REGISTER STACK
AND OPTIMAL ALLOCATION INSTRUCTION
PLACEMENT

by
Alban Douillet

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Computer
Sciences

Spring 2001

(© 2001 Alban Douillet
All Rights Reserved

REGISTER STACK
AND OPTIMAL ALLOCATION INSTRUCTION
PLACEMENT

by
Alban Douillet

Approved:

Guang R. Gao, Ph.D.

Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Jose Nelson Amaral, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Sandra M. Carberry, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:

Conrado M. Gempesaw II, Ph.D.
Vice Provost for Academic and International Programs

ACKNOWLEDGMENTS

First I thank my advisor, professor Guang R. Gao for his unconditional sup-
port. Since my first day in his lab, he helped me in every aspect of my student life
and enlightened me in wide variety of areas. His high expectations always forced to
get the best of myself.

My co-advisor, professor Jose Nelson Amaral, was always there when I needed
him. His patience and his quick and very clear answers to my questions were of great
help during my studies. I feel lucky to have been able to work with professor Amaral,
who showed dedication and passion for his work.

I thank Gerolf Hoflehner and Jim Pierce, from Intel Corporation, who pro-
vided me with the subject of the thesis. They and the entire Intel TA-64 compiler
team were always full of insight advice. I greatly appreciated the discussions with
everyone of them. Their kindness and patience will always be remembered.

The thesis could not have been written without the right environment. I
sincerely thank all my labmates Thomas Geiger, Mark Butala, Chris Morrone, Rishi
Kumar, Hongbo Yang, Mark Legutko, Andres Marquez, Adalberto Castelo, Chuan
Sheng, Shreedhar Sampath, Juan Cuvillo, Fransisco Useche, Rishi Kahn, Kevin
Theobald. I will always remember the intense discussions we had at lunch and our
passionate games at night.

I would like to thank Andrea Michels for her patience and her kindness during
the entire writing of the thesis.

Finally I wish to thank my parents Marysette and Jean-Patrick for their

unwavering support and love, despite the distance. They always approved any of

il

my choices, even when it was hard for them. Thanks for being the best parents I

could have ever dreamed of.

v

DEDICATION

To my parents and my brother.

TABLE OF CONTENTS

vi

LIST OF FIGURES

vil

ABSTRACT

Power consumption and execution speed are two of the most studied charac-
teristics of modern processors. Optimizing the use of registers in a processor, a task
known as register allocation, can increase he speed of execution of a program while
reducing the power consumption. A new technique for register allocation is the use
of a register stack managed by a register stack engine as implemented in the [A-64
architecture. After the compiler assigns registers to the variables of a procedure,
the number of registers used must be allocated through a specific instruction: the
allocation instruction.

We consider the optimal allocation instruction placement (OAIP) problem:
Given a control-flow graph G for a procedure P and a register assignment for the
variables of P, insert the minimum number of allocation instructions in the procedure
P in such a way that, for every path in G, the number of registers allocated is
minimum.

This thesis makes the following contributions for the solution of the OAIP

problem:

e we present a formulation for the OAIP problem considering a register stack

architecture with an idealized allocation instruction;

e we demonstrate that inefficiencies in the allocation of registers in the stack
inducing an unnecessary growth of the register stack are caused by (1) registers
allocated in a caller function that are unused while a callee function is being
executed, and by (2) the allocation of extra registers for a control path that

is not taken at runtime.

viil

e we develop a linear time algorithm, MATA (Minimum Allocation Instruction
Algorithm), that addresses the OAIP problem. MAIA minimizes the num-
ber of registers allocated in each control path of the control-flow path. We

conjecture that MAIA uses the minimum number of allocation instructions.

e we present different optimizations to apply to MAIA in order to accelerate
the execution speed of the code generated. The optimizations consider the
cost, of the allocation instruction, the redundant calls to the same allocation

instruction and the profiling information.

e we adapt MAIA to take into consideration the architectural features of a ma-
chine with stack registers, the Intel TA-64, including the interference between
the allocation instructions, the rotating registers, and predicated execution of

code.

X

Chapter 1

INTRODUCTION

1.1 Background

The two main features of modern processors are power consumption and ex-
ecution speed. Most of the time, these characteristics are closely related. Execution
speed requires power, and a decrease of the power consumption induces a decrease
of the execution speed.

