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ABSTRACT

Traditional programming, execution and optimization techniques have been

shown to be inadequate to exploit the features of computer processors with many

cores.

In particular, previous research shows that traditional paradigms are insufficient

to harness the opportunities of manycore processors: (1) traditional execution mod-

els do not provide constructs rich enough to express parallel programs, (2) traditional

analysis tools allow little insight into the performance of parallel programs and (3) tra-

ditional programming and execution tools only offer awkward ways to execute parallel

programs.

This thesis addresses those problems with the introduction of TIDeFlow, a par-

allel execution model aimed at efficient execution and development of High Performance

Computing (HPC) programs in manycore processors.

The following are the main contributions of this thesis:

1. The formulation of a parallel execution model that is able to exploit the features
present in manycore processors.

2. The development of several highly scalable algorithms and a technique to analyze
their throughput.

3. The implementation of the TIDeFlow toolchain, including a programming model
and a distributed runtime system.
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Chapter 1

INTRODUCTION

The field of computing architecture has recently experienced a radical shift from

serial execution to parallel execution. This change from a serial to a parallel paradigm

in computing has created numerous problems that make difficult the development and

execution of High Performance Computing (HPC) programs.

Serial programming and execution were predominant during the Free Lunch

era. During that time–roughly 1970 to 2005–processor speed increased exponentially

(Figure 1.1), which in turn translated into exponential increase of the performance of

serial programs.

After 2005, however, processor chip manufacturers were forced to stop the ex-

ponential increase in the serial performance of processors due to production problems,

power consumption, and cost, among other issues.

The multicore era of computing started when manufacturers placed several pro-

cessors in a single chip in an effort to continue increasing the performance of processors.

The multicore era was possible due to the continuing validity of Moore’s Law [73], which

granted the required number of transistors to build several processor cores per chip.

The possibilities of multicores were exploited, resulting in many commercial

products such as Intel’s multicore processors [95] nVidia’s Graphical Processor Units

[78], Sun’s UltraSPARC T2 processor [99], IBM Cyclops-64 [35], Tilera’s Tile processors

[114] and many others. Of particular importance are the processors composed of many

simple cores, such as Cyclops-64. These processors, known as manycore processors, rely

on parallelism, rather than on individual processor speed, to obtain their performance.

The traditional computing paradigms, having been honed for serial processors

and serial programs, did not offer adequate tools to exploit the opportunities offered

1
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During the “Free lunch era”, the speed of processors increased exponentially. The
free lunch ended around 2005, when physical, architectural and practical constraints
limited the performance of processors an average of 3GHz. Data from [69].

Figure 1.1: Improvement of processor speed over time.

by manycore processors. The following is a partial list of the problems of traditional

paradigms:

• Traditional programming paradigms are a good choice to represent arbitrary
programs, but they have not been optimized for High Performance Computing
(HPC) programs, the kind of programs that are usually found in manycore pro-
cessors.

• The programming tools were designed for serial programming, and they are rudi-
mentary and inefficient to express parallel programs.

• Traditional programming models only offer awkward ways to express pipelining
during execution.

• Traditional tools for analysis of parallel programs such as Amdahl’s law [7] or the
nonblocking properties [57] do not take into account the limitations of the pro-
cessor architecture, and ultimately, the algorithms they produce fail to support
fine-grained execution.

2
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The traditional barrier/fork-join approaches are not very well suited for computation
in manycore processors. The execution trace of the figure shows the wasted time due
to the intrinsic limitations of traditional approaches: a) Time wasted due to poor
scheduling, b) time wasted due to the overhead of global synchronization operations,
c) time wasted due to thread management, d) time wasted due to the concept of a
barrier itself and e) time wasted due to the poor parallelism of the fork-join model.

Figure 1.2: Sources of overhead in traditional fork-join approaches.

• Traditional system software is slow and centralized.

• Traditional static scheduling approaches fail to produce good results in many-
core processors with fine-grained tasks [47], even in the favorable case of regular
applications.

• Traditional execution models do not address the need for resilient or energy-
efficient execution, which will be paramount to future parallel systems.

The comprehensive case study of matrix multiplication, conducted by Hu [59]

and Garcia [50] provides excellent insight into the shortcomings of traditional program-

ming in manycore processors. The example of matrix multiplication is excellent because

(1) it is easy to understand, (2) a significant amount of work for matrix multiplication

in manycores has been conducted [59, 50, 46, 47] and (3) the work in matrix multi-

plication put in evidence the limitations of of traditional programming and execution

techniques when they are used in manycore architectures.

3
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The figure shows the scalability and performance of Hu’s implementation of matrix
multiply for Cyclops-64 [59]. The performance obtained is very poor even though the
matrices were already in on-chip memory.

Figure 1.3: Performance of a first implementation of matrix multiply for Cyclops-64.

The first attempt to develop a matrix multiplication program for Cyclops-64 was

made by Hu et al. [59]. Hu’s implementation used C and assembly language to write

the program, TNT threads [31] (a library for threading similar to POSIX threads [20])

for thread management and traditional synchronization operations (such as barriers

and mutexes) to manage synchronization.

The results of Hu’s first attempts (Figure 1.3) were a disappointing 1.3 GFLOPS

(out of a maximum 32 GFLOPS) using 64 threads. Even after carefully employing

traditional static optimizations (Figure 1.4) he was only able to achieve 13.9 GFLOPS.

The poor performance of Hu’s implementation gave important insight into the

problem. Hu’s efforts resulted in very poor performance despite a significant amount

of work that included the use of assembly language for critical pieces of code and the

4
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The use of traditional optimization techniques is not enough to achieve close-to-peak
performance in parallel programs in manycore processors. Even though the optimiza-
tions were applied skilfully, the performance still remained less than half of the theo-
retical peak.

Figure 1.4: Effect of using traditional optimization techniques on manycore processors.
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use of most traditional optimization techniques (Figure 1.4).

The shortcomings of Hu’s approach were not due to lack of skill, but rather

to the very nature of the tools available to him. His approach was hindered by the

intrinsic limitations of the techniques used:

• Barriers, the main synchronization operation used, ensured that all threads worked
at the slowest rate among them. Mutexes, the other method of synchronization
used, did not allow good parallelism among threads.

• The thread-management library used (TNT [31] ) followed a centralized approach
and was ultimately slow when handling 160 threads.

• There was no simple way to describe a good strategy for task pipelining, causing
numerous stalls during the execution.

• There was no way to schedule the computation dynamically, following the needs
of the program, ultimately causing delays in the computation of the critical path.

The work on matrix multiplication was continued by Garcia and was presented

at the prestigious EuroPar conference [50]. Garcia strived to obtain better results and

addressed some of the issues faced by Hu. In particular, Garcia improved Hu’s im-

plementation with architecture-specific optimizations and an architecture-aware tiling

strategy.

Still, after months of work, Garcia only achieved a disappointing performance

of 44.12 GFLOPS out of 80 GFLOPS possible (Figure 1.5), even in the favorable case

when the operand matrices were already preloaded into on-chip memory.

The low payoff of Garcia’s efforts, including months of optimizing assembly-

written pieces of code, were the result of using traditional techniques for optimization.

Garcia focused his efforts on selecting appropriate instructions and in performing code

transformations such as instruction scheduling or register tiling.

Garcia’s lack of success was prompted by the inadequacy of traditional opti-

mization techniques, which he used skillfully. However, those traditional optimization

techniques were not enough because they were inadequate for manycore processors:

• Explicit data movement operations were not carefully pipelined and scheduled
with other tasks.
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Hu’s implementation [59] of matrix multiplication for Cyclops-64 was improved by
Garcia [50] through the use of hardware-specific optimizations. The resulting program
achieved a significantly better outcome, 44.12 GFLOPS out of 80 GFLOPS maximum.
Although the results are good, the lack of dynamic scheduling and dynamic memory
movement techniques limited the success of this approach.

Figure 1.5: Matrix multiplication performance after hardware-specific optimizations.
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• The synchronization operations available were slow and insufficient to express
anything but trivial relationships in the parallel program.

• The static schedule used was unable to adequately manage the available resources.

• Memory bandwidth was not carefully allocated and used.

The combined experiences of Hu and Garcia ultimately confirm that current

tools are insufficient to develop high performance computing programs for manycore

architectures. In particular, their studies show several flaws that need to be addressed:

• The traditional programming models, such as C and its parallel libraries (such
as POSIX threads [20]), do not provide tools to readily express the available par-
allelism, and they only provide awkward ways to exploit the available hardware.

• Data movement is done when needed, which is too late, resulting in frequent
stalls of the program. Data movement should be done well before it is needed.

• During execution, there is not a good way to give preference to a task on the
critical path over a task on a leaf path, resulting in further stalls when the tasks
in the critical path are not executed early enough.

• The algorithms that form the building blocks of the scheduling and synchroniza-
tion system were designed for little to no parallelism, and they exhibit a high
overhead in highly parallel scenarios.

• A static schedule of resources (such as memory bandwidth) that has been com-
puted a priory does not provide good enough results. The reason is that even in
regular programs, the quantity and diversity of resources available create unpre-
dictable variations during execution that do not fit static schedules. Also, static
scheduling works poorly in manycores, even in cases that work for traditional ar-
chitectures, such as regular applications. For example, in Garcia’s first attempt,
as much as 48% [50] of the total time was wasted as idle time because static
scheduling failed to balance work properly.

• In most cases, execution control is centralized, resulting in high overhead when
many processors make requests at the same time.

Garcia and I retook the work of Hu and Garcia [46, 47]. Armed by observations

on the shortcomings of the approach, Garcia proceeded to (1) change the implemen-

tation to use a more parallel approach that resulted in little to no stalls, (2) employ a

dynamic-scheduling approach to manage the available work, (3) design assembly-level

8



0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Baseline Dynamic Percolation Dynamic Percolation + 
Custom Data Movement 

G
FL

O
P

S 

Peak Performance = 80 GFLOPS 

The performance of matrix multiply program was able to achieve close-to-peak perfor-
mance once the necessities of manycore computing were addressed.

Figure 1.6: Performance of matrix multiply after using dynamic scheduling and dy-
namic percolation.

operations to support the required synchronization and dynamic scheduling and (4)

design and implement a technique for dynamic memory prefetching (which we called

dynamic percolation [46]).

Using dynamic scheduling [47] and dynamic percolation [46] allowed Garcia to

expand the matrix multiplication algorithm to allow the more realistic case of matrix

operands in DRAM and to avoid the stalls caused by static scheduling.

Ultimately, when the limitations of the traditional model were overcome, the

performance of the matrix multiply program was 65.6 GFLOPS (Figure 1.6).

The experience gained through Hu’s [59], Garcia’s [50] and Garcia’s and my

[46, 47] work ultimately reveals the main issue that needs to be solved:

Traditional models are not adequate for computation of HPC programs in
manycore architectures.

9



If a new model is to address the problems of traditional models, it will have to

be built from scratch to be able to incorporate all the features necessary for effective

use on manycore processors.

The work advanced in this thesis, the Time Iterated Dependency Flow (TIDe-

Flow) model, is a new execution model that enables efficient execution and speedy

development of HPC programs for manycore processors.

Dataflow execution model

- New primitives for HPC programs

- Dataflow model

- Constructs for task pipelining

- Dynamically scheduled

- Support for priorities

DFM 2011, PACT 2011

Parallel algorithm support

- High-throughput algorithms

- Fine grain execution support

TACO 2012

Distributed Runtime System

- Fast, decentralized

- Native support for task 

profiling.

DFM 2011

Good Resource Management

- Dynamic Percolation

- Dynamic resource management

CF 2012, MTAAP 2012

TIDeFlow

TIDeFlow is a parallel execution model that incorporates a variety of features that
enable efficient, fine-grained execution in manycore systems.
The Figure shows the main features of TIDeFlow, which are described throughout
the thesis. Emphasis is made on its execution model (Chapter 3), its support for
fine-grained execution (Chapter 4) and its implementation (Chapter 5). The use of
TIDeFlow for resource management is covered in other publications [47, 46].

Figure 1.7: TIDeFlow overview.

TIDeFlow incorporates all the features (Figure 1.7) identified by the study on
matrix multiplication:

• It provides language support for common HPC constructs such as parallel loops.

• It supports a dataflow-style of computation able to represent arbitrary parallel
programs.

• It has programming constructs for task pipelining and for dynamic resource man-
agement.
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• Its implementation uses novel, high-performance, high-throughput, low-latency
algorithms [85, 86].

• Its runtime system is decentralized, it supports fine-grained execution and it
provides native support for task priorities and profiling.

• It provides dynamic scheduling to exploit the features of manycore processors.

With TIDeFlow, the time required to parallelize matrix multiply was reduced

from 1 month (in Garcia’s approach [50]) to a mere 1 week. The resulting program,

explained in detail in Chapter 7, exhibited a performance close to that of the hand-

optimized version by Garcia, at a fraction of the development cost.

The failures and the successes of the development and optimization of matrix

multiply are intrinsically related to the nature of the architecture where the develop-

ment was taking place. Because of its large number of processing units, Cyclops-64

posed new challenges and prompted new techniques that ultimately resulted in the

development of TIDeFlow.

The use of Cyclops-64 was the necessary catalyst that led to the development

of the TIDeFlow model in Chapter 7, the development of the ideas on throughput

in Chapter 4 and the implementation of the distributed runtime system explained in

Chapter 5.

The rich environment provided by Cyclops-64, where abundant amounts of hard-

ware resources are present, is an excellent architecture to explain and test new tech-

niques. With its large number of processing elements, Cyclops-64 constitutes an ideal

environment to showcase the challenges faced by manycore architectures. For that

reason, Cyclops-64 has been chosen to develop the models, the techniques and the

experiments presented here. The choice of Cyclops-64 for this thesis in no way pre-

cludes the use of other architectures with TIDeFlow or the use of the conclusions and

techniques reached here.

The successful use of TIDeFlow to develop matrix multiply for Cyclops-64 does

not constitute a universal solution for all the problems in parallel execution. TIDeFlow

focuses on execution of HPC programs on a single manycore processor, but it does not
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solve all the problems that will be faced by exascale computing [17]. In particular,

the TIDeFlow model presented here does not address the issue of hardware faults or

energy consumption in large scale systems.

Resiliency is a feature of large computer systems that grant the ability to execute

programs despite hardware faults. Resilient computing is of paramount importance

to large scale computer systems in which hardware failures may be observed every

few minutes. Execution models such as TIDeFlow may hold the key to unlocking

successful implementations of resilient systems by allowing local, rather than global,

fault recovery. Unfortunately, the work of TIDeFlow presented in this thesis has been

crafted to address the issues related to the execution of programs in a single manycore

processor, in which resiliency is not a pressing concern. Energy-efficient computation is

another important design constraint for large computing systems. Instead of focusing

on the computational rate of a program, an energy-efficient computation will try to

minimize the total energy spent in the computation. TIDeFlow program optimization

focuses on achieving a high performance rate rather than a low energy consumption,

because the TIDeFlow system is designed to be run by a single manycore processor

in which energy consumption is not an issue at the moment. However, Garcia, Gao

and I have performed a preliminary study of the energy consumption of a manycore

architecture.

The issues regarding resiliency and energy-efficient computation are described

in greater detail in Chapter 9, where a detailed description of related open questions

and their possible solutions are presented.

Synopsis

The rest of this dissertation covers in detail each one of the aspects involved
during the development of TIDeFlow:

• Chapter 2 provides relevant background,

• Chapter 3 describes the TIDeFlow execution model,

• Chapter 4 advances the theory of intrinsic throughput of algorithms, along with
some examples,
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• Chapter 5 describes the implementation of the TIDeFlow toolchain,

• Chapter 6 develops useful programming techniques,

• Chapter 7 shows examples of TIDeFlow programs

• Chapter 8 provides some conclusions, and

• Chapter 9 presents open questions and future research directions.
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Chapter 2

BACKGROUND

This chapter presents an overview of the history of computing.

This chapter describes the computing technology both from the point of view

of computer architecture and from the point of view of how those architectures have

been used to execute programs.

2.1 Computer Architectures

Computers have been a powerful tool for science and engineering since the mo-

ment of their invention. Since the beginning of computing, the usefulness of computers

has increased with their computational power, leading scientists to be continuously on

the lookout for more and more computational power and to create the field of High

Performance Computing (HPC).

The desire to obtain high performance in programs can be seen in all ranges of

computers, from the personal computers used by scientists to the supercomputers used

by governments.

It would take thousands of pages and several years of study to provide a compre-

hensive description of every attempt made to improve computers since their invention.

For that reason, this section aims to point out the most relevant highlights and their

relationship to parallel computing and to HPC.

2.1.1 Serial Processor Systems

Executing programs using a single processor was immensely popular for con-

sumer electronics and applications during the second half of the 20th century.
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The reasons behind the success of single processors are manyfold. Compilers for

them were readily available, the programming model was simple, uniprocessor machines

were cheaper and so on.

One of the biggest reasons that prompted the success of computing using serial

processors is the exponential improvement in clock frequency experienced between 1970

and 2004 (Figure 1.1). Such improvements in clock frequency [69] allowed programs to

run faster as time progressed, greatly favoring programs that were written using serial

programming languages. Additional factors also contributed to the success of serial

processors [56]: the possibility to issue and complete multiple instructions per cycle

(as in the Pentium 4 processor), the use of scoreboards to execute instructions out-of-

order when no dependencies between instructions were detected (as done by the CDC

6600 [109]), the existence of multiple levels of cache (as in the Intel Core i7 processors

[4]), the addition of vector arithmetic units (part of the Single Instruction Multiple

Data features of the Intel processors [94]) and so on.

The effectiveness of uniprocessor computing for commercial applications is closely

related to the quality of the tools available. The tools for serial programming languages

such as C and Fortran were and still are excellent. A cycle was formed: serial paradigms

were possible because of the good tools available, and good tools were available because

of the popularity of serial programming models.

However, the increase in performance of uniprocessor computing has stopped

almost completely during the past few years. Attempts to improve the speed of serial

processor have met obstacles that have come to be known as the performance walls.

The performance walls can broadly be described as the difficulties in increasing the

processor frequency, the difficulties in reducing the power consumed by processors, the

difficulties in finding parallelism within the instructions of a serial program and the

difficulties in matching the speed of memory with the speed of processors.

Both the frequency wall and the power wall are related in that increases in

the frequency at which processors operate will result in increases in the operating

frequency of transistors. In particular, the amount of power used to change the state
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of a transistor, known as the dynamic power, can be expressed as [56]:

Pdynamic =
1

2
C × V 2 × f

where Pdynamic is the dynamic power required to switch the state of a transistor

with a capacitive load C at an operating voltage of V and a frequency of f .

Processor systems today are already at the limit of their capabilities in both

power and frequency. Frequency can not be increased any more because it will lead

to an increase in power, and power can not be increased anymore because (1) using

more power will result in an increased monetary cost to operate the processor and (2)

because processors are already at the limit of their power dissipation abilities.

The memory wall refers to the disparity in clock frequency between processors

and memory in general. This problem is the result of increased amounts of performance

in processors that have not been matched with corresponding increases in memory

performance. Although several techniques (caches, latency hiding, and instruction

scheduling) have been used to reduce the impact of the memory wall, it remains a

limiting factor in processor performance.

