munication in sparse matrix solvers,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, p. 36, ACM, 2009.

[165] D. Processor, “Power and thermal management in the intel R© core tm,” Intel R©
Centrino R© Duo Mobile Technology, vol. 10, no. 2, p. 109, 2006.

[166] V. George, S. Jahagirdar, C. Tong, K. Smits, S. Damaraju, S. Siers, V. Naydenov,
T. Khondker, S. Sarkar, and P. Singh, “Penryn: 45-nm next generation intel R©
core 2 processor,” in Solid-State Circuits Conference, 2007. ASSCC’07. IEEE
Asian, pp. 14–17, IEEE, 2007.

162

[167] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rubio,
“Thermal response to dvfs: Analysis with an intel pentium m,” in Proceedings of
the 2007 international symposium on Low power electronics and design, pp. 219–
224, ACM, 2007.

[168] G. Contreras and M. Martonosi, “Power prediction for intel xscale R© processors
using performance monitoring unit events,” in Low Power Electronics and De-
sign, 2005. ISLPED’05. Proceedings of the 2005 International Symposium on,
pp. 221–226, IEEE, 2005.

[169] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors:
Methodology and empirical data,” in Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, p. 93, IEEE Computer Society,
2003.

[170] V. M. Weaver, D. Terpstra, H. McCraw, M. Johnson, K. Kasichayanula, J. Ralph,
J. Nelson, P. Mucci, T. Mohan, and S. Moore, “Papi 5: Measuring power, energy,
and the cloud,” in Performance Analysis of Systems and Software (ISPASS),
2013 IEEE International Symposium on, pp. 124–125, IEEE, 2013.

[171] D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and W. E. Nagel,
“Power measurement techniques on standard compute nodes: A quantitative
comparison,” in Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on, pp. 194–204, IEEE, 2013.

[172] A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco, “Measuring energy con-
sumption using eml (energy measurement library),” Computer Science-Research
and Development, pp. 1–9, 2014.

[173] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-aware appli-
cation design,” ACM SIGMETRICS Performance Evaluation Review, vol. 36,
no. 2, pp. 26–31, 2008.

[174] A. Landwehr, S. Zuckerman, and G. R. Gao, “Toward a self-aware system for
exascale architectures.,” in Euro-Par Workshops, pp. 812–822, 2013.

[175] H. Yong, C. Oh, H. Choo, J. Chung, and D. Lee, “An efficient algorithm-based
fault tolerance design using the weighted data-check relationship,” IEEE Trans-
actions on Computers, vol. 50, no. 4, pp. 371–383, 2001.

[176] Z. Chen, “Extending algorithm-based fault tolerance to tolerate fail-stop failures
in high performance distributed environments,” pp. 1–8, Mar. 2008.

[177] Z. Chen and J. Dongarra, “Algorithm-based checkpoint-free fault tolerance for
parallel matrix computations on volatile resources,” in 20th, Apr. 2006.

163

[178] R. Ferreira, A. Moreira, and L. Carro, “Matrix control-flow algorithm-based fault
tolerance,” in 17th Intl. On-Line Testing Symposium (IOLTS), pp. 37–42, July
2011.

[179] S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi, and T. Un-
gerer, “A fault detection and recovery architecture for a teradevice dataflow
system,” in First Workshop on Data-Flow Execution Models for Extreme Scale
Computing (DFM), pp. 38–44, 2011.

[180] T. Lanfang, T. Qingping, and X. Jianjun, “Automatic instruction-level recovery
by duplicated instructions and checkpointing,” in The 5th International Confer-
ence on Biomedical Engineering and Informatics (BMEI), pp. 1304–1307, 2012.

[181] M. Imai and T. Yoneda, “Duplicated execution method for noc-based multi-
ple processor systems with restricted private memories,” in IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pp. 463–471, 2011.

[182] X. Lei and T. QingPing, “Data flow error recovery with checkpointing and
instruction-level fault tolerance,” in 12th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT), pp. 79–
85, 2011.