However there are some compiler optimizations that can improve both fea-
tures at the same time. The register allocation, i.e. the process of assigning physical
registers to variables in the source code, is a compiler optimization that can reduce
power consumption and increase the execution speed of programs. Registers use a
large area of the processor chip and therefore significantly contribute to the power
consumption of the entire processor.

A smart register allocation uses less registers and consequently requires less
power. At the same time, only the most accessed variables of programs are stored
in registers, reducing memory traffic and increasing the execution speed of the pro-
grams.

Most modern architectures use a small bank of static registers visible to
the user and a large bank of hidden registers dedicated to register renaming. For
instance, the Intel Pentium Pro processors provides the user with 8 visible static
registers while 40 hidden registers are used for register renaming. The static registers

are few and need to be saved or restored at every function call. The registers used

by the register renaming are very expensive and are known to contribute for a
significant part of the power consumption and the area of processor chips.

A newly defined architecture, the IA-64 architecture from Intel, uses a differ-
ent mechanism to manage the registers. For the [tanium processor, besides the 32
static registers, the new architecture provides the user with a stack of 96 registers.
The stacked registers are automatically spilled and restored by the hardware when
the program needs more registers than currently available on the stack. The stack
uses a smaller area of the processor chip while being more flexible than the registers
used for register renaming.

The compiler does not need to spill or restore the stacked registers. These
registers can be directly accessed with only one condition: the registers have to
be allocated on the stack first. Because there is no need for spilling and restoring
instructions, the source code is shorter and faster to execute. Since the area of the
register stack on the die chip is smaller than for an equivalent set of hidden registers,

the power consumption is also expected to be reduced.

1.2 Problem Statement

Even though the use of a register stack simplifies the compiler task, there is
one challenge left: how to decide when and where to allocate the stacked registers.
We assume that the register assignment already occurred. We now need to insert
a specific instruction, the allocation instruction, in the source code to make sure
that the stacked registers are allocated when accessed by the program. At the same
time, we want to insert the minimum number of allocation instructions. Inserting
too many allocation instructions would significantly decrease the execution speed
of the program. Also we do not want to allocate more stacked registers than the
number effectively needed.

The problem, named as the optimal allocation instruction placement (OAIP)

problem, can be formulated in the following way: Given a control-flow graph G for

a procedure P and a register assignment for the variables of P, insert the minimum
number of allocation instructions in the procedure P in such a way that, for every
path in G, the number of registers allocated is minimum.

A method to solve the OAIP problem is said to be optimal if it inserts
the minimum number of allocation instructions while allocating the exact number
of stacked registers needed for every control path in the control-flow graph. The
optimality of a method only concerns the static number of allocation instructions
inserted in the code. We do not try to minimize the number of calls to the allocation
instructions at run-time. We consider the static optimization, not the dynamic

optimization.

1.3 Contributions

In this dissertation, we show the relationship between the global size of the
register stack and the OAIP problem. Solving the OAIP problem consists in reducing
the size of the stack. We identify the two components responsible for the useless
growth of the register stack: function calls and overestimation of the stack register
requirement.

Then we propose three different non-optimal straightforward methods to
solve the OAIP problems. The methods only ensure either that the register al-
location is respected, or that the minimum number of allocation instructions is
used, but not both.

A linear time algorithm is presented, commented and conjectured to provide
an optimal solution to the OAIP problem. Optimizations are proposed to take
into account practical problems such as dynamic flows of execution, the cost of
the allocation instruction of frequency of execution information. The influence of
specific features of the IA-64 architecture, such as the use of predication and rotating
registers, in our algorithm are studied in Chapter ??. Specific problems related to

the TA-64 architecture like predication and rotating registers are also studied.

1.4 Related Work

To the best of our knowledge, the register stack concept is only used in the
SPARC architecture [?]. A stack of registers is available to the user. However the
number of registers allocated in a register window for each function is fix and the
compiler has no control over the size of the windows. Each function has access to
only one window.

The TA-64 architecture, while using the idea of overlapping register windows,
chose a variable size register window where the size can be reconfigured on the fly.
As a consequence, a specific instruction is needed to allocate registers in the register
window: the allocation instruction.

The insertion of allocation instructions to allocate registers before they are
used has not been studied before. David Wall studied the use of register windows
but did not windows [?][?] but did not introduce an algorithm to allocate registers
in the windows [?, ?]. He windows. He focused on the study of miss ratios, not on

the efficiency of the allocation insertion algorithm.