The Instruction Level Parallelism wall [56] has the difficulty of finding instruc-

tions that can be executed in parallel inside of a serial program. The two factors that

make Instruction Level Parallelism (ILP) difficult are as follows: (1) the complexity

of detecting if a group of instructions can be executed in parallel and (2) the limited

amount of instructions that could be executed in parallel if they could be identified.

2.1.2 Shared Memory Systems

To increase the performance of programs, computer architects extended the

concept of the traditional single processor system to include several processors. The

addition of several processors to the same system allowed additional performance to

be available. In these systems, known as shared memory systems, multiple processors

use the same memory for computation and communication.
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The popularity of shared memory systems can be partially attributed to the fact

that the already-familiar serial programming languages could be extended to express

some parallelism. Approaches such as POSIX Threads [21] and OpenMP [79, 32]

quickly became popular and led to a wide range of parallel programs.

However, the introduction of parallelism in an environment with a shared mem-

ory space conflicted with traditional optimization operations. Optimizations that re-

ordered instructions in serial programs no longer produced correct results in parallel

programs that used shared memory. Nevertheless, the advantages in programmability

and performance of shared memory system have made it popular to this day.

2.1.3 Distributed Memory Systems

Distributed Memory systems, where each processor has its own memory address

space, is currently the most used model by supercomputing centers today. For example,

in the November issue, all but one supercomputer on the TOP 500 list of the fastest

supercomputers of the world [103] have a distributed memory architecture; however,

17.8% of them use techniques to emulate shared-memory behavior.

Interconnection networks are used as a way to support communication between

processors using explicit messages. The interconnection network of a distributed system

is a fundamental part of its architecture, and it greatly influences its usability and

performance. Both proprietary and commercially available technology are used to

build the interconnection network, with Gigabit Ethernet and Infiniband being the

two most popular technologies [103].

The topology of a distributed memory system also plays an important role in the

performance it can deliver. Although traditional topologies usually included processors

tightly connected using several geometrical patterns such as grids, meshes, toruses and

trees, the availability of the commodity hardware used to support the Internet has led

to the creation of systems with lose topologies.

Programs for distributed memory machines are written in a variety of languages

(Bal et al. have compiled a reasonably comprehensive list [11]); however, the most
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common model remains the Message Passing Interface (MPI) specification, explained

in detail in Section 2.2.8.

2.1.4 Multicore Systems

Multicore systems were a natural evolution of computer architecture that lever-

aged the existing tools used for shared memory systems and the advances in computer

architecture that allowed additional transistors per processor chip.

Prompted by the difficulties involved in further increasing single processor per-

formance, computer architects resorted to placing several processing cores per chip,

creating a system similar to shared memory systems in that all processing elements

can access main memory.

The similarities between shared memory systems and multicore systems allowed

a speedy development of multicore technology. The same programming and execution

paradigms could be used, and in most cases, programs could be ported directly from

shared memory systems to multicore systems.

2.1.5 Manycore Systems

The recent developments on processor architecture are greatly influenced by pre-

vious approaches to parallel computing. Not all of these approaches were commercially

successful, in part due to the steady increase of uniprocessor performance. Neverthe-

less, these approaches laid the foundations that would result in the development of

manycore architectures.

As early as 1974, a fully parallel machine was proposed [37]. Other attempts

followed in 1977 [97] with the development of a dataflow machine, in 1982 with the

U-Interpreter initiative [9], and in 1986 with the Manchester Computer [111], among

many others.

Such initiatives, although immensely successful in academia, nevertheless failed

to become commercially mainstream. Many reasons helped the prevalence of serial

processors and serial programming models over parallel processors with their respective
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programming models, but among them all, the fact that serial processors became faster

with each generation stands as the most important.

Indeed, the parallel computing revolution is a forced revolution [101]. Tradi-

tional increases in performance that could not be obtained through increase in indi-

vidual performance of processors was sought through the use of more processors. Even

the community of High Performance Computing (HPC), which had used parallel com-

puters for decades but had written the large majority of their programs using MPI,

faced new challenges when multiple processors were placed in the same chip.

The transition from a serial paradigm to a parallel paradigm is difficult: tra-

ditional programming languages such as C or Fortran were not designed to express

parallelism and posed serious problems in portability. Extensions made to serial pro-

gramming models to allow expression of parallelism (OpenMP, pThreads, and others)

opened a new set of challenges such as correct synchronization of programs or correct

modeling of memory operations.

The failure of processor chip manufacturers to continue increasing the frequency

of individual processor cores has uplifted and revived the research started decades ago.

The field of computer architecture faced several challenges that led to the de-

velopment of new processors characterized by large amounts of hardware parallelism

inside a processor chip. First, the failure to increase the performance of single-processor

computing forced the use of parallel architectures. For example, the Intel R© CoreTM 2

Duo processor E8600 operated at 3.33 GHz [27], almost the same speed of its single

core predecessor, the Pentium 4 processor, which operated at 3.73 GHz [29]. Second,

significant increases in transistor count resulted in only incremental increases in pro-

cessor performance. For example, the Pentium III processor (1.4 GHz version) had

44 million transistors [28] and had a peak performance of 2.80 GFLOPS [26] while

the Pentium 4 processor (Extreme Edition, HT, 3.73GHz) had 169 million transistors

[29] but only had a peak performance of 14.93 GFLOPS [30] despite having a clock

frequency 2.7 times larger. If both processors were to be run at the same speed, then,

the performance difference would be only 2X. This increase in performance is due to
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the architecture itself and comes at a cost of an increase of 3.8X in transistor count.

These factors led to a new paradigm in computer architecture: Performance

would be obtained through the use of many simple processor cores instead of few high-

performance processor cores. Processor components were simplified to reduce processor

design time and to expose the architecture to the user. Virtualization was dropped

when possible and hardware support for parallel execution was provided.

This new design philosophy led to the development of a new class of processors

known as manycore processors. Representative examples of manycore processors in-

clude Tilera’s TILE64 processor [5], Sun’ UltraSPARC T2 processor [99] and IBM’s

Cyclops-64 [31].

The following sections describe the most relevant features of selected many-

core systems. Special attention is devoted to IBM’s Cyclops-64 because it is used to

demonstrate the techniques presented by this thesis.

2.1.5.1 Tilera’s Processors

Tilera is a company that produces manycore processors such as the 100-core

TILE-Gx8100, or the 64-core TILE64 [5] processor. Tilera’s processors retain many of

the characteristics of traditional processors such as the use of caches or virtualization,

but they also employ new techniques such as several dedicated networks for message

passing between cores.

2.1.5.2 Sun UltraSPARC T2

Niagara 2, also know as UltraSPARC T2 [99, 65], is a processor by Sun Mi-

crosystems with 8 cores, each capable of executing 8 simultaneous threads. Niagara

2 is an intermediate step towards manycore architectures that features a full crossbar

network that connects all cores to the memory.

2.1.5.3 IBM Cyclops64

This section presents an overview of Cyclops-64. The details of Cyclops-64 have

been extensively covered by previous publications in which I appeared as an author
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[116, 115, 82, 83, 86, 45, 80, 85, 47] and by publications done by others [36, 35, 31, 34,

33, 59].

Cyclops-64 (C64) is a manycore processor developed by IBM. Cyclops-64 dis-

tinguishes itself from other manycore processors because of its revolutionary design,

its features for fine-grained synchronization and its large number of processor cores.

Cyclops-64 features a powerful on-chip interconnection network, hardware sup-

port for barriers and sleep-wakeup operations, a fully connected crossbar network that

connects its 80 cores, and on-chip hardware for inter chip communication. One C64

chip has no automatic data cache and can address 1GB of DRAM memory.

The chip runs at 500 MHz, and each one of its 80 cores has two single-issue

thread units that share a fully pipelined floating point unit. The peak rate of 80

GFLOPS can only be achieved if the floating points unit executes Multiply-Add in-

structions continuously.

Each thread unit in Cyclops-64 can issue one double precision floating point

Multiply-Add instruction per cycle. The processor chip includes a high-bandwidth

on-chip crossbar network with a total bandwidth of 384 GB/s. C64’s memory hierar-

chy includes three levels of software-managed memory (DRAM, SRAM, ScratchPad),

with the Scratch-Pad (SP) currently used to hold thread-specific data. Each hardware

thread unit has a high-speed on-chip SRAM of 32KB (minus 2KB required for the

system kernel) that can be used as a user-managed cache. Figure 2.2 shows the capac-

ity, bandwidth and latency for the register file, the ScratchPad memory, the SRAM

Memory and the DRAM memory.

One of the main features of the C64 chip is that its memory controllers can

execute atomic operations. In C64, each memory controller contains its own Arithmetic

and Logical Unit that allows the memory controller to execute integer and logical

atomic operations in memory without the intervention of a processor or a thread unit.

Section 2.1.5.3 is based on several publications in which I appeared as an author [116, 115, 82, 83, 86, 45, 80, 85, 47].
Some paragraphs, figures and tables have been reproduced verbatim. Reproduced with permission. c©2010 and 2011
IEEE, c©2012 ACM, c©2010 and 2011 Springer.
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Chip Features
Processor Cores 80
On-Chip Interconnect Full Crossbar
Frequency 500 MHz
Off-Chip Interconnect Proprietary
Hardware Barriers Yes
Hardware Mutex Yes
Hardware Sleep - Wakeup Yes
Addressable Memory 2GB
On-Chip Memory User Managed, 5MB
Off-Chip Memory Banks 4 x 64 bits
Instruction Cache 320 KB

Processor Core Features
Thread Units 2, single issue
Local Memory 32KB
Floating Point Unit 1, pipelined
Registers 64 x 64 bit

Table 2.1: Cyclops-64 Features

Atomic operations in C64 take 3 cycles to complete at the memory controller. All

memory controllers in C64 have the capability to execute atomic operations.

Under the default configuration, C64 has 16KB of stack space (Scratch Pad

Memory) for each thread unit, 2.5MB of shared on-chip memory, and 1GB of DRAM

memory.

Table 2.1 summarizes the features of the Cyclops-64 many core chip.

One of the big challenges to achieve high performance for Cyclops-64 is the

great amount of locality required to achieve the peak computational rate. The Floating

Point Unit present in each core has a direct connection to the register file, allowing it

to consume 2 double precision numbers and produce a third double precision number

per cycle. On the other hand, the total off-chip memory bandwidth is only 4 x 64 bits

or 4 double precision values per cycle. The Cyclops-64 chip can consume 160 double

precision values in one cycle taking into account that each one of the 80 Floating

point units can consume 2 double precision values per cycle. However, on average,

only 4 double precision values are available from memory each cycle. In other words,
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Cyclops-64 is a manycore architecture with 160 thread units. Its large number of thread
units make it ideal to test parallel execution models. Figure taken from [115]. c©2011
IEEE.

Figure 2.1: Cyclops-64 Architecture.

the overwhelming disparity between available bandwidth to off-chip memory and the

floating point units from the register file means that at most only one out of 160/4 = 40

instructions can be a DRAM memory operation, or the performance of programs will

be bound by the available bandwidth.

Effectively using the on-chip memory in Cyclops-64 is key to achieving good

performance. How to find the best possible use of on-chip memory is an important

topic of research that will be pursued in this work.

The IBM Cyclops-64 system was originally developed by IBM as part of the Blue

Gene project. Figure 2.1 shows the C64 processor features, including its 80 processing

cores, its two hardware thread units per core, and its 64-bit floating point units.

Cyclops-64 provides hardware support for fast synchronization through a dedi-

cated signal bus (SIGB). The signal bus broadcasts signals across processors through

the use of a special register. As shown in Figure 2.3, reads to the signal bus register
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Overview of the memory in Cyclops-64. Taken from [115]. c©2011 IEEE.

Figure 2.2: Cyclops-64 Memory Hierarchy.

result in the combined or-operator of all writes to signal bus registers of all threads.

In this fashion, all threads read the same value, allowing synchronization decision to

be done by inspection of particular bits in the resulting value read.

Read operations on the signal bus take the standard register latency to complete

(1 cycle) and write operations take 10 cycles to propagate across the chip, allowing very

fast primitives such as barrier operations and mutual exclusion.

A programmer interface for thread management operations has been developed,

and it is available through the TiNy-Threads (TNT) [31] library. Table 2.2 shows a

list of sample API calls provided by the TNT library.

The TNT API provides functions to suspend a thread and to awaken a sleeping

thread. A suspend instruction temporarily stops execution in a non-preemptive way,
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Figure 2.3: Cyclops-64 Signal Bus Design

and a signal instruction awakens the sleeping task. Using thread suspend and wake

mechanisms in place of the busy-wait approach reduces memory bandwidth pressure

because all waiting tasks can suspend themselves instead of spinning. The master

can collect all the signals from waiting tasks and finally signal the suspended tasks to

resume the execution.

The C64 chip provides an interesting hardware feature called the “wake-up

bit”. When a thread tries to wake up another thread, it sets the “wake-up bit” for that

thread. This enables a thread to store a wake-up signal. Hence, if a thread tries to

suspend itself after a wake-up signal is sent, it wakes up immediately and the suspend

effectively becomes a no-op.

Name Description
tnt create() Thread creation
tnt join() Thread Join
tnt mutex lock() Mutex Lock
tnt suspend() Suspend current thread
tnt awake (const tnt desc t) Awaken a suspended thread
tnt barrier include (tnt barrier t *) Join in the next barrier wait operation
tnt barrier exclude (tnt barrier t *) Withdraw from the next barrier wait operation
tnt barrier wait (tnt barrier t *) Wait until all threads arrive this point

Table 2.2: Cyclops64 TNT APIs for Hardware Synchronization Primitives
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y *

+ z

Figure 2.4: A static dataflow graph that computes z = x+ y + x ∗ y.

2.2 Previous Models for Execution, Concurrency and Programming

The following sections introduce previous models for execution, modeling and

programming of parallel programs.

2.2.1 Dataflow

Dataflow is a program execution model proposed by Dennis [37], whose main

idea is that operations can execute when their operands are available.

Dataflow programs are usually expressed as a graph where computation is rep-

resented as actor nodes, and data dependencies are expressed through directed edges

in the graph. Data itself is represented as tokens located in edges. Figure 2.4 shows

an example of a dataflow graph.

Dataflow is excellent at expressing parallelism in programs. Dataflow programs

are well suited to highly parallel implementations. The graph description used, where

actors in the graph execute (fire) when its operands are ready, lends itself to parallel

implementations with distributed control.

Dataflow research in the past decades has resulted in a significant number of

research publications, many variants and some machine implementations.

Some of the most important dataflow models include the initial model proposed

by Dennis [37], Khan process networks [62], hybrid dataflow models such as the McGill

dataflow architecture model and its argument fetching model [41], dataflow software

pipelining [38], the MIT tagged token architecture [10], the EARTH model [104, 105,

106], the U-Interpreter [9] and others. A more comprehensive description of dataflow

and its implementations can be found in the excellent survey of Najjar et al [75].
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As the survey from Najjar shows, many advances in the dataflow field were

done in the past. However, those advances were made while the computer architecture

field produced predominantly uniprocessors with shared memory, vector processors or

distributed memory processors. The recent introduction of many core technology has

left many questions open, and if it is to survive, dataflow must evolve to be able to

answer those questions and rise to the challenges of the manycore revolution.

The dataflow model, where parallelism is an intrinsic part of the model rather

than an afterthought, promised excellent results in parallelism. However, the inertia

acquired by the use of traditional programming models prevented dataflow from be-

coming commercially successful, even though research projects such as the Monsoon

machine [91] or the U-Interpreter [52] showcased the capabilities of dataflow. On the

other hand, the industry had, at the same time, developed thousands of software prod-

ucts written in sequential languages. The need to support those programs with little

or no modification provided the economic fuel necessary to maintain the supremacy of

serial paradigms over dataflow which required increased time and effort in order to be

a viable alternative.

2.2.2 Petri Nets

Petri nets are “a graphical and mathematical modeling tool applicable to many

systems” [74]. Petri nets are useful to describe and study parallel systems, asyn-

chronous systems, stochastic systems and others.

The concept of Petri nets was first proposed by Carl Adam Petri’s dissertation

[92], and it has since enjoyed a significant amount of attention in the research world.

Murata [74] presents a comprehensive survey of previous approaches to Petri nets.

A Petri net is a directed, weighted, bipartite graph N with an associated initial

state called the initial marking, M0. The graph consists of two kinds of nodes–places

and transitions–and arcs that go from a place to a transition or from transitions to

places [74]. In modeling, places represent conditions that need to be met, and tran-

sitions represent events. Usually, places are represented as circles while transitions
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are represented as squares. The weight of an arc represents the number of equivalent

parallel arcs between two nodes in the graph. Arcs with no weights are assumed to

have a weight of 1. Each place has an associated marking (state) which is a nonnega-

tive integer, representing a number of tokens. In practice, the tokens are represented

graphically as dots inside the circle. The state of a program (its marking) is defined

by a vector containing the marking of each place in the graph. The behavior of Petri

net systems can be modeled through three simple rules: (1) A transition is enabled if

each one of its input arcs comes from a place with a token. (2) Enabled transitions

may (or may not) fire. (3) When firing a transition, one token is removed from the

place that connects each input arc and produces one token on the places pointed out

by each output arc. A more detailed explanation of the rules along with examples can

be found in the survey by Murata [74].

Petri nets are preferable to dataflow in that they model resource sharing, which

the original static dataflow does not. Extensions to the static dataflow model – such as

queued dataflow – allow resource sharing, but they still lack in their synchronization

capabilities. Although Petri nets are useful at modeling programs, they do not address

the more general case of execution, synchronization and scheduling. The Petri net

theory does not specify how to execute, synchronize or schedule programs.

2.2.3 EARTH

The Efficient Architecture for Running Threads (EARTH) [104, 105, 106, 117,

107] was a project aimed at an evolutionary approach to parallelism. One of the main

features of EARTH is its intention to use commodity hardware to produce a dataflow

implementation.

As in Dennis’s dataflow, EARTH programs are expressed as graphs. However,

two levels of parallelism, threaded procedures and fibers, were introduced to improve

locality and to take advantage of the architecture features of commodity processors.

Threaded procedures are the minimum unit of execution that could be mapped
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to a particular processor, usually executing the body of a function. Threaded proce-

dures have state, a frame and stack. Execution of a threaded procedure is mapped to

a particular hardware processor.

Fibers are the lowest level of execution. They are designed to provide fine-

grained execution, and they typically consist of a few instructions. Fibers execute

within the context of a thread: They can access its local variables and its frame. A fiber

is a “sequentially-executed, non-preemptive, atomically-scheduled set of instructions”

[104].

In EARTH, execution is controlled through synchronization signals. Fibers sig-

nal all of their data consumers when they finish execution. As in dataflow, fibers

become enabled after receiving signals from each one of their dependencies.

The architecture model of EARTH is composed of nodes connected through an

interconnection network. Each node is composed of one or more execution units, a

synchronization unit, local memory and buffers for incoming and outgoing requests

(Ready Queue and Event Queue buffers respectively). Scheduling and synchronization

is handled by the synchronization unit. Requests for synchronization or scheduling

of fibers are received in the Event Queue buffer either from other nodes or from the

local execution units. When a fiber becomes active, it is placed in the Ready Queue

where it is taken by one of the Processing Elements in the node. EARTH has been

used successfully to execute parallel programs. For example, Chen [25] showed the

advantages of using the EARTH model to compute a conjugate gradient benchmark,

and Theobald [104] showed extensive experiments where EARTH was used to compute

several well-known benchmarks.