[183] L. Rozo, J. Monsalve, and C. Yang, “Adapting fault resilience granularity to
overcome varying failure rates in cps,” NSF Early Career Professionals Workshop
on exploring new frontiers in Cyber-Physical Systems, 2014.

[184] Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, J. Shirako, Z. Budimlic, V. Sarkar,
and G. R. Gao, “Synchronization for dynamic task parallelism on manycore ar-
chitectures,” CAPSL Technical Memo 094, February, 2010.

[185] E. Garcia, I. E. Venetis, R. Khan, and G. R. Gao, “Optimized dense matrix mul-
tiplication on a many-core architecture,” CAPSL Technical Memo 095, February,
2010.

[186] D. Orozco, E. Garcia, and G. R. Gao, “Locality optimization of stencil appli-
cations using data dependency graphs,” CAPSL Technical Memo 101, October,
2010.

[187] E. Garcia, D. Orozco, and G. R. Gao, “Energy efficient tiling on a many-core
architecture,” CAPSL Technical Memo 102, October, 2010.

[188] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. R. Gao, “Polytasks: A com-
pressed task representation for hpc runtimes,” CAPSL Technical Memo 105,
June, 2011.

164

[189] E. Garcia, D. Orozco, R. Pavel, and G. R. Gao, “Toward efficient fine-grained
dynamic scheduling on many-core architectures,” CAPSL Technical Memo 111,
February, 2012.

[190] E. Garcia, R. Pavel, D. Orozco, and G. R. Gao, “Performance modeling of fine
grain task execution models with resource constraints on many-core architec-
tures,” CAPSL Technical Memo 118, June, 2012.

[191] E. Garcia, J. Arteaga, R. Pavel, and G. R. Gao, “Optimizing the lu factorization
for energy efficiency on a many-core architecture,” CAPSL Technical Memo 124,
July, 2013.

[192] J. Arteaga, E. Garcia, S. Zuckerman, and G. R. Gao, “Locality-driven schedul-
ing of tasks for data-dependent multithreading,” CAPSL Technical Memo 125,
January, 2014.

165

Appendix A

COPYRIGHT INFORMATION

This thesis contains, in part, results, figures, tables and text written by me and

published in scientific journals, conference proceedings and technical memos.

In some cases, the copyright for the figures, tables and text belongs to the

publisher of a particular paper. Because those parts have been used in this thesis, I

have obtained permission to reproduce parts of it.

This appendix contains the relevant details of the copy permissions obtained.

As a first author, I own the copyright for the paper presented in Multiprog-

Hipeac Workshop in 2011 [101] used in this thesis. Also for several CAPSL Technical

Memos (TM) 094 [184], 095 [185], 098 [92] 101 [186], 102 [187], 103 [66], 105 [188], 111

[189], 118 [190], 124 [191] and 125 [192].

A.1 Copy of the Licensing Agreements

The following pages contain a copy of the licensing agreements for work pub-

lished in IEEE and Springer, I obtained the copyright as first author of this publica-

tions [61, 82, 68].

166

SPRINGER LICENSE
TERMS AND CONDITIONS

Jul 08, 2014

This is a License Agreement between Elkin Garcia ("You") and Springer

("Springer") provided by Copyright Clearance Center ("CCC"). The

license consists of your order details, the terms and conditions provided

by Springer, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions,
please see information listed at the bottom of this form.

License Number 3424490492413

License date Jul 08, 2014

Licensed content publisher Springer

Licensed content publication Springer eBook

Licensed content title Optimized Dense Matrix Multiplication on a Many-Core
Architecture

Licensed content author Elkin Garcia

Licensed content date Jan 1, 2010

Type of Use Thesis/Dissertation

Portion Full text

Number of copies 1

Author of this Springer article Yes and you are the sole author of the new work

Order reference number None

Title of your thesis / dissertation TOWARD HIGH PERFORMANCE AND ENERGY
EFFICIENCY ON MANY-CORE ARCHITECTURES

Expected completion date Aug 2014

Estimated size(pages) 150

Total 0.00 USD

Terms and Conditions

Introduction

The publisher for this copyrighted material is Springer Science + Business Media. By

clicking "accept" in connection with completing this licensing transaction, you agree that

the following terms and conditions apply to this transaction (along with the Billing and

Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"),

at the time that you opened your Rightslink account and that are available at any time
at http://myaccount.copyright.com).