1.5 Synopsis

The next chapter presents the register stack and the allocation instruction.
The Chapter ?? introduces the three non-optimal straightforward algorithms, while
Chapter 7?7 introduces MAIA, Minimum Allocation Instruction Algorithm, a linear
supposedly optimal algorithm. Chapter 7?7 deals with practical optimizations for
MATA. Problems specifically related to the IA-64 architecture are considered in
Chapter ??7. Chapter 7?7 exposes some open problems that need to be solved or

studied.

Chapter 2

DESCRIPTION OF THE REGISTER STACK

2.1 The Register Stack

The register stack is a pool of registers managed as a stack. The number
of registers in the pool (Ry) is fixed and assumed to be implemented in hardware.
Therefore the size of the stack is bounded.

The register stack is managed as a standard system stack, with frames and
frame pointers. Each function has its own register stack frame and a set of frame
pointers. We assume that the hardware transparently takes care of managing frames
and frame pointers, since both are of no direct interest for the OAIP problem.

The current active function can only access the registers in its own frame.
The registers from other frames, and consequently from other functions, are not
visible. Within a frame, the registers are partitioned in three groups: the incoming
registers, the local registers and the outgoing registers. When the function is called,
the incoming registers contain the value of the parameters passed to the function.
By symmetry, the outgoing registers are used to pass values to the functions that
are going to be called. Therefore the outgoing registers of the caller function are
the incoming registers of the callee function. The frames of the caller and the callee
overlap over the incoming/outgoing registers of the callee/caller. The registers in the
frame that are not incoming registers or outgoing registers are called local registers.

When a function is called, a new register stack frame is created. The size

of the new frame is equal to the number of incoming registers. To simplify our

presentation, we assume that the hardware transparently allocate the size of the
new frame according to the number of incoming registers. If the program needs to
use any stack register, other than the incoming registers, it must explicitly allocate
these registers before their use.

On Figure 7?7, the function fool uses 30 stacked registers. Four of the reg-
isters are outgoing registers when calling foo2. foo2 can access incoming register
values thanks to the overlap between the two stack frames. foo2 uses 40 registers
total.

When the register stack is full and there is not enough available stacked
registers for the application, spilling of previous frames into memory occurs. Thus
each function can have access to at most R, stacked registers. When the function
exits, previous frames are restored if possible and visible again. The operations of
frame spill and restore are transparently executed by the hardware. They require
no explicit software intervention.

The creation of a new register stack frame is a register renaming operation.
Two functions referencing the same stacked register number are not necessarily
using the same physical register in the stack. The hardware maps the stacked
registers as seen by the function to the corresponding physical registers in the stack.
Assume that the first available register in the stack when the function issues an
allocation instruction is register Rg. Then the register R of the procedure is mapped
to the physical register Rg. The register R of the procedure will be mapped to
R(s4k)modry- The wrapping at the end of the physical stack works because functions
cannot allocate more than Ry registers.

The two functions fool and foo2 on Figure 7?7 use respectively 30 and 40
stacked registers. fool has no incoming registers, 4 outgoing registers and 26 local
registers. foo2 has no outgoing registers, 4 incoming registers and 36 local registers.

The 4 outgoing registers of fool overlaps with the 4 incoming registers of foo2.

physical registers

in the stack register stack frames
R67_ ____________________ _ \4 o
outgoing parameters f002 40 registers
rlto r40
R3L~"""""1 7 Bl iy ¥ 4 overlapping
R27, T B PR Y W 1 ,,,,,,, Q reglgas
30 registers
rltor30 fool
incoming parameters
RL__}__________) 4 __

Figure 2.1: Register Stack and Register Stack Frames.

Although fool and foo2 access the registers on the stack using the same stacked
register numbers, the mapping is different for the two functions. For instance, when
fool wants to read the value in r10, the physical register accessed is R10. But,
when foo2 wants to read the value in 10, the physical register accessed is R36.
Note that on Figure ?? R, has to be greater than 66.

The stacked registers are complementary to the usual static registers. Stacked
registers are only visible to the current function, need to be allocated and are restored
and spilled transparently by the hardware. Whereas static registers are fewer, are
shared by all the functions, are always available, need to be manually spilled and

restored following specific software convention rules (callee/caller saved for instance).