Some of the main disadvantages of the EARTH model include its limited ability

to express parallel loops as well as the centralized nature of the synchronization unit,

which in a typical implementation, would consume a hardware processor.
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2.2.4 ParalleX

ParalleX [42] is a parallel programming and execution model. The features of

ParalleX include a global name space, rich semantics for parallelism, direct support

for lightweight tasks, automatic latency hiding and low overhead for synchronization,

data movement and load balancing.

ParalleX introduces the concept of Parcels, which is a message paradigm for

asynchronous and distributed operation. Parcels are messages that include data as

well as a specification for an action to be performed once the data has been received.

Such action is commonly referred to as a “continuation”.

The synchronization primitives of ParalleX take the form of Local Control Ob-

jects (LCOs). These objects, similar to dataflow synchronization primitives, futures or

metathreads, can be used alone or as part of larger synchronization structures.

Other features of ParalleX include mechanisms for percolation (data prefetch-

ing), a memory model where cache coherency is specified on a local domain only, and

a hierarchical view on processes.

ParalleX is related to TIDeFlow in that both attempt to specify a parallel

execution model to address similar issues, but the implementation, specification and

interfaces of ParalleX and TIDeFlow are significantly different.

2.2.5 Swarm

The Swift Adaptive Runtime Machine (SWARM) [3] is an execution and pro-

gramming model by ET International.

In Swarm, programs are written as directed graphs where nodes are codelets

and arcs represent the dependencies between codelets. Swarm features a programming

model where graphs can be constructed dynamically while the program executes.

The conception of the TIDeFlow execution model is intrinsically related to that

of Swarm. The current versions of Swarm and TIDeFlow were inspired by the same

project at ET International, and both are able to target execution in manycore archi-

tectures.
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The following differences exist between Swarm and TIDeFlow: (1) The imple-

mentation is different, (2) Swarm is able to express program graphs that change during

execution while TIDeFlow does not, (3) TIDeFlow has constructs to represent parallel

loops while Swarm does not and (4) TIDeFlow allows outer loop dependencies to be

represented as a basic construct while Swarm does not.

2.2.6 POSIX Threads

The POSIX threads standard [21], commonly known as pThreads, describes

the use of threads in serial programming languages. The pThreads standard provides

library functions to perform thread management (creation, termination, synchroniza-

tion) in shared memory systems.

pThreads provides a good interface for thread management, making it ideal as

a building block for other implementations.

The pThread library relies heavily on the operating system to perform schedul-

ing, synchronization and management of threads.

One of the main drawbacks of pThreads is that its shared memory model allows

race conditions when multiple threads access the same memory location without proper

synchronization [76]. Deadlocks may also happen due to programming errors [61].

2.2.7 OpenMP

OpenMP [79, 32] is another standard that specifies language extensions to se-

rial programming languages such as C or Fortran to express parallelism in a program.

In OpenMP, the programmer is responsible for expressing the available parallelism

through pragmas. For example, there are pragmas to specify that particular loops can

be executed in parallel, to specify parallel regions, parallel tasks, or reduction opera-

tions. An advantage of OpenMP programs is their compatibility with serial execution,

since the pragmas that specify parallelism can always be ignored to construct an equiv-

alent serial program. The ease of use of OpenMP along with its compatibility with

serial program has undoubtedly contributed to its popularity.
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One of the disadvantages of OpenMP is that it does not provide tools to ex-

press arbitrary constructs for parallelism or pipelining, and its model falls within the

class of execution models where programs are described as a sequence of fork and join

operations.

2.2.8 MPI

The Message Passing Interface (MPI) [53] is a specification for parallel comput-

ing where multiple processors with independent address spaces communicate through

the interchange of messages. MPI belongs to a set of paradigms related to point-to-

point communication between processes. Such set of paradigms were first advocated

by Hoare [58] and consist of a collection of sequential programs that communicate

through message passing. MPI remains today the tool of choice to develop supercom-

puter applications due to its implementation on top of serial languages such as C and

Fortran.

However, MPI programs are difficult to write, and they are particularly suscepti-

ble to programmer errors that lead to deadlocks. Given its popularity in supercomputer

systems, MPI programs are not intrinsically resistant to hardware failures, requiring

significant programmer effort to be able to thrive in large computing systems.

2.2.9 X10

X10 [24, 112] is an initiative originally led by IBM to develop a programming

language that would allow greater productivity. Although in general X10 allows com-

putation in distributed memory systems, it is mostly used for shared memory systems.

In X10, parallelism can be expressed through the use of asynchronous tasks,

which are executed asynchronously with the main execution. Results are obtained

through a synchronization statement or through a finish construct.

X10 has led to other successful implementations of parallel languages, includ-

ing Habanero-C [13], Habanero-Java [22] and others. The usability of languages like
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Habanero has been greatly expanded with the addition of phasers [100], which allow

point to point and collective synchronization between asynchronous tasks.

2.2.10 Cilk

Cilk [40, 1] is an execution model that has been very successful in the academic

world due to its clean design and development. Cilk made contributions in several

fields but in particular, its work-stealing [16] technique for scheduling has shown to be

excellent to achieve load balancing across an arbitrary number of processors.

Cilk’s scheduling techniques guarantee that the amount of memory used by any

program executed with Cilk is bounded by the number of processors and the amount

of memory used by a serial execution [15]. This important proof has contributed to

make Cilk one of the references for parallel programming.

The Cilk model is particularly useful for recursive parallelism or embarrassingly

parallel programs. Its programming model is simple, and it only requires the addition

of a few keywords to the C language. However, the main drawback of Cilk programs

is that they also fall within the category of the fork-join model, where arbitrary syn-

chronization dependencies can not be expressed.

2.2.11 Intel’s Concurrent Collections

Intel’s Concurrent Collections (CnC) [18, 19, 23] is an execution model by Intel

Corporation that facilitates writing and tuning C++ programs that execute in parallel.

CnC programs are typically expressed using two files. The first file describes

a CnC program graph while the second file contains pieces of sequential code (steps)

written in C++ and are meant to be executed sequentially. CnC program graphs are

directed graphs where nodes are either steps, items, or tags.

Steps represent computation that must be performed. The code for the steps is

given in a separate C++ file. Items represent data that is passed between steps. Tags

are a way to represent control dependencies between steps.
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Execution of a CnC program is determinate. The memory is managed automat-

ically by the runtime system through hash tables. Steps execute when both their tags

and their data become available.

CnC’s technique to express parallel loops is similar to that of TIDeFlow. In

CnC, parallel loops can be represented by a step with an associated range of tags that

become available at the same time. The execution of CnC programs is also similar,

providing the same program termination conditions.

An analogy between CnC tags and TIDeFlow time instances exists. Also, CnC

steps are similar to TIDeFlow codelets.

Some differences between CnC and TIDeFlow remain: TIDeFlow has been de-

signed to be a low-level runtime system where there is not an operating system. Mem-

ory is manually managed by TIDeFlow, and control and data dependencies are not

distinguished in TIDeFlow.

2.2.12 StreamIt

StreamIt [108] is a programming language with its associated compiler that has

been targeted to streaming systems. In the context of StreamIt, streaming programs

are programs where a continuous data stream is processed to produce a continuous

data stream. Streaming programs can be represented as a directed graph where nodes

represent filters and arcs represent data channels between filters.

StreamIt aims to ease the programming of streaming applications as well as

facilitating the mapping of those applications to several architectures, including com-

mercial off-the-shelf processors, multicore processors and distributed memory systems

such as clusters.

StreamIt is similar to TIDeFlow in that it targets regular and repeating com-

putation where communication is explicit. StreamIt results in pipelined execution of

tasks as in TIDeFlow.

Unlike TIDeFlow, StreamIt is designed to operate on a continuous stream of

data. The TIDeFlow model suits well the stream computation model, but it also
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addresses other models of computation.

StreamIt programming model is different to that of TIDeFlow. In StreamIt,

programs are written entirely through a language interface that is similar to C.

Despite the differences, StreamIt is very similar to TIDeFlow in its intent and

its techniques.

2.2.13 Intel’s Thread Building Blocks

Intel’s Thread Building Blocks (TBB) [93] is a parallel programming model for

C++ based on threads. Execution of TBB programs rely on a template-based runtime

library to take advantage of the features of multicore processors.

TBB aims to change programming paradigms [93], in particular TBB aims to

“specify logical parallel structures instead of threads, emphasize data parallel program-

ming and take advantage of concurrent collections and parallel algorithms” [2].

TBB provides additional keywords to the C++ language to specify parallel

loops, mutual exclusion, atomic operations and task scheduling while supporting several

of the primitive constructs used in higher level systems such as CnC or TIDeFlow. In

fact, several implementations of CnC rely on Intel’s TBB.

TBB, however, is not a full execution model, but rather a parallel programming

model based on threads. In that sense, it is different to TIDeFlow or CnC.

2.2.14 Other Approaches

PLASMA (The Parallel Linear Algebra for Scalable Multi-core Architectures)

[6] is a project that seeks to address the execution of linear algebra primitives in high

performance computing environments that use multicore architectures. PLASMA uses

a combination of algorithms and scheduling technique to solve linear algebra problems.

Like TIDeFlow, PLASMA targets processors with many cores. However, PLASMA is

not an execution model, but a library for linear algebra.

MAGMA (Matrix Algebra on GPU and Multicore Architectures) [6] also seeks

to address execution of dense linear algebra problems similar to those of the LAPACK
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[8] library. MAGMA is able to exploit heterogeneous systems containing multicores

processors and Graphical Processor Units (GPUs). Computation of MAGMA opera-

tions use a dataflow graph that is dynamically scheduled to either a multicore system

or a GPU. The main advantage of MAGMA is that it exploits the advantages of dif-

ferent algorithms for different frameworks. MAGMA is similar to TIDeFlow in that

it also uses dataflow graphs for execution. It is different to TIDeFlow in that it (1)

it is a library for linear algebra rather than an execution model and (2) it targets

heterogeneous systems.

The Kernel for Adaptive, Asynchronous Parallel and Interactive Programming

(XKaapi) [51] is a C++ library for parallel programming, specifically, for dataflow

synchronization between threads. XKaapi’s dataflow graphs are dynamic, unfolding at

runtime. XKaapi has been designed for clusters of SMP machines. XKaapi is a library

and not an execution model, like TIDeFlow.

Nanothreads [67] is a programming model whose goal is to manage a program’s

parallelism at the user level. The nanothreads model uses a Hierarchical Task Graph

(HTG) to represent programs in a fashion similar to that of dataflow. Execution order

is analogous to dataflow’s lazy semantics, where an actor is enabled if its output is

requested by another actor. Nanothreads is different to TIDeFlow in that it does not

target parallel loops and it does not address time instances or task pipelining.

Other less known approaches that are based in dataflow, but are different to

TIDeFlow in that they lack time instances, parallel loops or distributed control include

Dataflow Process Networks [66], GRAPE [72], LUSTRE [55], SISAL [54], VAL [68],

Lucid [113], Id [96], and others.
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Chapter 3

THE TIDEFLOW PROGRAM EXECUTION MODEL

This chapter presents the Time Iterated Dependency Flow Model (TIDeFlow),

a program execution model designed to address the challenges found in executing High

Performance Computing programs in manycore processors.

The model proposed in this chapter has its roots in the experience with the

implementation of matrix multiplication described in Chapter 1. The matrix mul-

tiplication experience showed the characteristics necessary for a successful execution

model: (1) a dataflow-based representation of programs, (2) specialized constructs for

parallel loops, (3) support for composability and (4) support for task pipelining at the

programmer’s level.

Each one of those requirements have been integrated in the TIDeFlow model.

The model is based on queued dataflow, and it describes programs as graphs. Parallel

loops are represented directly and easily by the nodes in the program graph. Full

support for composability is provided, and task pipelining was supported automatically

when the outer loop carried dependencies of a specified program.

This chapter describes each part of the execution model in detail. At the be-

ginning, an overview of the model is presented, along with the reasons that drove its

design. Then, the TIDeFlow program model is introduced. Examples are used to il-

lustrate the role of each of its constituent parts: actors, arcs, tokens and programs. A

discussion on the memory model is also presented, along with an explanation of the

features that enable proper pipelining during execution.

This chapter is based on several of my previous publications [80, 88, 89] on the TIDeFlow model. Some paragraphs,
figures and tables have been reproduced verbatim. Reproduced with permission. c©2010 and 2011 IEEE.
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3.1 An Overview of the TIDeFlow Model

The TIDeFlow model has been developed to simplify the execution and de-

velopment of HPC programs. To succeed in its goal, TIDeFlow includes primitives

that address the most common traits present in HPC programs such as Fast Fourier

Transform (FFT) [90], Matrix Multiply (MM) [50] or Reverse Time Migration (RTM)

[80]).

Of all the features common to HPC programs, perhaps the most relevant one

is that in most of the computational loops found, the innermost loop was parallel.

For example, in the matrix multiplication program presented by Garcia [48], most of

the time is spent computing parallel loops . The code of RTM (experiments have

been presented by Orozco et al. [80]) shows that most computational inner loops are

parallel, and an analysis of the FFT algorithm shows that each computational step

is fully parallel. Parallel loops are common in HPC programs because they can be

readily used to express linear algebra operations, which are in turn at the heart of

many scientific simulations.

The experience with the optimization of FFT, MM and RTM also shows that

a highly-optimized version of an HPC program requires the ability to express complex

dependence relationships between parts of the program. Unfortunately, the traditional

constructs available are unable to express these relationships in a straightforward way,

forcing the programmer to either resort to awkward and error-prone constructs or to

build his/her own synchronization primitives from scratch.

The evidence presented shows that HPC programs have abundant parallel loops

that depend on each other. For that reason, TIDeFlow provides constructs to express

parallel loops, dependencies between parallel loops and multi-dimensional loops such

as those commonly found in programs that simulate physical phenomena.

TIDeFlow addresses the necessity to support parallel loops by establishing par-

allel loops as one of the basic constructs in a program. The data, control or resource

dependencies between loops are supported by describing programs as a graph, where

nodes represent parallel loops, and arcs represent the dependencies between them.
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TIDeFlow is a dataflow-base model. The decision to use dataflow as the foun-

dation for TIDeFlow was based on the experience with the development of matrix

multiply, where it became apparent that expressing arbitrary parallelism was required

to produce an efficient implementation. TIDeFlow is similar to the dataflow model in

that it uses actors, arcs and tokens to represent programs. TIDeFlow is different to

dataflow, however, in that the user can control the generation of tokens or change the

program graph while the program is executing.

Actors (Section 3.2) are used to represent parallel loops. Tokens (Section 3.3)

are used as synchronization signals between parallel loops. Arcs (Section 3.3) express

the dependence relations between parallel loops.

The mechanics of execution that govern TIDeFlow are very similar to those of

dataflow [37]. An actor can execute (fire) when all its input dependencies have been

met. In practice, this requirement is equivalent to a token being present in each of

the actor’s input arcs. When the actor fires, it consumes exactly one token from each

input arc. When the actor finishes execution, it may (or may not) generate one output

token per output arc.

Each part of a TIDeFlow program has an associated state to indicate whether

it is executing, ready to be executed, or waiting for its dependencies to be met.

The following sections explain, in detail, the characteristics of a TIDeFlow pro-

gram, with examples on how to express and execute programs.

3.2 Actors

The TIDeFlow execution model is based in the observation that HPC programs

are mostly composed of parallel loops. For that reason, the parallel loops have been

defined as the fundamental unit of computation, and they are represented by actors.

Actors are similar to Macro Dataflow [98] in that they represent several sequential

operations. Unlike macro dataflow, however, actors represent parallel loops rather

than a serial piece of program.
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The definition of each actor includes the name of a codelet that represents the

instructions executed by each of the iterations of a parallel loop and an integer repre-

senting the number of iterations in the parallel loop.

The execution of actors is supported by their actor state, which contains infor-

mation about the number of times the actor has been executed in the past and about

its current eligibility for execution.

The following sections define actors as the basic computation unit and present

the operational semantics of actors.

3.2.1 Actors Represent Parallel Loops

A careful study of several applications, including matrix multiply [50], Reverse

Time Migration [85], and Fast Fourier Transform [80], reveals that most of the loops

in these HPC programs are fully-parallel loops.

The loops in those programs are the result of computations that can be done

in parallel, such as vector operations in matrix multiply, parallel updates in FFT or

array updates in RTM. In other cases, parallel loops result from data prefetching (also

called percolation [102, 46]) operations.

The philosophy of manycore processors is to achieve performance through par-

allelism. For that reason, it is natural to take advantage of the parallelism found in

loops to supply work for processors. This new approach of using the inner iterations of

loops as the basic computational unit was not possible before due to the memory and

processing overhead of doing so. However, given the simplicity of hardware resources

present in manycore processors, it is possible to conveniently express individual loop

iterations as tasks that can be executed by processors.

Having individual loop iterations be the basic unit of computation is difficult,

however. Previous execution models that have attempted to have single loop itera-

tions executed as a standalone task have failed to provide implementations fast enough

to support execution. These execution models include Static Dataflow [37], Dynamic

Dataflow [10], Cilk [40], X10 [24, 112] and Habanero Java [22]. In Static Dataflow,
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additional actors are required to control the execution of the loop iterations, and ulti-

mately they restrict the available parallelism. Dynamic Dataflow made an advance on

this issue by allowing a single actor to handle multiple tokens per arc, but it failed to

completely solve the problem as the matching of tokens was still centralized. Cilk does

not directly provide constructs for parallel loops, and it forces programs to rely on tree

recursion to execute embarrassingly parallel loops. X10 and Habanero face problems

that are similar to those of Cilk, where either parallelism is obtained through recursion,

or it is limited by the ability of a single processor to create tasks for the parallel loop.

TIDeFlow avoids the problems of parallel loop execution by (1) defining the

basic building blocks of a program as the parallel loop and (2) with a very fast, decen-

tralized implementation of a runtime system that is responsible for the scheduling and

assignment of tasks. This approach has the advantage that users have a powerful con-

struct to represent most operations in HPC programs while simultaneously isolating

the users from the difficulties and overhead of managing the tasks in a loop.

The basic construct used to represent parallel loops is the TIDeFlow actor (Fig-

ure 3.3). The parallel loop represented by an actor is expressed through the actor prop-

erties, which are constant: the number of iterations in the loop (N), a function f that

contains the code to be executed by each iteration of the loop and a set of constant,

user-defined values that are available to the user during execution.

Figure 3.1 shows the state and the properties of an actor in TIDeFlow. The

user-defined data is not shown.

Figure 3.2 shows an excerpt of a code typical of HPC programs. The code of

Figure 3.2 can be easily represented by a TIDeFlow actor as shown in Figure 3.3.

3.2.2 Execution of an Actor

The firing rules for an actor are taken from the dataflow model: An actor

becomes enabled when there is a token in each one of its input arcs. When the actor

fires, it consumes exactly one token from each one of its input arcs.