Limited License

With reference to your request to reprint in your thesis material on which Springer

Science and Business Media control the copyright, permission is granted, free of charge,

for the use indicated in your enquiry.

Licenses are for one-time use only with a maximum distribution equal to the number that
you identified in the licensing process.

This License includes use in an electronic form, provided its password protected or on the

university’s intranet or repository, including UMI (according to the definition at the

Sherpa website: http://www.sherpa.ac.uk/romeo/). For any other electronic use, please

contact Springer at (permissions.dordrecht@springer.com or

permissions.heidelberg@springer.com).

The material can only be used for the purpose of defending your thesis limited to

university-use only. If the thesis is going to be published, permission needs to be re-
obtained (selecting "book/textbook" as the type of use).

Although Springer holds copyright to the material and is entitled to negotiate on rights,

this license is only valid, subject to a courtesy information to the author (address is given

with the article/chapter) and provided it concerns original material which does not carry

references to other sources (if material in question appears with credit to another source,
authorization from that source is required as well).

Permission free of charge on this occasion does not prejudice any rights we might have to
charge for reproduction of our copyrighted material in the future.

Altering/Modifying Material: Not Permitted

You may not alter or modify the material in any manner. Abbreviations, additions,

deletions and/or any other alterations shall be made only with prior written authorization

of the author(s) and/or Springer Science + Business Media. (Please contact Springer at
(permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)

Reservation of Rights

Springer Science + Business Media reserves all rights not specifically granted in the

combination of (i) the license details provided by you and accepted in the course of this

licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.

Copyright Notice:Disclaimer

You must include the following copyright and permission notice in connection with any

reproduction of the licensed material: "Springer and the original publisher /journal title,

volume, year of publication, page, chapter/article title, name(s) of author(s), figure

number(s), original copyright notice) is given to the publication in which the material was

originally published, by adding; with kind permission from Springer Science and
Business Media"

Warranties: None

Example 1: Springer Science + Business Media makes no representations or warranties
with respect to the licensed material.

Example 2: Springer Science + Business Media makes no representations or warranties

with respect to the licensed material and adopts on its own behalf the limitations and

disclaimers established by CCC on its behalf in its Billing and Payment terms and

conditions for this licensing transaction.

Indemnity

You hereby indemnify and agree to hold harmless Springer Science + Business Media

and CCC, and their respective officers, directors, employees and agents, from and against

any and all claims arising out of your use of the licensed material other than as

specifically authorized pursuant to this license.

No Transfer of License

This license is personal to you and may not be sublicensed, assigned, or transferred by
you to any other person without Springer Science + Business Media's written permission.

No Amendment Except in Writing

This license may not be amended except in a writing signed by both parties (or, in the

case of Springer Science + Business Media, by CCC on Springer Science + Business

Media's behalf).

Objection to Contrary Terms

Springer Science + Business Media hereby objects to any terms contained in any

purchase order, acknowledgment, check endorsement or other writing prepared by you,

which terms are inconsistent with these terms and conditions or CCC's Billing and

Payment terms and conditions. These terms and conditions, together with CCC's Billing

and Payment terms and conditions (which are incorporated herein), comprise the entire

agreement between you and Springer Science + Business Media (and CCC) concerning

this licensing transaction. In the event of any conflict between your obligations

established by these terms and conditions and those established by CCC's Billing and

Payment terms and conditions, these terms and conditions shall control.