2.2 The Allocation Instruction
Since most of the operations on the register stack are hardware-controlled,
the software interface is reduced to only one instruction: the allocation instruction.

The instruction is used to specify the size of the current register stack frame.

alloc stack_frame_size

Figure 2.2: Syntax of the allocation instruction.

For the development of the base algorithm we will assume that the allocation
instruction, called alloc, has a single parameter, stack_frame_size, that specifies the
number of registers to be allocated in the current register stack frame. When mul-
tiple allocations are executed in the same procedure, every allocation overrides the
previous ones. Therefore an alloc 40 followed by an alloc 30 allocates 30 registers,
not 70, to the current stack frame (cf. Figure ??). The allocation instruction value

must be between 0 and Ry.

A framesize

70

foo: all oc 40

alloc 30

@

@
o ©) 40
fsl! I oc 70@ 20 @
return

® 8 @ ©) (®

@ » time
() assembly code (b) foo register stack frame size

Figure 2.3: Allocation instruction effects on the register stack.

In this paper, we assume that the allocation instruction is ideal, 7.e. the

instruction can be used at any time and does not interfere with other instructions.

The effects of the allocation instruction are instantaneous. We present some al-
gorithms using this ideal allocation instruction in Chapters 7?7 and ??. Then we

will consider a real allocation instruction as implemented in the IA-64 architecture

(Chapter 7).

2.3 The Cost of the Allocation Instruction

The register stack is managed by the hardware. Anytime there is not enough
registers to be allocated for the current function, registers already allocated by
previous functions are transparently spilled and available for other uses. Even if
the process of automatic spills and restores simplifies the work of the compiler by
avoiding the need to insert specific spill and restore instructions, we would like to
avoid expensive uses of the allocation instruction.

We may encounter the case where the spilling and restoring of stacked reg-
isters could be avoided. The compiler may have overestimated the stacked register
requirement and allocated too many registers. We need to identify the parameters
that influence the behavior of the register stack.

Since the allocation instruction is the only way for the compiler to commu-
nicate with the register stack, we only have to focus on this instruction.

As long as the stack is not filled, we assume the allocation instruction is
virtually costless. We can allocate and deallocate registers without any further con-
siderations. However, as soon as all the registers in the stack are in use and the
current function needs to allocate more stacked registers, we can expect some laten-
cies from the allocation instruction: the spill and restore operations might increase
the memory traffic and require the processor to stall. Our goal is to minimize the
occurrences of such situations.

Depending of the implementation of the allocation instruction, costs may
vary. To simplify, we represent the allocation instruction cost as an binary function.

The instruction has a cost of 0 as long as the total number of stacked registers in

use is less than the physical register stack size Rp. When the number of registers
exceeds Ry and spills of stacked registers is necessary, the allocation instruction has
an arbitrary cost of 1, no matter how many stacked registers are to be spilled. If
registers need to be restored, the allocation instruction is also considered as having
a cost of 1.

aloc instruction cost
\

7

= register stack size

Ry

Figure 2.4: Cost of the allocation instruction depending on the number of stacked
registers currently in use.

Therefore to reduce the cost of the allocation instruction, we need to limit
the size of the virtual register stack. We want to keep the virtual register stack size
below the physical register stack size value Rp. In other words, we want to minimize
the growth of the register stack.

However, since register allocation already occurred, the only way to limit
the growth of the register stack is to allocate only the registers needed and avoid
useless allocations that could cause spills and restores. We identify the two sources

of stacked register waste:

Overestimated allocation in the current routine We may want to allocate the
maximum number of stacked registers we might need. However if we actually
do not need the registers, because of a very specific control path in the control-
flow graph, the allocated registers are never used. We wasted the registers.
Note that once the registers have been allocated, deallocation is worthless
because the earlier overallocation already caused the stacked registers to be
spilled. Also, if all the registers allocated have been used at least once, then

10

there is no waste, even if later on only a subset of the allocated registers are
used.

Frozen allocation of the previous register stack frames Every function call
allocates a new register stack frame on the register stack. As a consequence,
all the registers allocated for the previous function are frozen, used or not.
In other words, a new register stack frame freezes the size of the previous
stack frame. We do not have access to the previous frames anymore. If some
registers allocated to previous functions were not used, they are wasted.