41



Time 

instance Execution State: 

One of {Enabled, Not 

Enabled, Firing, Dead}

Number of Loop 

Iterations

Function that 

executes one 
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6
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6 6

Token Arc

f Nt=7 Not Enabled

TIDeFlow actors represent parallel loops. The actor is described by a function repre-
senting the code of the parallel loop and by a number of loop iterations. To aid in the
execution, an actor carries a state indicating how many times it has executed in the
past (time instance) and whether or not it is ready to be executed (execution state).
The firing rules of an actor are similar to those of dataflow: An actor becomes enabled
when there is one token in each input arc.

Figure 3.1: Generic representation of a TIDeFlow actor.

...
for t in 0 to T-1

/* Parallel Loop */
for i in 0 to N-1
f(i,t);

end for

end for
...

The basic unit of computation in TIDeFlow is the parallel loop. In the figure, the
parallel loop is enclosed in an outer time loop. This configuration of parallel loop and
outer time loop is frequent in HPC programs. A TIDeFlow actor is able to represent
the parallel loop that iterates over i.

Figure 3.2: A parallel loop.
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f N

The actor of this figure is equivalent to the parallel loop of Figure 3.2. The code of
the parallel loop is represented by function f . The number of iterations in the parallel
loop are N . During execution, the runtime automatically creates parallel instances of
the loop iterations and supplies the parameters to function f .

Figure 3.3: TIDeFlow actor.

TIDeFlow takes the stance that an actor with no input dependencies has all

its dependencies automatically met because it has zero pending dependencies. The

result of this policy is that actors with no input arcs are always eligible for execution

unless they enter the dead state. A full description of the possible states of an actor is

presented in Section 3.2.4.

An actor fires (executes) when it enters the firing state. When an actor fires,

each one of the loop iterations represented by the actor are executed concurrently using

the function f of the actor. When the actor fires, parallel, concurrent invocations of

f(i, t), i = 0, ..., N − 1 (t is the time instance supplied by the runtime) are called. The

actor finishes execution when all of the parallel invocations of the loop iterations end.

When an actor finishes execution (1) it generates a termination signal, (2) it

may or may not generate output tokens and (3) it increases its time instance.

3.2.3 Signals Generated by Actors

An actor only generates signals when it finishes firing.

Termination Signals: When an actor finishes firing, exactly one termination

signal is generated, and tokens in the output arcs may or may not be generated. The

termination signals can be CONTINUE, DISCONTINUE, and END. CONTINUE indicates that

the execution of the program should continue as normal, DISCONTINUE indicates that

the actor should not be executed again, but the rest of the program should continue
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and END indicates that the actor and all of its consumers should end. The kind of

signals generated is decided by the user through the return value of the function f

associated with the actor. An actor creates multiple instances of f when it fires. Given

that f is written by the user, it is possible that not all instances of f created return

the same signal. For that reason, the termination signal of an actor is defined as the

return value of the instance that executes f(0, t).

The termination signals can control whether or not an actor will execute again.

Actors that emit a termination signal of DISCONTINUE or END do not execute again.

This is accomplished by setting the actor’s execution state to dead. A dead actor does

not participate anymore in the computation.

Generated Tokens: The generation of tokens is subordinated to the termi-

nation signal. When CONTINUE is generated, exactly one token per output arc is gen-

erated and the token is tagged with the time instance with which the actor executed.

DISCONTINUE is a termination signal that removes an actor from a graph along with

its input and output dependency arcs. An actor that generates a DISCONTINUE signal

is never fired again, and it does not need to produce any tokens because the actor and

all its associated arcs have been removed from the graph. Finally, an END signal does

not generate any output tokens in any output arcs.

The influence of the termination signals over the generation of tokens provides

an indirect control over the execution of other actors. The reason is that an actor does

not fire unless it has received a token in each one of its input arcs. If one or more of

the tokens is not present, the actor will not fire. In that sense, once an actor stops

producing tokens because it is dead, all actors downstream of it will eventually stop

executing because they will not receive the tokens required to be enabled.

3.2.4 Actor States

The state held by actors has been designed to ease the execution and manage-
ment of parallel HPC programs. The state of an actor is composed of:

• A time instance: An integer, initialized to zero, that increases its value by one
whenever the actor finishes firing.
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Figure 3.4: State Transitions for Actors.
c©2011 IEEE.

• An execution state: An actor can be either not enabled, enabled, fired (executing),
or dead.

Time instances tell how many times a particular actor has executed in the past.

The time instance is useful because it has a one-to-one mapping to the iterators in the

outer loops of an HPC program. For example, the time instance can be mapped to

physical time in a program that simulates physical phenomena.

The time instance information is local to each parallel loop because parallel

loops can execute asynchronously.

During the initialization of a program, the time instances of all actors are set

to zero.
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3.2.5 Actor Finite State Machine

The operational semantics that govern the execution of actors can be summa-

rized with the state diagrams of Figures 3.4 and 3.5. The execution state of the actors

is independent of the time instance of the actor. For that reason, separate Finite State

Machine diagrams are given.

It should be noted that actors with no input dependencies can fire repeatedly if

they produce a CONTINUE signal after they fire.

3.2.6 Examples

The following examples are a good way to illustrate the rules used to fire actors,

to produce and to consume tokens.

3.2.6.1 A Hello World Example

Following the tradition of many programming languages, the introduction of the

basic TIDeFlow constructs is done here by presenting a “Hello World” program.

Figures 3.6 and 3.7 show the two main components of a TIDeFlow program:

A program graph (Figure 3.6) and a C file with code (Figure 3.7) for each one of the

actors in the program. The code for each one of the actors in a program is called a

codelet.
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Hello 1

Figure 3.6: Program Graph for a Hello World program.

int64_t Hello( void * parameters, int it, int t )
{

printf( "Hello World!\n" );
return( END );

}

Figure 3.7: Codelets used in the Hello World program.

The TIDeFlow program of figure 3.6 will print the message Hello, World! and

will end. Several observations about the program can be made:

• The Hello actor of Figure 3.6 is always enabled because it has not input depen-
dencies.

• There is a total of one iteration of the Hello codelet in Figure 3.7. This is
identified by the number in the actor.

• The codelet returns END. Causing the Hello actor to become dead after it exe-
cutes.

• After the Hello actor becomes dead, the program ends because there are no
actors that are enabled or running.

• The runtime system provides the actor with information about its state: The
loop iteration (it), the time instance (t) and a pointer to user-defined parameters
(parameters).

The output of the Hello World program is given in Figure 3.8.

An important observation of the Hello World program is that the user controls

the termination of the program through the return value of the Hello codelet.

Hello, World!

Figure 3.8: Output of the Hello World program.
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Hello, World!
Hello, World!
Hello, World!
Hello, World!
...

The sole actor in the Hello World program returns CONTINUE, making it elegible to
be executed again. Because the actor has no input dependencies, it becomes enabled
repeatedly, and executes several times.

Figure 3.9: Output of the Hello World program.

If the return value of the Hello codelet is changed to CONTINUE, the Hello

codelet will become enabled again after each execution, repeatedly printing the Hello,

World! message as shown in Figure 3.9

3.2.6.2 Iterations and Time Instances

In HPC programs, it is very frequent that the same piece of code is executed

repeatedly. For example, in programs that simulate physical phenomena, frequently

the same computation will be performed during each timestep, and it may even operate

on the same data.

Even HPC applications that do not simulate physical phenomena have outer

loops that are very similar to the “time loop” used in other physics programs. To cite

an example, the matrix multiply program discussed in Figure 3.21 has an outer time

loop that comprises the computation of a tile.

For simplicity, outer loops that encompass several parallel loops will be referred

to as time loops.

The iterator information provided by the time loop is used by the application to

make decisions during execution: It may determine the memory location that should be

used, or it may modify the computation done. As such, this iterator must be included

as part of the state of an actor, and it should be be available during execution. The time

loop iterator, referred to as the time instance, is part of the state, and it is provided

by the runtime as a parameter to the actor’s function.
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Hello 3

Figure 3.10: A TIDeFlow program graph.

int64_t Hello( void * parameters, int it, int t )
{

printf( "it=%d, t=%d\n" );
return( CONTINUE );

}

Figure 3.11: Codelets for the program of Figure 3.10.

The concept of loop iterations and time instances is illustrated in Figures 3.10

through 3.12. The Hello World program has been modified to show the use of parallel

loops. Figure 3.10 shows a TIDeFlow program graph where the actor Hello is executed

three times in parallel. Figure 3.13 shows a possible output from the program, while

Figure 3.12 shows an execution trace that matches the output of the example.

The sole actor of the program in Figure 3.10 is enabled by default, and it can

fire repeatedly because it has no input arcs. When the actor fires, the runtime system

will inspect how many parallel iterations are specified by the actor (3 in the case of this

example), and it will create a task for each one of the iterations. The time instance –

represented in the example as the variable t – is a part of the state of the actor, and

it is passed to the function invocations by the runtime system during execution.

Figure 3.12 shows a possible trace of the execution. The figure shows that (1)

3 parallel loop iterations are created at each time instance, (2) execution of the actor

finishes when all of the parallel loop iterations finish and (3) the time instance of the

actor is advanced when the actor finishes execution and becomes enabled again.

3.2.6.3 Termination Signals

A slightly modified version of the Hello World program, shown in Figure 3.14

and its output (Figure 3.15), can be used to show how to use termination signals.
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it=2, t=0

it=0, t=0

it=1, t=1

it=2, t=1

it=0, t=1

it=1, t=2

it=2, t=2

it=0, t=2

Time 

instance 0

Time 

instance 1

Time 

instance 2

...

Execution trace of the program of Figures 3.10 and 3.11. Note that all parallel iterations
in a time instance must finish before the time instance is advanced.

Figure 3.12: Execution trace of the Hello World program.

it = 1, t = 0
it = 2, t = 0
it = 0, t = 0
it = 2, t = 1
it = 1, t = 1
it = 0, t = 1
it = 0, t = 2
it = 1, t = 2
it = 2, t = 2

Output of a parallel Hello World program. Both the time instances and the loop
iterations are used. Note that no ordering or synchronization between loop iterations
within the same time instance are supported.

Figure 3.13: Output of the parallel Hello World program.
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int64_t Hello( void * parameters, int it, int t )
{

int t;

printf( "Hello World at t = %d\n", t );

if ( t == 4 )
return( END );

return( CONTINUE );
}

This example shows how to use termination signals to control the execution of the
code: The time instance is used to decide whether or not to terminate the program by
generating an END signal or to continue execution by generating a CONTINUE signal.

Figure 3.14: Use of signals from the user code to control execution.

Hello, World at t = 0
Hello, World at t = 1
Hello, World at t = 2
Hello, World at t = 3
Hello, World at t = 4

The output of the Hello World program of Figure 3.14 is shown here. The time instances
and termination signals have been used to end the program at iteration t = 4.

Figure 3.15: Sample output of a TIDeFlow program that runs for a fixed number of
iterations.
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Note that the sole actor of the Hello World program is executed repeatedly

because its codelet returns CONTINUE during execution. The program ends when the

codelet returns END at time instance 4, changing the state of the sole actor to dead

and ending the program.

Time instances are useful to distinguish time iterations in programs. They can

be used to take decisions about the termination of programs, as in Figure 3.14.

3.3 Arcs and Tokens

When an actor finishes execution, it may signal other actors that depend on

it by creating tokens. Tokens do not carry data, they only convey the meaning of a

dependence met from one actor to another. Data is passed between actors through

shared memory. This is similar to the EARTH model of computation [104].

3.3.1 Arcs Represent Dependencies Between Parallel Loops.

The arcs in TIDeFlow graphs provide a simple way to express dependencies

between actors.

Dependencies in TIDeFlow typically represent data dependencies in producer-

consumer scenarios but they may also represent resource or control dependencies.

Arcs are allowed to carry an unbounded number of tokens, although particular

implementations can restrict the number of tokens to a certain maximum.

3.3.2 Representing Outer Loop Carried Dependencies

Although many inner loops in HPC programs are embarrassingly parallel, the

iterations of outer loops can not, in general, be executed in parallel. The reason is

that the outer loops of an HPC program usually express the high level relationships

between computation stages in a program. In most cases, the outer loops in an HPC

program capture the causality relationships between part of the program. They can

represent a time-ordering, or a sequence of communication and computation and so

on.
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Figure 3.16: Dependencies between memory movement and computation in a tiled
application.

Consider the case of an application where tiling has been employed to improve

locality. When optimized, the tiling approach must be accompanied by matching mem-

ory movement and by successful memory management. In the simplest configuration,

a buffer will be used. The buffer is used for computation with the aim of improving

locality. Given the nature of on-chip memories in manycore processors, memory move-

ment is explicit to and from the buffer. Figure 3.16 shows in detail the dependencies

of such an approach. The computation section must finish before the results are of-

floaded to memory. Computation must wait for the results to be loaded to memory.

However, there is a loop carried dependency between offloading of results and loading

of the next data block: The next loading operation must wait until the results of the

previous tile computation have finished. These outer loop carried dependencies are

similar to traditional loop carried dependencies in that they refer to dependencies be-

tween different iterations of a loop. However, the outer loop carried dependencies not

only express dependencies between individual memory accesses by the loops but also

the conceptual (control, data, resource) dependencies between them. The dependency

between offloading the data in a buffer and using the buffer again in the next iteration

is represented by a backwards arc in the program. To allow execution of the first actor,

the backwards edge is initialized with one token.
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The dependencies of Figure 3.17 represent traditional data or resource dependen-

cies in the traditional sense that an actor depends on the results immediately produced

by another actor.

The concept of dependencies can be extended to allow dependencies between

different time instances. These dependencies are referred to as outer loop carried de-

pendencies. The name comes from the fact that there exists a loop carried dependency

present in the outer loop. It should be pointed out that innermost loop carried depen-

dencies are not possible in TIDeFlow because no data communication or synchroniza-

tion is supported between loop iterations within the same parallel loop.

The dependence distance in outer loop carried dependencies is controlled by

the number of tokens placed in the arc at the start of the program. In general, an

outer loop carried dependency of distance k between an actor A and an actor B can be

represented by placing k initial tokens in the arc that connects A and B. The additional

number of tokens regulate the execution in such a manner that time instance t+ k of

B will wait for a token produced by A at time instance t.

The examples in Section 3.3.3 are helpful in understanding the meaning and the

use of outer loop dependencies.

3.3.3 Examples

3.3.3.1 Overlapping Communication and Computation

Tiling [60], the common construct for memory locality, can be used to illustrate

the use of dependencies. When tiling is used in a program, some memory is loaded

from lower levels of the memory hierarchy into on-chip memory. Once the memory has

been loaded, the processors can work on it.

In the particular case of an application that uses tiling in C64, two buffers

are used to overlap communication and computation: Computation can be done on

one buffer while memory movement is done on the other. Figure 3.17 shows a C64

program that will optimize the use of memory bandwidth and processor resources. The

number of loop iterations in the loader codelets is 8 because it takes exactly 8 threads
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0

Load1 8 Load2 8

Comp1 32

0

Comp2 32

0

1 1

A simple TIDeFlow construct where some overlapping of communication and com-
putation can be observed. Load1 and Load2 perform loads from main memory into
on-chip memory. Comp1 and Comp2 perform computation on the data loaded. Note the
dependencies: Computation must proceed only after a load. Two loads may not pro-
ceed in parallel because there is not enough memory bandwidth, hence the dependency
between Load1 and Load2. The initial tokens in the arcs between the computation and
the load actors enforce a loop carried dependency of distance 1.

Figure 3.17: TIDeFlow construct for overlapping of communication and computation.

to saturate the memory bandwidth of C64 when all of them are performing off-chip

memory operations. The dependency between the loaders and their respective compute

actors are data dependencies; they indicate that computation can only proceed when

the load has completed. Of particular interest is the dependency between the loader

actors that indicates a resource dependency: Two loader actors can not execute at the

same time because there is not enough available memory bandwidth.

Figure 3.18 shows a possible execution trace for the program of Figure 3.17. To

simplify the trace example, it has been assumed that only 16 processors participate in

the computation.

3.3.3.2 Using Outer Loop Carried Dependencies

The use of loop carried dependencies can be illustrated through an application

where several buffers are available. Each buffer is used to hold some data that needs

to be computed as a tile [60].

Processors can asynchronously do memory movement to put memory into the

buffers. In that way, more than one buffer can be ready for execution, and more than
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Figure 3.18: A possible execution trace for the program of Figure 3.17.

one memory transfer, either from main memory or to main memory, can be happening

at the same time. This approach is useful when the computation of a tile takes an

unpredictable amount of time, since it allows slow computation of some tiles to be

amortized over several tiles.

Now, let’s consider the dependencies between the operations. Three main op-

erations are done: (1) Computation of a tile, (2) prefetching the data needed by a tile

and (3) offloading the data computed by a tile.

The computation of a tile can proceed only after the data prefetching for that tile

has completed. For that reason, there is a dependency between the memory movement

(percolation) [46] required and the computation of the tile. In a similar way, offloading

the data computed can only happen once the computation of the tile has finished, so

there is a dependence from the computation step to the offloading step. However, there

is not an immediate dependency between offloading of a tile and loading of the next
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Figure 3.19: Dependencies between memory movement and computation in a tiled
application.

tile. In fact, if there is a total of k buffers, a particular buffer is only reused after other

k − 1 buffers have been used.

For this reason, there is an outer loop carried dependency between offloading

a buffer and prefetching the same buffer with dependence distance of k. Figure 3.19

shows the dependency graph for this situation.

3.3.3.3 Expressing Pipelining Through Backedges

The program of Figure 3.20 presents an example of how backedges in programs

cause pipelined execution.

The program represents a typical tiled computation where three buffers are

available. First, buffers are loaded with data, then, computation is performed using

the data loaded, followed by an unloading of the data.

As can be observed in the figure, the backedge between the O actor and the L

actor restrains the speed at which L can execute, ultimately resulting in an optimal

pipeline. The resulting pipelined execution was possible, in this case, because there

were enough processors to execute the actors as they become available.
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Execution trace of an N-Buffer tiled computation. The execution assumes that infinite
processors are available and that all of them execute at the same speed. Note that the
system naturally falls into optimal pipelining.

Figure 3.20: Execution trace of a pipelined program.
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3.3.3.4 A Matrix Multiplication Kernel

Figures 3.21 and 3.22 show one of the ways to implement the inner kernel of

matrix multiply presented by Garcia et al. [50]. A high level pseudocode for the

computation of the tiles is given in Figure 3.21 and its matching TIDeFlow graph is

shown in Figure 3.22.

The implementation uses two buffers in on-chip memory. A loop carried depen-

dency of distance 2 between the BufferLoader actor and the BufferOffloader actor

allows overlapping of communication and computation between the two buffers used

in the program.

Because all the innermost parallel loops are embarrassingly parallel, they have

been expressed as single TIDeFlow actors.

3.3.3.5 A Program Where Actors Execute Only Once

The use of the DISCONTINUE signal can be illustrated with the example of Figures

3.23 and 3.24.

The actors in the program of Figure 3.24 produce a DISCONTINUE signal

when they finish execution, effectively removing the actors from the program graph.