Jurisdiction

All disputes that may arise in connection with this present License, or the breach thereof,

shall be settled exclusively by arbitration, to be held in The Netherlands, in accordance

with Dutch law, and to be conducted under the Rules of the 'Netherlands Arbitrage

Instituut' (Netherlands Institute of Arbitration).OR:

All disputes that may arise in connection with this present License, or the breach

thereof, shall be settled exclusively by arbitration, to be held in the Federal Republic

of Germany, in accordance with German law.

Other terms and conditions:

v1.3

If you would like to pay for this license now, please remit this license along with your payment

made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48
hours of the license date. Payment should be in the form of a check or money order referencing

your account number and this invoice number 501346831.

Once you receive your invoice for this order, you may pay your invoice by credit card. Please

follow instructions provided at that time.

Make Payment To:

Copyright Clearance Center

Dept 001
P.O. Box 843006

Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer
Support:customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-

2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license
for your reference. No payment is required.

Title: A Discussion in Favor of Dynamic Scheduling for Regular
Applications in Many-core Architectures

Conference
Proceedings:

Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2012 IEEE 26th International

Author: Garcia, E.; Orozco, D.; Pavel, R.; Gao, G.R.

Publisher: IEEE

Date: 21-25 May 2012

Copyright © 2012, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a

formal reuse license, however, you may print out this statement to be

used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table,

or textual material) of an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the

work within these papers) users must give full credit to the original source

(author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright

line © [Year of original publication] IEEE appear prominently with each

reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not

the senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a

thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in

the references: © [year of original publication] IEEE. Reprinted, with

permission, from [author names, paper title, IEEE publication title, and

month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when

posting the paper or your thesis on-line.

3) In placing the thesis on the author's university website, please display the

following message in a prominent place on the website: In reference to IEEE

copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of [university/educational entity's name goes here]'s products

or services. Internal or personal use of this material is permitted. If interested

in reprinting/republishing IEEE copyrighted material for advertising or

promotional purposes or for creating new collective works for resale or

redistribution, please go

tohttp://www.ieee.org/publications_standards/publications/rights/rights_link.ht

ml to learn how to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of

Canada may supply single copies of the dissertation

Title: A dynamic schema to increase performance in many-core
architectures through percolation operations

Conference
Proceedings:

High Performance Computing (HiPC), 2013 20th
International Conference on

Author: Garcia, E.; Orozco, D.; Khan, R.; Venetisz, I.E.; Livingston,
K.; Gao, G.R.

Publisher: IEEE

Date: 18-21 Dec. 2013

Copyright © 2013, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a

formal reuse license, however, you may print out this statement to be

used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table,

or textual material) of an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the

work within these papers) users must give full credit to the original source

(author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.

2) In the case of illustrations or tabular material, we require that the copyright

line © [Year of original publication] IEEE appear prominently with each

reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not

the senior author, also obtain the senior author’s approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a

thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in

the references: © [year of original publication] IEEE. Reprinted, with

permission, from [author names, paper title, IEEE publication title, and

month/year of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when

posting the paper or your thesis on-line.

3) In placing the thesis on the author's university website, please display the

following message in a prominent place on the website: In reference to IEEE

copyrighted material which is used with permission in this thesis, the IEEE does

not endorse any of [university/educational entity's name goes here]'s products

or services. Internal or personal use of this material is permitted. If interested

in reprinting/republishing IEEE copyrighted material for advertising or

promotional purposes or for creating new collective works for resale or

redistribution, please go

tohttp://www.ieee.org/publications_standards/publications/rights/rights_link.ht

ml to learn how to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of

Canada may supply single copies of the dissertation

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Frequency Wall
	1.2 Power Wall
	1.3 Instruction Level Parallelism (ILP) Wall
	1.4 Memory Wall
	1.5 Moore's Law
	1.6 Parallel Computing Era
	1.7 Document Organization

	2 An overview of Dataflow
	2.1 The Static Model
	2.2 The Unraveling Interpreter
	2.3 Architecture Prototypes and Implementations
	2.4 Dataflow and Multithreaded Execution