The two origins of stacked register waste are orthogonal.

stacked registers that the register fStack frame |7 register stack frame
will NEVER be used Sizelsnow frozen. of the function called

register stack frame I -

of the current routine.
theregister need is
unknown S S

unused registers still
allocated when the
function was called

— =

register stack frames
of previous routines
deeper in the call stack

(a) register dlocation (b) thereal register need (c) when afunction is called

Figure 2.5: The two origins of the growth of the virtual register stack.

On Figure 77, we observe the behavior of the register stack. In (a), the
current routine has already allocated registers in the register stack frame. Other
stack frames from previous functions in the call stack are allocated too. In (b), we
discover that we actually allocated too much because of a specific control path in
the control-flow graph. There are unused registers. The current register stack frame
and the virtual register stack size were not worth increasing that much. In (¢),

we now call another function. Unfortunately, at that point, we were using only a

11

small percentage of the registers allocated in the register stack frame. The unused
registers of the caller function are now wasted and cannot be deallocated from the
callee function. The function calls indirectly increased the size of the virtual register
stack.

In order to achieve optimality, an algorithm must address the two sources of
the stacked register waste: current registers in use and frozen register stack frame
size due to function calls. The classification in the next section will help to identify
which uses of the allocation instructions contributes to the growth of the register

stack.

2.4 Allocation Instruction Classification

The following classification of the allocation instruction is only based on the
position of the allocation instruction in the code and the status of the register stack
when the allocation instruction is called. There is only one allocation instruction,
but for a better understanding and for clearer explanations, some classification was

necessary.

2.4.1 Required Allocation Instruction

Except for the case when a routine does not need any stacked register, there
must be at least one allocation instruction at the beginning of each routine. The
instruction is the first allocation instruction to appear in the code of the routine.
We call it: required allocation instruction.

The required allocation instruction is necessary and is found in every routine.
The instruction is directly linked to the first type of stacked register waste: a bad

prediction, and the register stack frame size is increased too much.

12

2.4.2 Expanding Allocation Instruction

Every allocation instruction that increases the current register stack frame
size is called expanding allocation instruction. Note that the required allocation
instruction is not considered as so, because the current register stack frame has not
been allocated yet.

The expanding allocation instruction is directly linked to the first type of
stacked register waste: overestimation. The required and expanding allocation in-
structions are the only two types of allocation instruction that increase the register

stack frame size.

2.4.3 Shrinking Allocation Instruction

The opposite allocation instruction to the expanding allocation instruction
is called shrinking allocation instruction.

Note that the shrinking type allocation instruction is useless and ideally
should not appear in the code. Since the registers have already been allocated
to the current register stack frame, we do not gain anything into deallocating some
stacked registers.

The shrinking allocation instruction is not responsible for wasting stacked

registers. However, because the instruction is worthless, we would rather not use it.

2.4.4 Preallocation Instruction

In order to deallocate useless registers before calling another function, we
introduce an artificial shrinking allocation instruction called the preallocation in-
struction.

The preallocation instruction is necessary to reduce the number of unused
registers due to function calls and is used as a prevention against the second type

of wasted registers.

13

2.4.5 Postallocation Instruction

When a preallocation instruction is used, too few registers are now allocated
when the function returns. We need to reallocate the deallocated registers using a
specific expanding allocation instruction: the postallocation instruction.

The postallocation instruction is a necessary allocation instruction.

required alocation instruction BB1

Y alloc 10

A / preallocation instruction

alloc 30 alloc 5
call foo()

alloc 40

\/ \ postallocation instruction
B4

alloc 20

expanding allocation instructio

alloc50 | 50] alloc60 | 60] shrinking allocation instruction
BB7
A
alloc 20

Figure 2.6: Example of different types of allocation instructions.

On Figure 7?7, we can observe all the types of allocation instruction. The
alloc10 in BB1 is the first allocation in the control-flow graph and therefore is the
required minimum allocation instruction. The allocation instructions in BB2, BB5
and BB6 are expanding instructions because they increase the register stack size
compared to the parents of the basic block of the allocation instructions. The allo-
cation instructions on BB4 and BBT are shrinking allocation instructions because

they decrease the register stack size (compared to the parents in the control-flow

14

graph). The two allocation instructions in BB3 are preallocation and postallocation
instruction because alloc 5 has been inserted right before the function call and alloc
40 right after.

Note that the same allocation instruction can be a shrinking and an expand-
ing allocation instruction depending on which control path was taken to reach the

basic block that contains the instruction.