The act of removing some actors from a program may result in enabling other actors,

as is the case in Figure 3.24. The overall effect is that a TIDeFlow program with an

execution similar to that of a serial program can be achieved.

3.4 Composability

Smaller programs can be used to build larger programs. This powerful property

allows modularity, and it gives the programmer useful abstractions that are not tied

to implementation details such as the number of processors available.

Composability is achieved by allowing small programs to be seen as actors in

the larger programs that use them. To follow the conventions, the actor that represents

the small program is defined to have only N = 1 iterations because the small program
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...
/* Globals */
int buffer;
...
for step in 1 to NumSteps

/* Select which buffer to use */
buffer = step % 2;

/* Load buffer */
for i in 0 to 7
BufferLoader(i)
end

/* Innermost loop: Computes one tile */
for i in 0 to 1023

SubTile(i);
end for

/* Offload buffer */
for i in 0 to 7
BufferOffloader(i)
end

end for
...

Pseudocode for a tiled, serial, matrix multiplication computation using two buffers.
Although the code shown is serial, it could be parallelized and pipelined.

Figure 3.21: Serial code for matrix multiplication.

is only executed once when it becomes enabled. Additionaly, by definition, small

programs return a CONTINUE signal when they complete.

TIDeFlow programs can only be constructed from existing programs. This

design choice precludes the existence of recursive calls because a program can not be

used as part of itself.

TIDeFlow programs enjoy the advantages of composability. For example, when

a small program is used in two different parts of a larger program, no interference is

generated. Each instance of a program generates its own local state that exists for

the duration of the program only, and at the execution level they do not interact with
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BufferLoader 8

SubTile 1024

BufferOffloader 8

Figure 3.22: Representation of a tiled matrix multiplication using TIDeFlow.

...
x = malloc( ... );

for i in 0 to N-1
x[i] = 0;

for i in 0 to N-1
x[i]++;

free( x );

Figure 3.23: Example of a program with sequential statements.

other instances of the program.

The composability property is very powerful since it allows modularity and

portability. Modularity allows the development of parallel programs that are used to

perform common operations. Portability allows the use of the program in other systems

regardless of the number of processors available. Examples of programs that can be

reused include Matrix Multiplication, memory movement, Fast Fourier Transforms and

so on.

The rules to execute TIDeFlow composable programs can be expressed in terms

of the rules used to execute programs:

• All enabled actors may execute when a program begins execution.
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x[i]++ N

t=0

Not Enabled
free 1

Enabled because it has 

no input dependencies.

malloc codelet becomes dead after firing. 

Dependencies removed.

Actors with no dependencies become enabled.

t=1

Dead
malloc 1

t=1

Dead
x[i]=0 N

t=0

Enabled
x[i]++ N

t=0

Not Enabled
free 1

t=1

Dead
malloc 1

t=1

Dead
x[i]=0 N

t=1

Dead
x[i]++ N

t=1
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free 1

DISCONTINUE can be used to support serial programs with no outer time loops. In the
figure, all actors return DISCONTINUE, resulting in serial execution of the program.

Figure 3.24: TIDeFlow program graph for the the program of Figure 3.23.

• A program terminates when no actor is firing, and no more actors can become
enabled in the future.

The rules for execution of an actor A that represents a program P are simi-

lar: The program P starts execution when the actor A fires. The actor A completes

execution when the program P finishes.

The example of Figure 3.25 shows how to use programs as part of larger pro-

grams.

3.5 Task Pipelining

The presence of weighted loops in TIDeFlow program graphs allows for natural

task pipelining during execution. Figure 3.20 shows that during execution, with infinite

processors, the computation adjusts itself to the optimal pipelined schedule. This result

had also been demonstrated by Dynamic Dataflow in the past.

The ability to express task pipelining constructs at the level of the program

graph is a powerful feature that can significantly simplify the optimization of HPC

programs. For example, in the matrix multiplication program optimized by Garcia [50],
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Figure 3.25: Example of how to use small TIDeFlow programs to construct larger ones.

a significant amount of time and effort was devoted to designing and implementing a

good strategy for task pipelining. Garcia’s efforts included the development of hand-

made synchronization primitives as well as a synchronization plan that depended on

experience gained from previous program traces. Garcia’s approach, altough effective,

is cumbersome, time consuming, and error prone. The details of Garcia’s efforts can

be found in several publications [46, 50, 47, 44].

An equivalent TIDeFlow program to compute the same matrix multiplication

would not require such a titanic effort. The weighted arcs in the program graph

can indicate the dependence relations between computational steps, leaving the job

of scheduling them to the TIDeFlow runtime system.

Although most of the task pipelining duties are left to the runtime, a pro-

grammer can still benefit from execution traces and profiling to optimize programs in

situations with limited amounts of resources. For example, the dependence relation-

ships available in TIDeFlow can be used to allocate memory bandwith to processors

as shown by the example of Section 6.2.
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The use of priorities can further improve the effectiveness of pipelining during

execution. Priorities are a mechanism through which the programmer can identify the

tasks that are most likely to be in the critical path of execution. By identifying these

tasks, the runtime system can schedule them whenever they become enabled, prevent-

ing stalls when possible. Correct results are still guaranteed because dependencies are

still enforced.

Figures 3.17 and 3.18 show an excellent example of a situation where priorities

can be modified to avoid stalls during execution. The tasks that form the critical

path for the program of Figure 3.17 are the loader actors, which have been set to have

high priority. During the execution (Figure 3.18), the loaders are executed as soon as

possible, enabling the next set of computations and preventing stalls.

Experiments with the TIDeFlow system have shown that only two levels of

priority (low and high) are enough to control the scheduling during execution.

3.6 Memory Model

This section strives to present an intuitive explanation of the TIDeFlow memory

model. The memory model of TIDeFlow has been designed to provide useful constructs

for programmers while at the same time allowing simple practical implementations in

many-core systems.

Seeking simplicity of implementation and design, the TIDeFlow model uses

shared memory as the main mechanism for data communication. This decision facili-

tates communication between actors at the expense of the necessity of additional rules

to avoid race conditions.

The following rules form the core of the TIDeFlow memory model.

Rule 0: A TIDeFlow system has shared memory. All processors have access to

all the shared memory. Processors can allocate and deallocate memory for their use or

for use by other processors. Global variables are allowed.

Rule 0 specifies that TIDeFlow is a shared memory system. And all communi-

cation is done through memory.
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Rule 1: Memory operations made by a loop iteration appear to complete in

program order to the processor that issued them. No ordering is guaranteed between

memory operations issued by different processors.

Execution of each one of the loop iterations that compose an actor appears

serial. Rule 1 supports serial execution of individual loop iterations. Rule 1 does not

provide any limitations between memory accesses made by two different processors.

Rule 1 does not specify what happens when loop iterations that belong to the

same actor try to access the same memory location. Rule 1 assumes that actors repre-

sent parallel loops without data races and not other kinds of loops.

Note that the TIDeFlow model does not allow data sharing between iterations

that belong in the same parallel loop. Attempts to share data or to build synchroniza-

tion constructs may result in undefined behavior.

Rule 2: If there is a dependency from an actor A to an actor B, and A produces

one token h at A’s time instance k, then, when B consumes the token h, B observes

all memory operations of A at time t as complete.

Rule 2 specifies that all memory operations from an actor will complete once

the actor completes, and that the data produced will be available to other actors. Rule

2 is the main mechanism for orchestrating data sharing.

Rule 3: All memory operations in a program must have completed when the

program ends.

Rule 3 supports composability. All memory operations of a program will com-

plete once the program completes. This rule ensures that actors depending on data

produced by a program (that was used as an actor) will have full access to all the

memory produced by the program.
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Chapter 4

A THROUGHPUT ANALYSIS TO SUPPORT PARALLEL
EXECUTION IN MANYCORE PROCESSORS

The driving issues in concurrent algorithm development have radically changed

from execution in an environment dominated by virtual parallelism to an environment

dominated by massive hardware parallelism.

The change from virtual parallelism to hardware parallelism has decreased the

importance of algorithm properties that specify whether or not the algorithm is non-

blocking, lock-free, or wait free. Instead, the large number of processors in manycore

systems obtain a greater benefit from higher levels of scalability rather than from the-

oretical properties about thread failure.

The following sections provide an argument in support of throughput, the max-

imum intrinsic rate of completion of parallel operations over traditional properties.

This chapter shows that the throughput of an operation is a function of the

architecture used to implement the operation as well as the algorithm and technique

used. This work is focused on the manycore-class of architectures. In order to provide

a solid discussion, the explanations, examples, and conclusions presented use Cyclops-

64. This is not a limitation since the principles of throughput analysis apply to any

architecture. Cyclops-64 was used because it is a simple architecture where the effects

of throughput can be illustrated easily, both in terms of the simplicity of the examples

and their matching experiments. Future work on throughput will test the validity of

throughput on other architectures, developing new examples and algorithms targeted

to them.

Parts of this chapter have been taken verbatim from my ACM TACO paper [85]. Reproduced with permission from
ACM. c©2012 ACM.
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The relevance of throughput in the particular case of queue algorithms is pre-

sented due to their importance to runtime system development. The exposition is done

within the framework of queueing theory.

Several design guidelines are developed that result in the development of fast,

concurrent queue algorithms, along with experimental information showing that intrin-

sic throughput is fundamentally linked to scalability of parallel programs. The chapter

ends by presenting experimental evidence showing that a throughput-oriented approach

does result in improved scalability for parallel programs in manycore processors.

4.1 The Importance of Throughput in Parallel Programs

This section explains the importance of throughput in algorithms, and the con-

sequences of low throughput in parallel programs. A simple example, that shows the

main issues present, is developed to illustrate the characteristics of the problems and

how they can be analyzed.

Analysis of the scalability of different implementations of the parallel program

reveals interesting results about the implementation of algorithms.

Finding the maximum scalability of the parallel count program requires, first, a

definition of scalability, and second, an analysis of the parallel count program within

the framework of that definition.

For the purposes of this discussion, scalability will be defined as the ratio of

the maximum performance of a parallel program to the performance of a serial version

of the program. It is of interest as well, to find the number of processors used to

obtain the maximum scalability possible. Scalability can be defined as the ratio of

the performance of a parallel program to a corresponding serial program. The parallel

performance obtained (and the associated scalability that it allows) will be shown to

be related to the implementation of the program and the features of the architecture

used to run it.

The conclusion of this analysis is that the scalability of a program is directly

related to the intrinsic ability of an operation to be executed in parallel. The intrinsic
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rate at which an operation can be executed is the throughput of that operation.

The example of a parallel count program can be used to illustrate the meaning of

throughput. In the parallel count program, an infinite number of processors attempt

to increment a shared variable x. The only operation that processors make is the

increment of x. When a particular processor increments x, it goes idle and does no

other operations. In the parallel count program, all processors have shared access to

variable x and the memory is sequentially consistent. The throughput of the program

can be understood as the rate at which variable x is incremented.

The concept of throughput is important because it bears a direct relationship

to the limits in the available parallelism of programs.

The throughput of a parallel operation is a constant value that does not depend

on how many processors there are. The throughput of a parallel operation only depends

on the algorithm used to implement the operation and the architecture used to execute

the algorithm.

Throughput analysis is of particular importance to manycore systems. Many-

core architectures are particularly sensitive to low throughput because an application

with low throughput limits the maximum number of processors that can be used con-

currently.

The problem can be easily illustrated with the critical case of concurrent queues

in manycore processors. Queues are at the heart of the scheduling system of TIDeFlow

and many other execution models, including Cilk, EARTH, Habanero and X10.

The problem with the throughput of concurrent queues is that if a queue has

a throughput of µ operations per second in a system with P processors, it can serve

a maximum of 1 queue operation every µ−1 cycles, which in turn, limits the processor

request rate λ to at most:

λ−1 = µ−1P (4.1)

Consider the case of C64 where 160 processor cores (P = 160) concurrently use

an MS-Queue, and where each memory access to shared memory takes 30 cycles in the
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best case (m = 30). Under those conditions, each individual processor core is limited

to issue at most one queue request every 4800 cycles in the most optimistic scenario if

low latency at the queue is desired.

Traditional queues severely limit the usability of queues as a basic parallel con-

struct, since for many applications that use queues, the workload associated with a

queue is already in the range of few thousand cycles: Our experiments show exam-

ples of two applications where each processor uses the queue, in average, every 10000

cycles. The limitation is given specifically by the product µ−1P . Eq. 4.1 provides

another insight in the importance of throughput for extreme scale algorithms.

4.2 Queueing Theory and its Relationship to Throughput

Queueing theory is a mature field which can be used to analyze the behavior of

systems where a number of agents attempt to obtain services from servers. An excellent

introductory work on queueing theory can be found in Kleinrock’s 1975 textbook [63].

Queueing theory is relevant to throughput analysis because programs with con-

current operations can be modeled as agents trying to access services. In the context of

concurrent operations, processors can be modeled as agents and execution of a concur-

rent operation can be seen as a service. Processors are modeled as agents because they

generate requests for shared resources whenever they perform concurrent operations.

These shared resources can include algorithm and hardware constructs such as access

to locks, memory and bandwidth. Resources are, in turn, provided by servers, which

take the form of circuits, functional units or even small sections of programs.

The great advantage of using queueing theory is that it allows predictions about

the performance of a system. It can model latencies, throughput, idle times and so

on. In particular, results that apply to general situations have been obtained. These

results provide intuition about the behavior of systems.

Queue algorithms are of paramount importance to scheduling systems. And

as illustrated with the parallel count example, the ability of an algorithm to support

many concurrent operations simultaneously directly depends on the throughput of
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the algorithm. Queueing theory can support the development of queues by providing

quantitative means of evaluating the effectiveness of particular queue implementations.

Queueing theory, for example, provides tools to predict the latency of operations

in an agent-server system. An important conclusion that holds for the general case is

that the latency of operations increases when the rate of incoming requests approaches

the intrinsic throughput of the system.

The throughput of operations was not a determinant issue in the past because it

was very rare that enough requests could be provided to saturate the intrinsic through-

put of simple algorithms and operations.

However, current trends in computer architecture suggest that more and more

processors will be used for computations, stressing the need for concurrent algorithms

with throughputs that allow scaling to unprecedented numbers of processors.

The following sections provide definitions pertaining to queueing theory. These

definitions are used when measuring the throughput of each algorithm presented in the

examples.

Queueing Theory Conventions

The following conventions are useful to analyze the throughput of algorithms

and operations:

• µ is the throughput of an algorithm or operation: It describes the maximum
number of requests that can be serviced per unit of time.

• P is the number of processors attempting to access a service. Typically, the
service consists of execution of a concurrent operation.

• r is the average amount of time taken between requests made by a particular
processor.

• λ is the average request arrival rate as observed by the server. For example, in
the parallel count program, λ is the observed requests for increments, per unit
of time, made by all processors. When services are provided with low latency, λ
can be approximated as λ ≈ P/r

• ρ = λ/µ is the utilization factor of the queueing system.
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• m is the average latency of a single memory operation in a processor.

• k is the amount of time (measured in cycles) that an atomic operation uses at
a memory controller. This parameter arises from the fact that some processors,
such as C64, have the ability to execute some operations at the memory controller
without help from processors.

• z is the number of cycles a memory read or write uses the memory controller. In
general z < k because the memory controller needs to do less work to complete
a normal write (or read) than to compute an atomic operation.

• O refers to a particular operation or algorithm.

By definition, µ, the throughput of an operation O, specifies the maximum

number of operations of type O that can be completed per unit of time. µ sets a

bound on the intrinsic parallelism on the operation: The operation will scale until the

request rate λ reaches the throughput µ because the operation can not service more

than µ requests per unit of time.

A queueing system is defined as stable if µ > λ, or ρ < 1. When ρ > 1,

requests entering the queueing system accumulate faster than they can be served and,

in theory, latency increases to infinity. In practice, the system saturates, limiting the

request rate to be λ = µ, (or ρ = 1) and stabilizes the system by meeting requests with

large latencies.

Analyzing with precision the relationship between latencies, throughput and

request arrival rates requires knowledge of the probability distribution function of the

arrival and service rates of the queueing system. In the context of this work, it suffices

to say that in general, as λ approaches µ (and ρ approaches 1) the waiting time at the

queue increases.

4.3 Techniques to Increase the Throughput of Parallel Operations

The “inquire-then-update” approach is one of the main throughput limitations

in current queue implementations: In order to succeed, the queue must be locked during

at least 2 memory roundtrips in the case of a locking implementation, or the queue
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must remain unchanged during at least 2 memory roundtrips for implementations using

Compare and Swap (See Section 4.4.3.2).

A surprising result from Sections 4.4.3.1 and 4.4.3.2 is that nonblocking imple-

mentations and lock-based implementations of queues in non-preemptive environments

have throughputs that are in the same order of magnitude.

Instead, a stronger stance can be sought: Queue operations (enqueue, dequeue)

should succeed immediately if they can succeed at all. The word immediately is used

in the context of not requiring multiple operations, instead, the queue structure should

be changed with only one memory operation. In this sense, processors trying to ac-

cess the queue will directly write to the queue, without first reading the state of the

queue. This important distinction allows a significantly greater queue throughput than

the throughput provided by an inquire-then-update approach, because changes to the

queue happen during the time the memory controller serves the memory operation in

memory as opposed to happening over the course of several memory roundtrips.

The inquire-then-update is avoided by constructing the queue as an array of

queue elements, in which a positive integer can be associated to a position in the array.

Processors performing enqueue or dequeue operations can claim positions in the array

using a single atomic increment without exclusive access to the queue during a certain

number of memory roundtrips.

The idea of using atomic in-memory increments can be successfully used to

construct queue algorithms with significantly faster throughput. These algorithms,

explained in detail in a previous publication [85], work by cleverly conducting most

concurrent operations as in-memory atomic additions.

Figures 4.1 and 4.2 show the two main algorithms developed.

Circular Buffer Queue (CB-Queue), shown in Figure 4.1, demonstrates a first

approach that illustrates the main idea of a throughput-oriented algorithm.

Examination of previous algorithms reveals that access to pointers result in

inquire-then-update approaches, which will have very low throughput. As explained

with the parallel count program, directly changing the data structures with the use of
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This figure describes the data structure and the algorithm of the CB-Queue. Atomic in-
memory operations on the ReaderTicket and WriterTicket variables allow claiming
a position on the queue, by mapping the result of the increment to a position. This
procedure happens both for reading and for writing. The turn variables associated
with each data element allow synchronization when two threads are accessing the same
queue element.

Figure 4.1: CB-Queue data structure and usage.

in-memory atomic increments result in the best throughput. As a solution, the pointers

have been replaced by counters that represent each one of a set of preallocated elements,

allowing mapping of integer values to elements in the queue.

The preallocated elements are associated with the numbers obtained from the

counters in a round-robin fashion. To avoid conflicts when several processors try to

access the same queue element, the variable turn has been introduced. The turn

variable provides ordering between processors trying to access the queue, including

ordering between enqueue and dequeue operations.

Unfortunately, the CB-Queue is limited in that operations in the CB-Queue

must complete since it is difficult to undo an atomic increment. Once a processor

executes an atomic increment to request a position in the queue for either enqueueing or

dequeueing, there is no way to abort the operation. This poses problems because there

is not a mechanism to know whether or not the queue is full or empty, and processors
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must attempt (and succeed) in their operations before the operation completes. This

typically involves waiting until either enough space exists to complete an enqueue or

until the queue becomes nonempty before completing a dequeue.