	3 Problem Formulation
	4 An Innovative Many-core Architecture
	4.1 Memory Hierarchy
	4.2 Energy Consumption

	5 Static Optimizations in the Context of Many-core Architectures
	5.1 Classic Matrix Multiplication Algorithms
	5.2 Proposed Matrix Multiplication Algorithm
	5.2.1 Work Distribution
	5.2.2 Minimization of High Cost Memory Operations
	5.2.3 Architecture Specific Optimizations

	5.3 Experimental Evaluation

	6 The Problem of Static Techniques and the Rising of Dynamic Optimizations for Many-core Architectures
	6.1 Motivation
	6.2 Static Scheduling and Data Partitioning
	6.3 Percolation
	6.4 Dynamic Scheduling for Fine Grained Parallelism
	6.4.1 Fine-grained task partitioning
	6.4.2 Load Balancing in Scenarios with Shared Resources
	6.4.3 Low Overhead Fine grained Dynamic Scheduling
	6.4.4 Example: On-chip SRAM Dense Matrix Multiplication

	6.5 Dynamic Percolation
	6.5.1 Computation of one block Cij
	6.5.2 Computation of matrix C

	6.6 Experimental Evaluation
	6.6.1 Experimental Testbed
	6.6.2 Memory Copy microbenchmark
	6.6.3 Dense Matrix Multiplication
	6.6.4 Sparse Vector Matrix Multiplication

	7 Performance Modeling of Many-core Architectures under Dynamic Scheduling and Resource Constraints
	7.1 Motivation
	7.2 Background
	7.2.1 The Codelet Execution Model
	7.2.2 Petri Nets

	7.3 Solution Method
	7.3.1 Basic actors in timed Petri nets
	7.3.1.1 Init
	7.3.1.2 Clean
	7.3.1.3 Done
	7.3.1.4 Schedule
	7.3.1.5 Other auxiliary constructs

	7.3.2 Expressing concurrency
	7.3.2.1 Parallel for loop - On Chip Matrix Multiplication
	7.3.2.2 Serial for loop - Computing a whole block from off-chip memory

	7.3.3 Implementation of Performance Optimizations and Modeling of Resource Constraints
	7.3.3.1 Double Buffering and Pipelining
	7.3.3.2 Resource Constraints
	7.3.3.3 Priorities
	7.3.3.4 Composability - The Complete Off-Chip Memory Matrix Multiplication

	7.3.4 Methodology for generation of timed Petri nets with resource coordination conditions

	7.4 Experiments
	7.4.1 Verification of Model and Evaluation of Performance Optimizations
	7.4.1.1 Dense Matrix Multiplication
	7.4.1.2 Finite Difference Time Domain Solution of Maxwell's Equations

	7.4.2 Extrapolation of Results on Similar Architectures
	7.4.3 Preliminary Analysis of New Algorithms

	8 Power Aware Tiling Transformations
	8.1 Energy Consumption Model on a Many-Core Architecture
	8.2 Tiling Techniques for Energy Efficient Applications
	8.2.1 Matrix Multiplication
	8.2.2 Finite Difference Time Domain

	8.3 Experimental Evaluation
	8.3.1 Evaluation of the Energy Consumption Model
	8.3.2 Evaluation of the Energy Efficient Tiling

	9 Energy Optimizations in the context of Many-core Architectures
	9.1 LU Factorization
	9.2 Energy Optimizations
	9.2.1 Energy Aware Tiling design
	9.2.2 Minimizing Static Energy using Pipelining
	9.2.3 Dynamic Task Scheduling for Energy Reduction

	9.3 Experimental Evaluation

	10 Tradeoffs between Performance and Energy Optimizations for Many-core Architectures
	10.1 Optimizing for Energy is More Difficult than Optimizing for Performance
	10.2 Trade offs between Performance and Energy Optimizations
	10.3 A Case of Study for Performance and Energy Consumption Trade offs

	11 Related Work and Extensions
	12 Summary and Conclusions
	Bibliography
	A Copyright Information
	A.1 Copy of the Licensing Agreements