2.5 Notations

Let us consider a node A in a control-flow graph G.

e succ(A) is the set of direct successors of A in G. In Figure ??, succ(BB4) =

{BB5, BB6}.

e pred(A) is the set of direct predecessors of A in G. In Figure ??, pred(BB4) =
{BB2, BB3}.

e need(A) is the highest number of stacked registers alive at any point of the
basic block A. need(A) is the width of the fat point of the basic block A. In
Figure ??, need(BB3) = 40.

e alloc(A) is the value of the parameter of the allocation instruction in A. The
value can be greater but never less than need(A), except if the value is 0. If
alloc(A) = 0, then A does not have any allocation instruction. The stacked
registers of the basic block A have been allocated by a previous allocation

instruction in G. In Figure ??, alloc(BB4) = 20

In our examples, the basic block we are interested in will be called A. The
direct predecessors of A will be called P1, P2,... and direct successors S1, S2,...

The control-flow graphs are represented using large and small boxes. The
large boxes represent basic blocks. Only the allocation and the function call in-

structions are shown. The other instructions are hidden. The small boxes attached

15

to the basic block boxes contains the highest number of stacked register used by the
corresponding basic block (need(A)). In Figure 7?7, two allocation instructions and
one function calls appears in BB3. need(BB3) is equal to the parameter value of

one of the allocation instructions present in BB3.

2.6 Register Allocation Optimality

BB1| gloc60 |10]

by

BB2 &

BB3 20| BB4 40
call foo() :I

IRV

BB5 [30] BB6 60|

i

BB8 10|

Figure 2.7: Example of a non-RA optimal procedure.

We saw that the number of stacked register spills/restores is directly linked
to the size of the register stack. Consequently, we want to avoid useless register

allocations. We saw there were two types of such allocations: overestimation of

16

BB5

BB7

BB1| 4joc 10 [10]

BB2 dloc 20 &
BB3| gloc20 [20] BB4| gjoc40
call foo()

0]

aloc 30

ﬂ BB6

BB8

aloc 20
g
dloc 10 ﬂ

T N

aloc 60

Figure 2.8: Example of an RA optimal procedure.

the current register stack frame and frozen allocation in the previous register stack

frames.

Therefore, for the control-flow graph and a register assignment of a given
procedure P, the number of stacked registers allocated for the variables of P is
optimal if and only if the number of wasted stacked registers is minimized.

The number of wasted registers is minimized if and only if the two types
of useless allocations are minimized. The overestimation is minimized by a fine-
grain allocation (for any control path in the control-flow graph, we allocate the
exact number of registers needed). The frozen allocation is minimized by the use

of preallocation and postallocation instruction (we shrink the register stack frame

17

as much as possible just before any function call and restore the frame size to the

original value afterwards).

Definition 2.1 (RA Optimality) Given a control-flow graph G of a procedure P
and a register assignment for the variables of P, the number of stacked registers

allocated for the variables of P is minimized if and only if:

(i) for every control path in G, the minimum number of stacked registers is allo-

cated,

(i1) and for every function call in P, the current register stack frame is shrunk to

the minimum.

The procedure is then said to be Register Allocation (RA) optimal.

The first bullet of Definition 7?7 means that, given a specific control path
in G, we allocate exactly the maximum number of stacked registers needed at any
point of the execution of the control path.

The procedure, whose control-flow graph is represented on Figure 77, is not
RA optimal. For instance, if the flow of execution is composed of the basics blocks
BB1, BB2, BB3, BB5, BB7 and BBS, then we allocated 60 stacked registers and
used only 20. The first bullet of the RA optimality definition is not verified.

However, the same procedure with different allocation instructions repre-
sented on Figure 77 is RA optimal. Every allocation instruction ensures that, for
every control paths in the control-flow graph, we allocate only the number of stacked
registers needed along the path. For instance, the path BB1 —BB2— BB3— BB7—
B B8 requires only 20 stacked registers at most and only one 20 stacked registers are
allocated. Also the current register stack frame is shrunk to the minimum before
the only function call in BB4. Note that only allocation instructions and function

calls are shown in the basic blocks. The two conditions of Definition 77 are verified.

18

2.7 Optimal Allocation Instruction Placement

The Optimal Allocation Instruction Placement (OAIP) problem is formu-
lated in the following way: Given a control-flow graph G for a procedure P and a
register assignment for the variables of P, insert the minimum number of allocation
instructions in the procedure P in such a way that, for every path in G, the number
of registers allocated is minimum.