The HT-Queue (4.2) overcomes the limitations of the CB-Queue with the ad-

dition of new features (1) to support an unbounded number of elements, (2) to allow

inquiring the status of the queue and (3) to avoid the presence of dangling pointers (i.e.

pointers that are obsolete because the memory has been freed by another processor).

An unbounded number of elements is supported by the HT-Queue because the

HT-Queue is constructed as a linked list of nodes. A node (Figure 4.2) is a data struc-

ture composed of (1) several queue items, each with a reader/writer synchronization

flag, (2) pointers for the linked list and (3) an integer that counts how many reads

to the node have been made. Among other things, the node structure amortizes the

overhead of memory allocation because it holds several queue elements.

Inquiring about the status (e.g. empty) of the queue is supported by the HT-

Queue algorithm with the addition of an element counter and a free space counter.

Additionally, the turn variables associated with each queue element in the CB-Queue

have been replaced with flags in the HT-Queue.

Dangling pointers are avoided in the HT-Queue because pointers are only deref-

erenced when it is guaranteed that the processor will successfully complete the op-

eration for which the pointer is required. A simple idea is used to accomplish this:

Obtaining a pointer and knowing whether or not the pointer is valid should be a sin-

gle, atomic operation. For the HT-Queue, this is achieved by placing the (reader,

writer) position counter and the (head, tail) pointer in the same 64 bit word. This

serves a double purpose: It allows claiming a position in the array (with a 64 bit

atomic increment) at the same time that the array pointer is read, and it allows the

processor trying to claim the element to discover whether or not the queue is empty

or full. Note that this technique also allows dereferencing the pointer only when it

is guaranteed that there is available space for an enqueue or available queue elements

for a dequeue. This is an important distinction that avoids the possibility of memory
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The HT-Queue is a modified version of the CB-Queue that supports an unbounded
number of elements. Pointers are used as in traditional queues, but the uncertainty
of whether or not a pointer is stale has been removed by pairing the pointers with a
counter that serves the double purpose of claiming a position in the queue and telling
if the pointer is valid.

Figure 4.2: HT-Queue data structure and usage.
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access exceptions, caused by a slow processor reading a pointer to a queue node that

is about to be deallocated.

4.4 Examples

As it will be seen in the following sections, the throughput of an algorithm is

intrinsically related to the features present in the architecture used to run it: Memory

latencies, the ability to perform memory operations in memory, the presence of a shared

bus or a crossbar, the number of memory banks and so on.

Cyclops-64 (C64) is used to explain the ideas about throughput and to show

how to do a throughput-oriented design of an algorithm. C64 was chosen because it

has a large number of thread units per chip, its architectural features are relatively

easy to control and predict, there is no virtualization or preemption that introduces

noise, the user can directly access the hardware, and it has features such as in-memory

atomic operations.

4.4.1 Throughput of a Test and Set Lock

Consider a program δ composed of only two operations: (1) obtain a global lock

using the test-and-set algorithm, and (2) release the global lock.

The intrinsic throughput of program δ is the number of processors that can

complete program δ per unit of time. Note that the intrinsic throughput does not talk

about the time taken by individual processors to complete the program. It talks about

the number of completions per unit of time.

Possession of the lock is the bottleneck for the program. The number of pro-

grams that can complete per unit of time depends on the number of times that the

lock can be obtained and released per unit of time.

Figure 4.3 shows that, from the point of view of the memory, acquiring the lock

only takes half a roundtrip, because the lock is free (or owned by another processor)

during the first half roundtrip of the test and set operation. Likewise, releasing the

lock only costs half a roundtrip.
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Figure 4.3: Time for ownership of lock.

Thus the throughput of program δ is µδ = 1/m (m is defined as a memory

roundtrip in Section 4.2).

4.4.2 Throughput of a Parallel Count Operation

The throughput of a parallel count operation, or rather, the throughput of the

operation of executing the count, can be analyzed by noting what the services are,

what the agents are and what the limiting factors in the service itself are.

The throughput of the operation depends on many factors, including the par-

ticular implementation of the operation and the characteristics of the machine where it

runs. For that reason, the Parallel Count Operation has a throughput that is dependent

on its implementation.

4.4.2.1 Using Locks

In the lock-version of the parallel count operation, processors act as agents that

try to access a shared resource. The shared resource that processors (agents) attempt

to obtain is ownership of the lock.

As can be seen in Figure 4.4, the speed at which a lock can be acquired and

released is limited. A processor must acquire the lock before releasing it. The amount

of time that a lock remains in the possession of a particular processor is given by the

ability of the processor to communicate with memory.
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Timeline of events in the parallel count operation. The bottlenecks to fast counting
are shown as thicker lines. Note that the use of locks results in the same performance
as the use of Compare and Swap.

Figure 4.4: Throughputs of several implementations of a parallel count operation.

The lock is held for at least a memory roundtrip, even in the best case. Note

that ownership of the lock starts at the moment that the compare and swap operation

in memory becomes successful. However, the processor that issued the compare-and-

swap operation does not yet have knowledge of its success, and it must wait for the

response of the Compare-and-Swap, which takes half a memory roundtrip. In a similar

fashion, releasing the lock is not an instantaneous process since the memory write that

releases the lock must travel from the processor to the memory.

Note that the lock is held by a processor even before the processor is aware of

it. Also, the lock may be owned by a processor even after the processor has issued a

memory operation that will eventually release it.

The throughput of the parallel count operation is equal to the number of times
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that the lock can be obtained and released by unit of time, which is once in the amount

of time taken by a roundtrip to memory.

µ =
1

m
(4.2)

4.4.2.2 Using Compare-and-Swap

The throughput of the Compare-and-Swap implementation of the parallel count

operation can be obtained by noting that the count must remain unchanged for at least

a memory roundtrip. Otherwise, the Compare-and-Swap operation will not succeed.

For that reason, the throughput of the Compare-and-Swap implementation of

the parallel count operation is:

µ =
1

m
(4.3)

4.4.2.3 Using In-Memory Atomic Increments

When in-memory atomic increments are used, the only factor limiting increment

requests is the ability of the memory controller to execute atomic increments. Given

that one in-memory atomic increment can be executed every k cycles, the throughput

of the operation is:

µ =
1

k
(4.4)

4.4.3 Throughput of Common Queues

Queue algorithms are of particular importance to parallel algorithms. They

are used in a variety of ways that span execution of irregular applications to runtime

system support.

In particular, queues play an important role supporting scheduling and task

management operations in runtime systems. For example, queues are the main schedul-

ing mechanism of runtime systems such as Cilk [40], EARTH [104], Habanero-C [12],

Habanero-Java [22] and TIDeFlow.
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Because of the importance of queues when supporting highly concurrent sys-

tems, it is important that they possess the capability to operate efficiently in parallel

programs. High intrinsic throughput is one of the requirements of queues that success-

fully support runtime systems.

The following subsections present an overview on current queues and their

throughputs.

4.4.3.1 Single Lock Queue

The algorithm followed by processors in a single-lock queue implementation is

(1) obtain a lock, (2) read the queue pointer, (3) update the queue structure, (4) release

the lock. Figure 4.5 shows the data structure commonly used to implement this queue.

Completion of a queue operation takes at least 2 complete roundtrips to memory,

even with optimal pipelining and scheduling (half a round trip to obtain the lock, 1

round trip to read the queue structure and half a round trip to update the queue and

release the lock). Accordingly, the throughput of the single lock queue is:

µ =
1

2m
(4.5)

The analysis of the Single Lock queue and other subsequent analysis assumes

that control flow instructions and other local instructions executed at the processor

take very little time when compared to the memory latency.

Practical implementations of the Single Lock queue usually have a much lower

throughput because optimal scheduling and pipelining are difficult due to library calls,

or because thread preemption can not be disabled.

4.4.3.2 MS-Queue

The MS-Queue is a popular algorithm used in many commercial implementa-

tions, including the Java Concurrent Class. Its algorithm is described in detail in

Michael and Scott’s 1996 work [71].
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Figure 4.5: Traditional view of a queue.

The MS-Queue algorithm uses a data structure similar to that of Figure 4.5.

Enqueues and Dequeues in the MS-Queue algorithm are based on successful execution

of a Compare and Swap operation on the tail and the head pointers respectively. In

general, a successful Compare and Swap operation on the MS-Queue requires that the

memory location referred by the Compare and Swap remains constant for 2 memory

roundtrips (half a memory roundtrip to read the initial pointer, one memory roundtrip

to dereference the pointer, and half a memory roundtrip to complete the Compare and

Swap operation).

The best throughput scenario (highest throughput) happens when the tail and

head pointers are located in different memory banks, enjoying independent bandwidth

and allowing simultaneous execution of Compare and Swap operations on the head and

tail pointers. In that case, the total throughput is the throughput for enqueues plus

the throughput for dequeues, and it is given by Eq. 4.6. 2 queue operations can be

executed every 2 memory roundtrips.

µ =
2

2m
=

1

m
(4.6)

The throughput of this algorithm is better than the single-lock queue and it is

not affected by thread preemption due to its non-blocking nature.
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4.4.3.3 MC-Queue

The MC-Queue increases throughput by distributing queue requests over mul-

tiple traditional queues. The bottleneck is either a sequence of operations on a shared

variable that keeps track of the element count or the aggregated throughput of all the

traditional queues in the implementation. An enqueue-dequeue pair performs 2 atomic

operations and one read on the shared variable limiting the throughput to 2 operations

every 2k + z cycles. Enqueues and dequeues can complete in each individual queue

after 3 roundtrips to memory limiting the throughput to 2 operations every 3m cycles.

Eq. 4.7 presents the intrinsic throughput, the min is simplified under the assumption

that the number of queues (G) is large enough.

µ = min

(
2

2k + z
,

2

3m
G

)
=

2

2k + z
(4.7)

4.4.3.4 Experiments

Several experiments were done to test the claims about the importance of

throughput for parallelism and scalability in queues.

Experiments with microbenchmarks were conducted to test the effectiveness

of the throughput models advanced. Then, experiments with the TIDeFlow system

were conducted to test the importance of the throughput of queues in more involved

situations. The microbenchmarks were written in assembly while the applications were

written in C.

In all cases, the C64 processor architecture was used. The large number of

processor units in C64 and the simplicity of its hardware make it useful to test the

validity of the throughput models.

The highly accurate ET International’s C64 simulator [35], instead of a real

C64 processor, was used to gather all the data presented here because (1) despite the

existence of real C64 chips, all of them are currently held by the U.S. Government

and have not been released to the public and (2) some of the other queue techniques

used as comparison, such as the MS-Queue [71] and the MC-Queue [70] require the

use of Compare and Swap, which is not available on the C64 chip produced. The C64
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simulator was modified to include a CAS native instruction in its ISA. To make the

comparison fair, the CAS instruction has the same implementation in the simulator

as all other atomic operations: It has the same latency, it uses the same resources,

it has its own opcode in the ISA, it is also executed in-memory and it generates the

same contention at the memory controller. The compiler was modified accordingly to

support the new opcode.

The throughput (Figure 4.6) and latency (Figure 4.7) of the queues analyzed in

this thesis were measured using experiments where each processor performs a sequence

of 75000 enqueue-dequeue pairs. During the interval measured, the processors do

not execute anything other than the enqueue-dequeue pairs, and there is no waiting.

Indirect effects such as system calls to malloc or free that may affect throughput were

avoided. All memory is allocated before the experiment is run and deallocated after

the experiment completes.

The measured throughput is defined as the total (aggregated) number of opera-

tions completed by all processors per unit of time. The latency reported is an average

over all the individual queue latencies.

Table 4.1 shows that the theoretical predictions on throughput are confirmed

by the experiments. The theoretical throughput for the MC-Queue, the CB-Queue

and the HT-Queue matches very well the throughput measured. The reason is that

the expression for the theoretical throughput is a function of C64’s memory controller

parameters (k and z) which are constant for C64. The theoretical throughput for the

MS-Queue and the Single Lock queue does not match the throughput observed because

the expressions for the theoretical throughput depend on the latency of individual

memory operations, which is not a constant, and increases with the load of the system.

This degradation of throughput can be seen in Figure 4.6: When the system is heavily

loaded, the latency for individual memory operations increases, lowering the total

system throughput.

The CB-Queue and the HT-Queue show significantly better intrinsic (maximum)

throughput than the MS-Queue and the Single Lock implementation, and equal (in the
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Note that the observed rate at which an operation is executed can not surpass its
intrinsic throughput.

Figure 4.6: Observed throughput of several queue implementations.

Queue µ (Theoretical) µ (Experimental)
Single Lock 8.33 4.54
MS-Queue 16.7 12.7
MC-Queue 142.8 142.8
CB-Queue 333 326.0
HT-Queue 142.8 142.5

Units:Million Queue Operations per Second.

Table 4.1: Comparison of theoretical and experimental throughput for several queue
implementations in C64.
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This figure shows the latency of a single queue operation. To obtain the latency, varying
numbers of processors executed 75000 pairs of enqueue and dequeue operations. Note
that the latency remains approximately constant until the intrinsic throughput of the
queue is reached.

Figure 4.7: Latency of operations for several queue implementations in C64.

case of the HT-Queue) or greater (CB-Queue) throughput than the MC-Queue.

The behavior of latency with respect to the utilization factor ρ of the queue

is shown in Figure 4.8. ρ has been calculated as the ratio of requests to theoretical

throughput (Section 4.2) for each queue. The latency of the implementations designed

following a high-throughput approach, when the queue is not saturated (ρ < 1), is

better than the latency of all other implementations tested. When the queue becomes

saturated (ρ = 1), the latencies of all queue implementations increase. Due to its high

throughput, the CB-Queue can handle a large request rate before the latency increases

due to saturation. The HT-Queue and the MC-Queue saturate similarly. Experimental
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The throughput of an operation is the maximum rate at which the operation can be
executed. The utilization factor ρ is an indication of how close a particular rate of
use is to the limit. A good queue algorithm should maintain a low latency even when
operating close to the maximum theoretical rate.

Figure 4.8: Latency vs. Utilization Factor for several queue implementations.

values for maximum request rates before the latency increases 5% are shown in Table

4.2.

The importance of queue throughput in larger applications was explored through

experimentation with two applications supported by the TIDeFlow runtime.

In the experiments, each program is run with a modified version of the TIDeFlow

runtime system. The different versions of the TIDeFlow system differ in the particular

queue implementation used for its main scheduling queue. The five different queue

algorithms used were: A simple queue that uses a lock, the MS-Queue (Section 4.4.3.2),

the MC-Queue (Section 4.4.3.3), the CB-Queue (Figure 4.1) and the HT-Queue (Figure
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Queue Max. Request Rate
(Million operations per second)

Single Lock 3.46
MS-Queue 6.06
MC-Queue 142.5
CB-Queue 262.68
HT-Queue 128.00

The maximum request rate before the latency increases by 5% is shown. The maximum
request rate provides a practical limit for the concurrency of queues beyond which the
performance starts degrading.

Table 4.2: Maximum rate of use of several queue implementations in C64.

4.2).

The applications used to test the impact of the throughput of each queue im-

plementation were the following: A tiled version of a 3-Dimensional Reverse Time

Migration (RTM) [14] used for oil exploration (8000 C code lines) with input size of

276 × 276 × 276 and Blocked Matrix Multiply (MM) [49] (3000 C code lines) of size

5760 × 5760.

RTM consists of repeated point-wise multiplication and convolution of a set of 3-

Dimensional input samples with a 3-Dimensional kernel. Good performance is achieved

though multiple code transformations [77] that improve the locality during execution,

resulting in moderate parallelism and abundant synchronization between tasks. The

input samples reside in DRAM, and they are executed as tiles that fit in on-chip mem-

ory. Overlapping of communication (between DRAM and SRAM) and computation is

done by having two tiles in on-chip memory. In the experiments conducted, four arrays

of 276 × 276 × 276 single precision numbers are used (approx 370MB in DRAM) with

a kernel of size 13 × 13 × 13. Tasks either compute a convolution between a data set

of size 6 × 1 × 1 and the kernel of size 13 × 13 × 13, or they do memory movement

between DRAM and SRAM.

In the case of Matrix Multiplication, three Double Precision matrices are in off-

chip DRAM memory (approx. 800MB). The nature of the software-managed memory

87



1

10

100

1 2 4 8 16 32 64 128

Sp
e

e
d

 U
p

Processors

RTM Scalability

CB Queue HTQueue
MS Queue Spin Lock
MC Queue

This figure shows the scalability of a Reverse Time Migration program. Although the
RTM program used in each experiment is the same, the queue used to implement the
scheduler was changed to show the effect of throughput on the performance of a parallel
program. As observed in the figure, a high throughput scheduler is required to obtain
high performance.

Figure 4.9: Influence of scheduler throughput on programs: RTM.

hierarchy of C64 requires a double buffering strategy where some threads move blocks

of 192 × 192 between off-chip DRAM memory and on-chip SRAM memory while the

other threads make computations of 6×6 tiles allocated in registers from the blocks in

SRAM. The optimum ratio between data movement threads and computation threads,

the optimum sizes of blocks and register tiles and other optimizations applied to this

benchmark have been detailed in previous publications for C64 [43].

The impact of the queue choice in the overall application is shown in Figures

4.9 and 4.10. As seen in the figures, the choice of queue implementation does not play
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In each experiment, the queue used to implement the scheduler is changed while the
matrix multiplication program remained the same. As in Figure 4.9, a high throughput
scheduler is required to obtain high performance.

Figure 4.10: Influence of scheduler throughput on programs: Matrix multiplication.

a critical role when few processors compete for access to the queue. When the number

of processors is increased, however, the throughput available at the queue becomes a

dominant factor in performance.

Reverse Time Migration does not posses enough parallelism, so the scalability

of the program reaches a fixed point after few processors. However, the bottleneck of

the program becomes intrinsic throughput, rather than available parallelism, when a

queue implementation with low throughput is used (such as is the case of the Spinlock

and the MS-Queue implementations).
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Parallelism is abundant in Matrix Multiply. However, despite the abundance

of parallelism, a high level of scalability with respect to a serial implementation can

only be achieved with high throughput. The results confirm this: whenever a queue

algorithm with high throughput was used (HT-Queue, CB-Queue, MC-Queue), the

program scaled better. When a slow-throughput implementation was used, the pro-

gram did not scale well: the particular case of the spin-lock implementation actually

decreased in performance and scalability when the system became congested.

Results of MM show that the proposed HT-Queue and the MC-Queue reach a

similar maximum speed up: 55.9 for HT-Queue and 56.3 for MC-Queue given their

similar theoretical throughput. CB-Queue performance is always slightly better than

HT-Queue and MC-Queue, and its maximum speed up is 56.6. RTM shows similar

results where the maximum speed up obtained is related to the throughput of the queue

used.

The MC-Queue and the HT-Queue have a high throughput in themselves, but

they require calls to malloc and free, which could become the bottleneck. The ex-

periments of Figures 4.9 and 4.10 avoid this through the use of a high performance,

distributed memory allocator based in the CB-Queue. A custom memory allocator was

used to isolate possible throughput limitations imposed by the system.

Figures 4.11 and 4.12 further explore the influence of system calls in throughput

and scalability. Instead of a custom, high-performance memory allocator, the standard

memory allocator available for C64 was used.

The results of Figure 4.11 shows that the throughput of an operation is suscep-

tible to side effects such as system calls or other sources of contention. The MC-Queue

can be taken as an example to illustrate this point. The MC-Queue was shown to

have an excellent throughput. However, the throughput obtained for the MC-Queue

algorithm takes into account the algorithm itself and the architecture, and it assumes

that an efficient memory allocator can be developed. However, as seen in Figure 4.11,

a naive memory allocator will become the bottleneck and will ultimately limit the

throughput of the operation.
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This Figure repeats the experiments of Figure 4.9, but the memory allocator used is a
naive one.
The naive memory scheduler limited the throughput of the scheduler, decreasing the
scalability of the overall program.

Figure 4.11: Influence of scheduler throughput on systems with a naive memory allo-
cator: RTM.

The memory allocator of C64 uses a centralized, global lock, to ensure correct-

ness between threads. As a result, its performance matches the performance of the

queue implementation that uses a spin lock.

Experiments with Matrix Multiply and a naive memory allocator (Figure 4.12)

show a similar trend. Even though enough parallelism is available, processors are not

able to take advantage of it because the use of a naive memory allocator limits the

throughput of the queue implementation.

Interestingly enough, the throughput (and the performance) of the CB-Queue

and the HT-Queue is not affected significantly by the use of a naive memory allocator.

This is due to the fact that the CB-Queue does not use memory allocation at all, and

the HT-Queue allocates several queue items at the same time, reducing the number of
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As in Figure 4.10, the experiments change the scheduler while the program remains the
same. In this case, however, a naive memory scheduler was used. The poor throughput
of the naive memory scheduler limited the scalability of the program.

Figure 4.12: Influence of scheduler throughput on systems with a naive memory allo-
cator: Matrix multiplication.

memory allocation operations required.

The results of Figures 4.9 and 4.10 show that throughput plays an important

role in parallel applications. In particular, high throughput is paramount to supporting

high scalability.

4.4.4 Simplifying the Representation of Tasks to Increase Queue Through-

put

The throughput of a particular operation can be increased when the algorithm

used for the operation is changed. Both the data structure and the technique used to

execute the operation can have a significant impact in the throughput of the algorithm.

For example, an implementation of an operation that uses a combination of slow op-

erations on a centralized data structure will have a lower throughput than another
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implementation that uses fewer, faster operations on a distributed data structure.

The global queue used for the scheduling and representation of tasks in the TIDe-

Flow system constitutes an excellent example of a situation where the data structure

used and the selection of operations used had a significant impact on the throughput

of the scheduling system. The throughput of the queue is critical to support execution

because all tasks that are are executed or that become enabled have to be enqueued

and dequeued from the queue. Unfortunately, the process of enqueueing tasks to make

them available to be executed takes a nontrivial amount of time and may result in

unacceptable overhead in fine-grained programs.

The analysis of the throughput of queues of Section 4.4.3 addresses the general

case of arbitrary data items being placed in the queue. However, in the case of queues

supporting runtime systems for HPC execution, it has been shown that there is signifi-

cant similarity in the data placed in the queue [86]. This similarity can be exploited to

produce modified versions of the algorithm where several queue items are compressed

into a single item.

The name polytask has given to the compressed representation of several queue

items representing tasks. The advantage of the use of polytasks is that in its compressed

representation, only one queue operation is equivalent to several uncompressed queue

operations. Figure 4.13 shows that the effective throughput runtime system queue is

increased when a compressed representation for tasks is used.

In summary, the throughput of an operation can be affected when the operation

itself is made more efficient. In the case presented in Figure 4.13, the throughput of

accessing a queue was made more efficient through a better representation of the tasks

generated. This same approach can be used to other concurrent operations.

4.5 Summary

This chapter presented throughput as a new property of concurrent operations.

The throughput of a concurrent operation is the maximum rate at which a concurrent

operation can be completed.
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The choice of algorithm and data structure affect the throughput of an operation.
The figure shows an experiment where the throughput of three queue algorithms is
measured. Task similarity refers to the ability of data to be compressed. The “Poly”
versions of the algorithms use data compression. The main conclusion from the data
in the figure is that variations in the data structure used (such as compression) can
lead to changes in the throughput of operations.

Figure 4.13: Throughput of queues with and without task compression.

The concept of throughput is of paramount importance for highly parallel pro-

cessor architectures because it bears a direct relationship to the scalability of programs.

Algorithms that are based on operations with low throughput are unable to scale be-

cause scalability requires that many operations can complete per unit of time.

An important characteristic of the throughput analysis is that the intrinsic

throughput of an operation is a constant value that depends on the algorithm imple-

mentation and the architecture where it runs. It does not depend on how the algorithm

is used, and it does not depend on other runtime factors such as whether or not other

operations are being executed.
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The intrinsic throughput of an operation does not guarantee that the operation

will be able to complete at that rate. Rather, it establishes an upper bound on the rate

of completion of the operation. Runtime factors such as the rate at which the operation

is being attempted, or the existence of other conflicting operations may decrease the

observed rate of completion of an operation.

Finally, the ideas on throughput presented in this chapter have used Cyclops-64

to motivate the discussion, develop the model, and provide the experiments. The ideas

presented here will also apply to other architectures where the cost models may be

different and the numeric value of the throughputs found may change. Nevertheless

the principles of throughput will still be fully applicable.
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Chapter 5

TIDEFLOW IMPLEMENTATION

The implementation of TIDeFlow was the next challenge that was faced after

the development of the theoretical foundation for the execution model (Chapter 3) and

the throughput analysis required to support highly concurrent execution (Chapter 4).

Several goals were at hand: The implementation should be simple, it should

represent the model with fidelity, it should be easy to use and it should have a very

high performance.

The first task that was addressed concerned the programming model. Although

many alternatives were explored, including graphical environments such as the DOT

programming language [39], it quickly became apparent that a programming model

based on the C programming language was simple enough, it could be implemented

in a few months and it would allow enough flexibility to represent a large number of

programs.

The next problem was the development of the runtime system. A distributed

runtime system was sought from the start. The desire to use a distributed runtime

system arose from the large number of processing elements typically found in manycore

architectures, where the use of a centralized system for synchronization was likely to

incur in high overheads. Instead, the runtime system took the approach of separating

the synchronization and the scheduling issues and developing algorithms for each one

of them.

Synchronization and activation of tasks is done localy in TIDeFlow. This de-

sign decision resulted in distributed control during the execution and ensures that no

one slow processor will stall all the computation on the system. The synchroniza-

tion operations are supported by in-memory atomic operations that are performed
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on synchronization variables that are local to the processors participating in the syn-

chronization operation. The result is that each processor is able to enforce its own

synchronization operations, and it is able to locally enable tasks that have met all of

their input dependencies.

Scheduling, which happens concurrently, albeit separately, from synchroniza-

tion, uses a centralized queue that can be accessed by all processors at the same time.

The scheduling queue has been the subject of previous publications [86], and it serves

as the main work pool where processors publicize and obtain work.

Compiling was another significant problem. A full compiler that would produce

executable binaries would require a launcher, an assembler and all their associated

tools. Instead, the TIDeFlow compiler takes the limited approach of placing the pro-

gram in memory, from where it can be easily executed.

Finally, optimization of programs required the generation of program traces.

The runtime system was developed to natively support profiling. To do so, the runtime

system gathers information about the starting and ending times for each task along

with information about which processor executed it.

The following sections describe the details of each part of the tools that form

the TIDeFlow system.

5.1 TIDeFlow C Interface

TIDeFlow programs are described by a combination of graphs such as those of

Figure 3.22 and codelet functions such as those of Figure 3.21.

A graphical interface can be used to represent TIDeFlow graphs. However, it is

useful to have a pure C interface that allows construction of TIDeFlow graphs. When

using the C interface, the user is responsible for initializing the TIDeFlow runtime

system and for creation of TIDeFlow programs.

This section describes in detail the interface used to express and use TIDeFlow

programs.
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5.1.1 Initializing the TIDeFlow Runtime System

First the runtime system must be initialized, and a number of processors must

be allocated to execute TIDeFlow programs.

Figure 5.1 shows the interface to initialize the TIDeFlow runtime.

void InitRuntime( int NumProcessors );

Figure 5.1: C interface to initialize the TIDeFlow runtime.

At initialization, the following tasks are completed:

• the specified number of processors are allocated,

• a CB-Queue, modified to support and manage TIDeFlow actors [86, 87] is allo-
cated and

• all processors start polling the global queue to find work to execute.

5.1.2 Creation of TIDeFlow Programs

The steps to creating a TIDeFlow program are: (1) create a memory context

for the program (2) add actors or other programs to the program graph, (3) add

dependencies between actors and (4) provide static parameters to actors.

The following sections explain how to accomplish each one of this tasks in detail.

5.1.2.1 Creation of a Program Context

All TIDeFlow programs require a context that must be created. A TIDeFlow

program can be identified by a pointer to its context. This pointer can also be used to

include a program as part of a larger program.

Figure 5.2 shows the C interface to create a program context.

CodeletSet * = CreateCodeletSet( char * ProgramName );

Figure 5.2: C interface to create a TIDeFlow program.
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int AddCodelet(
CodeletSet *ProgramContext,
void (*function)( void *, int ),
int LoopIterations,
char * ActorName
);

void SetPriority(
CodeletSet *ProgramContext,
int ActorID,
int Priority /* 0: High, 1: Low */
);

Figure 5.3: C interface to add an actor to a TIDeFlow program.

5.1.2.2 Addition of Actors or Programs to a Context

Once a program context has been created, actors must be added to it using the

interface shown in Figure 5.3. The interface allows specification of the function to be

used and the number of loop iterations in the actor.

The interface returns an integer, that, along with the pointer to the context

where the actor belongs, serves as an identifier for the actor.

Priorities for the execution of actors can also be specified through the interface.

TIDeFlow supports two levels of priority (high and low) to aid the programmer in the

scheduling and synchronization of tasks. During runtime, tasks with a high priority will

always be scheduled first over tasks of low priority. The priority system if particularly

useful to specify that actors in the critical path of a program should be executed first.

In addition to using codelets as actors, entire TIDeFlow programs can be used

as an actor. The C interface to use a TIDeFlow program as part of another is shown

in Figure 5.4

5.1.2.3 Addition of Dependencies Between Actors

Once all actors in a TIDeFlow program have been added, dependencies between

them can be specified.
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int = AddCodeletSet(
CodeletSet *ProgramContext,
CodeletSet *Program_To_Use,
char * Name
);

Figure 5.4: C interface to use TIDeFlow programs as part of larger programs.

void SetDependency(
CodeletSet *ProgramContext,
int SourceActor,
int DestinationActor,
int TimeOffset,
char *DependencyName
);

Figure 5.5: C interface to specify dependencies between actors.

Actors are identified by the integer returned when they were created. The

interface to specify dependencies is given in Figure 5.5.

5.1.2.4 Providing Static Parameters to Actors

In TIDeFlow, communication between actors is done through shared memory

and not through tokens. To accomplish this, actors are provided with pointers to

locations in memory where they can consume and produce data.

A total of eight constant, 64-bit values, can be given to each actor using SetStaticData

during the construction of the program. At runtime, actors can obtain any of these

values through a call to GetStaticData. Their interfaces are provided in Figure 5.6.

5.1.3 Running TIDeFlow Programs

When a program has been properly set up and the runtime has been initialized,

it can be given to the runtime for execution.

Figure 5.7 provides the interface to execute a program.
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void SetStaticData(
CodeletSet *ProgramContext,
int ActorID,
uint64_t Data[8]
);

uint64_t GetStaticData(
void * parameters, /* Provided by the runtime */
int DataIndex /* An integer from 0 to 7 */
);

Figure 5.6: C interface to set and get static data particular to an actor.

void SignalSet(
CodeletSet *ProgramContext
);

Figure 5.7: C interface to execute a program.

5.2 Intermediate Representation

Several desirable features were identified during the design cycle of TIDeFlow,

including the ability to support future compiler optimizations, or the possibility to

change the program at various stages of compilation. As a result, an intermediate

representation was designed to represent the program during the early stages of com-

pilation.

The intermediate representation of TIDeFlow programs uses a small data struc-

ture to represent each actor. A program is represented by an array-of-structures that

contains the actors.

The design of the intermediate representation aims to express the graph as

a collection of integers. For example, whenever a reference to an actor is used, its

offset in the program’s array-of-structures is used rather than a pointer. This same

representation is used to describe arcs: Two integers are used to represent an arc,

representing the starting and ending actor of the arc.

Representing TIDeFlow programs as a collection of integers has the great ad-

vantage of allowing simple duplication of a program (for composability of programs)
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and portability to other architectures.

The intermediate representation is computed by the TIDeFlow toolchain.

5.3 Compilation and Execution of a TIDeFlow Program

The final stage of compilation of a TIDeFlow program takes into account the

architecture in which it runs and leaves the program resident in memory. At this point,

saving a compiled program to non-volatile storage is not supported. For that reason,

the compiler and the launcher of a TIDeFlow program are integrated into the same

tool.

Compilation of a TIDeFlow program consists of translating the intermediate

representation into an executable data structure where offsets in the Intermediate Rep-

resentation structures result in pointers in the final program. Memory is allocated and

initialized for the actors at the end of the compilation stage. The resulting executable

data structure contains actors with their properties and their states, linked through

pointers that follow the dependencies specified in the original program.

A TIDeFlow program is executed when a pointer to the program is passed to

the runtime system. The runtime system scans the program and schedules all actors

that have no dependencies for time instance zero. The execution continues until the

runtime system detects that no more actors will be scheduled.

5.4 TIDeFlow Runtime System

The TIDeFlow runtime system supports the execution of programs by providing

scheduling, synchronization, initialization and termination of programs.

The role of TIDeFlow’s runtime system and its relationship to the toolchain

is shown in Figure 5.8. TIDeFlow’s runtime system has been designed to support

execution in an environment without virtualization. The runtime system is directly

embedded in the application binary and it is able to perform all task management

operations.
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a traditional approach. Note that TIDeFlow is able to run without the support of a
traditional operating system. Instead, TIDeFlow’s runtime system, embedded in the
application binary, performs all task management operations.

Figure 5.8: TIDeFlow toolchain.

The implementation of TIDeFlow’s runtime system presented several challenges

that ultimately resulted in interesting advances and tools: A fully distributed runtime

system, a programming language to describe program graphs, concurrent algorithms

[86] and new ways to reason about performance models [85].

The basic unit of execution for scheduling and execution in the runtime system

is the task. As explained, each one of the parallel iterations on an actor are represented

by a single task in the runtime system. To allow immediate visibility of available work,

all tasks that become enabled are written to a queue that can be accessed concurrently

by all processors.

Perhaps the most important feature of the runtime system is that its control is

fully distributed. There is no one process or thread or task in charge of the runtime

system duties. Instead each processor concurrently (1) performs its own scheduling

and (2) handles localized signals related to the actor being executed by the proces-

sor, including enabling other actors and writing them to the global task queue. The

TIDeFlow runtime system is fully distributed with regard to the processors, because

no one processor, thread, or task is responsible for scheduling, but it is still centralized

from the point of view of the memory because the runtime system uses a single, global
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TIDeFlow’s Runtime System uses a high performance queue as the main mechanism
for task management.

Figure 5.9: TIDeFlow scheduling queue.

queue.

Development of a decentralized runtime system required advances in concurrent

algorithms and in the internal representation of actors and tasks. These advances were

achieved by work in concurrent algorithms for runtime systems [84] and in task rep-

resentation and management [86, 87]. The resulting high performance queue (Figures

5.9 and 4.1) was able to adequately support task management with very low overhead.

In the first study [85], it was found that the use of a global queue in a decen-

tralized system is possible if the queue is designed to sustain a high throughput of

operations in a concurrent environment. The study has resulted in a very efficient

queue algorithm that can be used by processors to concurrently schedule their own

work.

In the second study [86, 87], it was found that there is a high similarity in tasks

from the same actor: They have the same properties and they execute the same func-

tion. Such similarity can be exploited to decrease the number of operations required to

write those tasks in the centralized queue, greatly reducing the overhead of the runtime

system.
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The TIDeFlow runtime system, with the improvements developed in queue al-

gorithms [80, 86, 85], has resulted in a very-high-performance decentralized system,

with overheads that are much lower than the average duration of tasks, even for fine

grained programs. The use of a centralized queue (Figure 5.9) for task management

allows decentralized control, it renders load balancing irrelevant and it simplifies the

design of the runtime system at large.

The examples shown in Chapter 7 show that the TIDeFlow runtime system

is an excellent choice to support the execution of parallel programs on many-core

architectures.

5.5 Parallel Program Traces

Program traces will be introduced before presenting the TIDeFlow programming

environment. Parallel program traces are useful to understand programs. Several

examples through the remainder of the chapter are complemented with program traces

to improve their clarity.

Program traces are a powerful way to provide insight into the behavior of a

parallel program. Through profiling and traces, a programmer can take decisions about

parallelism, priorities, resource allocation and other things.

A program trace describes the activity that each processor executed at any

point of time. The information reported for each processor includes the task that the

processor was executing, and in some cases, the dependence relation between tasks.

TIDeFlow provides native support to create program traces. The runtime sys-

tem provides the option of logging all events and producing a report file afterwards.

The events observed by each processor are assembled together to produce a program

trace of the TIDeFlow program executed. The logs of events at each processor are

placed into a global queue that uses the CB-Queue algorithm, where they are read at

the end of the execution and dumped to a file.

Figure 5.10 shows an example of a program trace. The trace, and its associated

profile, were obtained from the execution of an early version of matrix multiply.
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An example of a profile of the execution of a matrix multiply program. The horizontal
dimension represents time, the vertical dimension represents processors and the color
represents tasks. In this profile, it is easy to observe where processors are left idle.

Figure 5.10: Execution trace of matrix multiplication.

Profiles such as the ones in Figure 5.10 are useful because they show where the

time is spent in the program. It shows the sources of overhead and it provides valuable

insight for optimization.

Profiling is not enabled by default in TIDeFlow. To enable profiling, the TIDe-

Flow Runtime must be recompiled. A macro (USEPROFILER) allows control of whether

or not profiling is enabled. The macro is usually passed specified from the command

line when compiling a TIDeFlow program.

When a program finishes, the runtime system creates a file, called

profiler.dump, in the local directory where the program was run. This file contains

the profiling information.

A separate visualization tool is also provided with TIDeFlow to allow easy

interpretation of the profiler plots. The visualization tool can read profiler files and

provides an interactive environment where the programmer can zoom into parts of the

program to better analyze its behavior.
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The remaining sections use the concept of a program trace to illustrate the

programming constructs of TIDeFlow.
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Chapter 6

TIDEFLOW PROGRAMMING PRACTICES

The ability to effectively express a parallel program remains an elusive art.

Several decades where the predominant paradigm was serial programming has greatly

influenced the field of computer engineering.

Many features in programming languages and parallel architecture are the legacy

of serial paradigms. For example, automatic data caches arose as a way to automat-

ically improve the performance of serial programs. However, automatic data caches

do not necessarily improve the performance of parallel programs, and in some cases,

it decreases its performance when false sharing is present [110]. The use of pointers

and global variables are a powerful way to use serial programs, but they result in race

conditions when applied to parallel programs. Compiler optimizations that reorder in-

structions may provide excellent performance advantages for serial programs, but they

may cause incorrect results in parallel programs.

The field of computer engineering faces a legacy of serial execution in an en-

vironment where parallel execution is required. This new environment needs a viable

approach to parallel programming if it is to be used. Although some approaches to par-

allel programming have been undertaken (described in Chapter 2), no single approach

has so far been able to address all the issues currently faced by parallel programming.

An excellent example of the challenges in parallel programming is the example

of Garcia’s implementation of Matrix Multiply [46, 44, 50, 47].

The matrix multiplication program developed by Garcia had as one of its pri-

mary objectives the demonstration of the capabilities of manycore architectures to
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execute HPC programs. Garcia’s efforts were directed toward achieving an implemen-

tation of a matrix multiplication library that would reach a performance close to the

peak performance of the machine.

Garcia’s task with matrix multiplication, although seemingly simple, was in re-

ality a very difficult task. More than a year passed from the moment Garcia undertook

his enterprise to the moment the results were published. The task of implementing

matrix multiply was difficult because it required development of specialized kernels for

the computation and the communication as well as new techniques for synchronization

and scheduling of tasks.

Although the unavoidable task of developing specialized, assembly-written ker-

nels for the computation tasks did require a significant amount of time, the synchro-

nization and scheduling of tasks also consumed a significant amount of time and effort.

Garcia approached the problem of synchronization and scheduling first through

the use of traditional parallel programming constructs. In particular, he attempted to

use the TNT [31] library, a low-overhead, thread-management library very similar to

pThreads. Despite the low overhead and the easy-to-use interface of TNT, it ultimately

proved inadequate for the task. The inadequacy of TNT was partially due to the

fact that it was designed to handle traditional fork-join approaches in coarse-grain

programs. It quickly became apparent that a dataflow-like approach was needed to

handle the available parallelism.

Garcia had to overcome several issues: The inadequacy of TNT to represent

producer-consumer scenarios, the high overhead of TNT and the inability of TNT to

manage resources. At the end, Garcia opted for having custom-designed mechanisms

for synchronization, scheduling and resource management.

Synchronization was the first issue tackled by Garcia. Instead of using the

TNT library primitives for synchronization, Garcia used –with success– an active-wait

approach where atomic operations and a global variable was used for synchronization.

The results allowed speedy synchronization with low overhead.

Scheduling and resource management were a significantly harder issue to tackle.
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Right from the beginning of the optimization process, it became apparent that overlap-

ping of communication and computation was necessary to achieve good performance.

Furthermore, the different communication operations had to be orchestrated carefully

because there was not available memory bandwidth to have more than 8 copying pro-

cessors working at the same time.

Garcia’s solution to the scheduling and resource management problem was to

use counters to represent the tasks and to statically allocate resources to processors

at different points in the program. These results proved effective but they required

months of hard work and intense profiling.

To aid in the development of TIDeFlow, a careful study of Garcia’s approaches

with matrix multiply [46, 50, 44, 47] revealed many interesting issues in program de-

velopment for manycore architectures.
The study confirms that successfully writing a high-performance program for a

manycore architecture requires:

• a profiler able to produce program traces,

• a programming model with native support for parallel loops,

• constructs for complex producer-consumer relationships as well as data or re-
source dependencies,

• a priority system that enables the runtime system to select between tasks in the
critical path and other, less important tasks and

• a mechanism for composability, where parallel constructs can be reused.

The TIDeFlow programming interface and the TIDeFlow runtime system pro-

vide mechanisms to address each one of those necessities.

The following sections present a detailed description of how each one of the

necessities of efficient programming for manycore architectures was addressed along

with a presentation of the interface provided to the user.

Experiments showing that TIDeFlow’s constructs have very low overhead are

shown as well.

At the end of this chapter, a summary of the features and their usability is

presented.
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A NA

B 1

The basic time loop construct. A is executed repeatedly. B controls the termination
condition.

Figure 6.1: Time loop construct.

do{
parallel loop A;

} while( B() == CONTINUE );

A pseudocode equivalent of the program of Figure 6.1. Parallel loop A is executed
repeatedly. Actor B controls the termination of execution. Time instance variable not
shown.

Figure 6.2: Serial code for a time loop.

This section presents common program constructs used by TIDeFlow programs.

6.1 Time Loop

The objective of the time loop is to execute a part of a program repeatedly. The

time loop is usually found in tiled applications or in simulations of physical phenomena

where time is advanced.

Figure 6.1 shows the basic construct. The actor A will be executed repeatedly,

and the termination condition will be controlled by actor B.

The program of Figure 6.1 holds an analogy to the program of Figure 6.2.

The basic time loop construct can be expanded to include more than just the

actor A in the loop. A more complicated TIDeFlow graph where all the arcs have a
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L1 N1 L2 N1

Construct for memory bandwidth allocation. The dependency from memory copy actor
L1 to memory copy actor L2 guarantees ordering between L1 and L2. The single token
in the dependency loop between L1 and L2 ensures that at most one of the actors is
enabled at any given time. The effect is mutual exclusion between L1 and L2.

Figure 6.3: Mutual exclusion construct.

weight of zero, plus a backwards arc with a weight of 1 will result in more powerful

time loops.

6.2 Bandwidth Allocation Between Loaders

Resource management in manycore architectures is of paramount importance

to achieve high performance and low power execution.

The main construct to manage a resource, such as bandwidth, is to create a

predefined order between them, as shown by Figure 6.3. The behavior achieved by the

construct is mutual exclusion between L1 and L2. The computation actors, C1, C2

are shown to illustrate how to place other actors that may make use of the data loaded.

A backedge completing a time loop is not shown in the figure, but is also common in

programs that use this construct.

6.3 Restraining Execution Speed to Enforce Pipelining

There are some situations in which actors can fire repeatedly because they have

no input dependencies or because their dependencies are produced quickly. However,
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f2 N2f1 N1

f1's speed unrestricted by 

f2's speed.

f2 N2f1 N1

Execution of f1 is resticted to 

be within 2 iterations of f2

The figure shows an example of how to enforce pipelining with the addition of a
backedge. The addition of the backedge restricts the execution of f1 to remain within
two time instances of f2.

Figure 6.4: Construct to bound the relative execution of two actors.

there may be other slow actors that depend on the fast actor who are unable to match

the faster rate of computation.

The problem in this situation, shown in the left of Figure 6.4, is that the com-

putation will not settle into a pipelined execution, and it can result in poor utilization

of resources such as memory bandwidth.

Fortunately, the computation progress of a fast actor can be constrained to be

within a certain range of the progress of the slow actor with the addition of backedges.

In the example of Figure 6.4, a backedge has been added (with two tokens) to ensure

that the computation of f1 remains within two time instances of the computation of

f2.

The addition of the backedge is a powerful tool to restrain the execution speed

of certain actors, allowing the pipelined execution.
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Chapter 7

EXAMPLES

This section presents the case of several programs where TIDeFlow has been

used successfully to describe and execute programs for manycore architectures.

In all cases, the programs were developed for C64. Results, where available, are

provided for each one of them.

7.1 Matrix Multiplication

The TIDeFlow implementation of Matrix Multiplication leveraged on the pre-

vious work by Garcia [46, 50]. The program developed used Garcia’s highly optimized

codelets, but replaced all the communication, synchronization and task management

with TIDeFlow operations.

The program used for Matrix Multiply is shown in Figure 7.1. Several features

are of interest:

• The program uses typical loop constructs such as the ones presented in Section
6.1,

• The program is modular. Extensive reuse of modules has been used.

• Although mutual exclusion is not specified between the loader elements in the
program, at runtime, the sequence of operations naturally falls back to a pipeline
of events as evidenced by the trace shown in Figure 7.2.

Execution of Matrix Multiply on C64 has resulted in a performance of 53

GFLOPS, out of 80 GFLOPS possible.

The experiment with Matrix Multiply is successful since it achieved a reasonably

high performance with very little programming effort.
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Conventions

Matrix Multiply

f0 N0

Initialization

f4 N4
Use Result

Buffer 1

(For Double Buffering)

f3 N3Offload

Tile Computation

f1 N1 f2 N2

Load Compute

Buffer 2

(For Double Buffering)

f3 N3Offload

Tile Computation

f1 N1 f2 N2

Load Compute

f1: LoadTile

f2: ComputeTile

f3: MoveBlock

f4: EndTimer

f0: InitBlock

N1: 8

N2: 1024

N3: 8

N4: 1

N0: 8

Figure 7.1: Example of a matrix multiplication program graph.

7.2 Reverse Time Migration

Reverse Time Migration [14] was interesting in its development due to its simple

naive implementation and the many transformations required to optimize it.

The naive version of Reverse Time Migration is memory bound. Each floating

point operation requires, approximately, one operand from DRAM memory. DRAM

memory operations are the bottleneck because there are 80 floating point units but

only 4 DRAM memory banks.

Data locality in the program was improved through a series of code transforma-

tions. Diamond Tiling was used at the outermost level [81, 82, 83], Skewed Tiling was

used at the on-chip memory level, and register tiling was also used.
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Figure 7.2: Execution trace of matrix multiplication.

To achieve proper pipelining, overlapping of communication and computation

was done through the use of two buffers. Additional dependencies were used to limit

the amount of parallelism that was exploited, and backedges were added to avoid

overwriting of buffers.

The resulting RTM program (Figure 7.3) failed to approach peak performance

in C64 due to the lack of highly specialized codelets to perform the computation.

However, the experiment with RTM is a success in terms of the usability of TIDeFlow

and its advantages for parallelism and task management.
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ConventionsReverse Time Migration

Computation Kernel

f2 1

f3 N1

f4 8

f1 8

f2 1

f3 N1

f4 8

f1 8

f6 1

Termination

Control

f5 8Initialization
f1: Load

f2: IncreaseIterator

f3: Compute

f4: Store

f5: InitTile

f6: NextIteration

N1: 100

Figure 7.3: TIDeFlow program for Reverse Time Migration.
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Figure 7.4: Execution trace of Reverse Time Migration.
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Chapter 8

CONCLUSIONS

This thesis presented the TIDeFlow model and its implementation. TIDeFlow

is a parallel execution model designed to express and execute HPC programs.
The contributions of this work are:

1. The description of a new execution model that extends the dataflow model of
computation, including:

• the proposition that parallel loops can be natively represented as single
actors using weighted nodes,

• the idea that loop carried dependencies can be represented as weighted arcs
and

• the ability to express task pipelining and overlapping of communication and
computation.

2. The advancement of the idea of intrinsic throughput of algorithms, including

• a systematic way to analyze the throughput of algorithms,

• evidence supporting the importance of throughput for the scalability of par-
allel programs,

• the development of several high-throughput algorithms that are useful to
construct runtime systems and other highly parallel programs and

• an analysis showing that algorithm properties such as the nonblocking prop-
erty do no contribute to make an algorithm scalable or fast.

3. The implementation of the TIDeFlow system including

• a design for decentralized control, where no one processor or thread is re-
sponsible for task management,

• the development of a technique for representation of TIDeFlow programs
that allows distributed execution of dataflow programs and

• the development of a complete toolchain, including a compiler, a program-
ming interface and a program launcher.
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In this thesis, the TIDeFlow model has been formally defined: the operational

semantics of execution have been described as Finite State Machines, a brief discussion

of the memory model was presented, and the method by which to use weighted arcs to

express loop carried dependencies has been described.

The experience of implementing the runtime system and executing the exper-

iments shows that TIDeFlow is an effective way to develop and execute parallel pro-

grams. The advantages of using graphs to express parallelism were shown. They

represent an improvement over the traditional synchronization primitives used in se-

rial programs. It was also shown that TIDeFlow provides very good scalability and low

overhead, partly due to its distributed runtime system and the new algorithms that

have been developed for it.

Developing the programs presented in this thesis revealed good characteristics

offered by TIDeFlow: (1) it was easy to express double buffering through reusing parts

of the program and using a weighted arc to indicate a time dependency between the

loader stages, in the fashion presented in Figure 6.3 (2) the dependencies expressed

through weighted arcs resulted in good task pipelining during execution, (3) it was

easier to express the dependencies through a graph rather than through other direct

means such as conditional variables or MPI processes and (4) load balancing was done

automatically by the runtime system. Those reasons demonstrate that TIDeFlow is a

good choice for execution and development of HPC programs in manycore architectures.

This thesis also developed the concept of intrinsic throughput of algorithms,

which was used to develop the CB-Queue and the HT-Queue in Chapter 4. Both algo-

rithms have a large throughput and low latency. TIDeFlow, and in general, dataflow

runtime systems and operating systems can benefit from the CB-Queue implementa-

tion. The HT-Queue serves as a viable replacement for traditional queues because it

matches their functionality, and it exhibits excellent throughput and low latency.

The CB-Queue and the HT-Queue have been shown to have exceptional perfor-

mance due to their very high throughput and very low latency. High throughput is a

result of executing the critical parts of the queue operations in memory through the use
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of atomic instructions as opposed to attempting inquire-then-update operations that

are common to other implementations. The difference is important: An in-memory

operation can complete in very few cycles, allowing more requests to be completed per

unit of time than a read-modify-write approach, where at the very least, a roundtrip

to memory plus some processor involvement is required for every access to the queue.
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Chapter 9

FUTURE WORK

The work presented in this thesis made important advances to the execution

of programs in manycore systems. Unfortunately, the work with TIDeFlow is by no

means a silver bullet that solves all the problems currently faced by the field.

Not all problems of parallel execution have been addressed. In particular, im-

portant issues such as energy optimization and resiliency have not been addressed by

this thesis, and in general, a satisfactory solution has not been found.

Additionally, the techniques and theories for the TIDeFlow model can be further

improved in functionality and scope. Specifically, further research on throughput will

be profitable, and further improvement of the TIDeFlow runtime system will allow a

more flexible way to express programs.

The following sections describe possible research directions that will address

some of the open questions that remain, or that will improve the current tools for

parallel execution.

9.1 Open Questions

Resiliency to failure of individual processors in large systems is an important

question that remains open. The traditional methods for resiliency that rely on global

partitioning and synchronization of programs are not fast enough to be used with

systems with millions of processor cores. The current concept of global partitioning

and synchronization is also unsuited for dataflow-style of computations like TIDeFlow.

How to effectively execute dataflow-like programs in a resilient way is still an

open question. The current approach to resiliency, where a global synchronization

operation is followed by a global checkpoint, will not work because failures in exascale
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supercomputer systems will happen more frequently than global checkpoints can be

saved [64].

Several major accomplishments will have to be achieved. First, a technique

for local checkpoints will have to be developed, in which checkpoints are done on the

local state of a processor and not on the machine as a whole. Second, new local work

sharing and redundant policies will have to be implemented to detect and recover from

local failures. Third, resiliency techniques will have to decrease their dependence on

hard drive systems and permanent storage because of its low bandwidth. Finally, a

theoretical model for resiliency aimed at dataflow programs needs to be developed,

since most current resiliency approaches assume that the computation uses message

passing techniques such as MPI.

How to reduce the total energy required to execute a program is another impor-

tant open problem in high performance computing. Current trends in power usage by

supercomputers [17] suggest that the power required to run computers in the exascale

era will be on the order of one gigawatt. Unfortunately, this amount of power is not

practically obtainable due to its cost and the difficulty in obtaining it. New techniques

will have to be developed to reduce the power used by processors, possibly through a

combination of processors that are more power-efficient and algorithms that optimize

energy consumption rather than computational performance.

Future execution models will need to include energy consumption as part of the

optimization operations to be performed. Several changes will need to be made. Run-

time systems and schedulers will need to be aware of the costs of executing particular

operations, and they will need to orchestrate computations in a way that minimizes

energy consumption. Programming models might be changed to support annotation of

power-intensive operations, such as memory movement. Overall, the execution model

used must provide mechanisms that support the optimization of energy rather than

the optimization of computational speed.

The relationship between resource management and synchronization remains

an open question. There is an ongoing dilemma on whether or not to have resource
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management and synchronization be separate problems. This thesis took the path of

separating resource management and synchronization into different processes. How-

ever, an open question remains: Is this the best approach? Can, and should, they be

performed together? The approach of separating resource management and synchro-

nization have worked appropriately for a single manycore architecture. However, it

remains to be seen if such an approach will work for larger systems.

9.2 Improvements to Current Techniques

The throughput theory advanced in Chapter 4 provided the analytical founda-

tion to find the maximum rate at which parallel operations can be executed. Unfor-

tunately, the exposition of Chapter 4 is currently limited to analyze simple parallel

operations, and it has only been tested for one particular kind of processor. Never-

theless, future work on throughput is likely to provide good payoffs that will serve

to understand throughput for arbitrary architectures and its relationship to parallel

programs.

One of the possible future research directions is exploring the relationships be-

tween throughput and algorithm latencies. Although some initial progress was accom-

plished by this thesis, a comprehensive theoretical model that relates throughput to

other parameters in the system is still lacking.

Fully understanding the relationship between throughput and parallel execution

will likely require a good statistical characterization of parallel programs, either as a

whole or individually. This characterization may describe the statistical behavior of

the scheduler, the speed of the synchronization operations, the average number of tasks

that are enabled per unit of time and so on. Identifying which ones are the relevant

parameters is a research question in itself.

The throughput experiments must be extended to include other architectures

beyond Cyclops-64. So far the theoretical models for throughput have matched the

experimental evidence found for Cyclops-64. However, it is still important to evaluate
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the validity of the throughput idea in other architectures to see if it is still able to

predict the rate of computation of parallel programs.
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[12] Rajkishore Barik, Zoran Budimlić, Vincent Cave, Sanjay Chatterjee, Yi Guo,
David Peixotto, Raghavan Raman, Jun Shirako, Saugnak Tacsirlar, Yonghong
Yan, Yisheng Zhao, and Vivek Sarkar. The habanero multicore software research
project. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications,
pages 735–736, New York, NY, USA, 2009. ACM.

[13] Rajkishore Barik, Zoran Budimlic, Vincent Cave, Sanjay Chatterjee, Yi Guo,
David Peixotto, Raghavan Raman, Jun Shirako, Sagnak Tasirlar, Yonghong Yan,
Yisheng Zhao, and Vivek Sarkar. The habanero multicore software research
project. In Proceeding of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, OOPSLA ’09,
pages 735–736, New York, NY, USA, 2009. ACM.

[14] Edip Baysal, Dan D. Kosloff, and John W. C. Sherwood. Reverse time migration.
Geophysics, 48, 1983.

[15] R.D. Blumofe and C.E. Leiserson. Space-efficient scheduling of multithreaded
computations. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing, pages 362–371. ACM, 1993.

[16] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by
work stealing. In Foundations of Computer Science, 1994 Proceedings., 35th
Annual Symposium on, pages 356–368. IEEE, 1994.

[17] Shekhar Borkar. Major challenges to achieve exascale performance. In Salishan
Conference on High-Speed Computing, 2009.
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