Part of the OAIP problem consists in solving the register allocation problem
described in the previous section. The second part consists in minimizing the num-
ber of allocation instructions used to achieve optimality for the register allocation

problem. Therefore we can define optimality for the OAIP problem.

Definition 2.2 (OAIP optimality) A procedure P is said to be OAIP optimal for

a given register assignment for the variables of P if the following conditions are true:
(i) Pis RA optimal and if

(i1) P uses the minimum number of allocation instructions to achieve (i).

The example described on Figure 77 is not OAIP optimal, although the RA
optimality is reached. The number of allocations used to achieve the RA optimality
is not minimum. For instance, the allocation instruction of BB3 could be removed
without any impact on the register allocation. The allocation instruction of BB2
already allocated the necessary stacked registers in the corresponding control path.
Figure 77 presents a OAIP optimal solution for the same procedure. There is only
one allocation per control path in the control-flow graph. No allocation instruction

can be removed without sacrificing the RA optimality.

19

BB1 dloc 20 E

by

BB2 E

BB3 20| BB4[4ioc40 [40]

dloc 5
call foo()
aloc 40

BBS dloc 30 ﬂ BB6 aloc 60 E

BB7 20
i
BBS 10|

Figure 2.9: Example of a OAIP optimal procedure.

20

Chapter 3

NON-OPTIMAL STRAIGHTFORWARD ALGORITHMS

We present three non-optimal straightforward algorithms for the OAIP prob-
lem that we will use as reference for MAIA presented in chapter ??7. The algorithms
presented in this chapter are important to understand the philosophy behind MATA.
The minimum requirement solution is the simplest solution we may think about. The
around-call shrinkage solution only deals with the stacked register waste caused by
frozen allocations. The brute-force solution minimizes the waste of stacked registers

but uses too many allocation instructions.

3.1 The Minimum Requirement Solution
3.1.1 Overview

The minimum requirement solution to the OAIP problem is straightforward.
We simply compute the maximum number of registers used anywhere in the function
and allocate that number on the first basic block executed. The value is computed by
examining every basic block requirement and taking the maximum. The allocation
instruction is the first instruction of the routine.

The solution is called minimum requirement solution because every function
requires at least one allocation instruction to allocate the stacked registers and
the minimum requirement solution inserts a single allocation instruction for every
function.

The minimum requirement solution is the implementation chosen for the TA-

64 architecture. The TA-64 allocation instruction has been designed to allocate

21

stacked registers once and for all for every function. However the allocation in-
struction has other uses and may appear more than once in the code (for rotating
registers in a loop for instance).

On Figure 77, we see that only one allocation instruction has been inserted.
The number of stacked registers allocated is equal to the highest basic block stacked
register requirement: 60 registers for BB6. For every control path in the control-
flow graph, there is always enough registers allocated on the stack. Note that more
registers could be allocated, but they would not be used in any of the control path,

and therefore would be wasted.

3.1.2 Optimality

The minimum requirement solution is obviously not OAIP optimal. The
minimum number of allocation instructions has been reached, but depending on
which control path of the control-flow graph is executed, we may allocate more
registers than needed: the RA optimality has not been achieved.

On Figure 77, if the flow of execution only follows the left branches e.g. the
basic blocks BB1, BB2, BB3, BB7 and BBS, then we have allocated an excess of

10 registers.

3.2 The Around Call Shrinkage Solution
3.2.1 Overview

The around call shrinkage of the stacked register frame directly prevents the
unused stacked registers allocation from freezing when a function call occurs (cf.
Chapter ??). Every time a function call appears in the code, we surround the
call instruction with a preallocation instruction and a postallocation instruction.
We use the preallocation instruction to shrink the current register stack frame to
the minimum by deallocating unused registers and the postallocation instruction to

reallocate the registers that had been deallocated by the preallocation instruction.

22

BB1

aloc 60

10]

BB3

BB2

20]

call foo()

e N

30] BB6 60]

BB8

il

10]

Figure 3.1: Minimum Requirement Example.

23

The around call shrinkage solution is based on the minimum requirement
solution. The required allocation instruction cannot be avoided.

In order to make the algorithm simpler, we want to have only one allocation
instruction per basic block. Therefore we may to split existing basic blocks into
several basic blocks. For instance, a basic block with 3 allocation instructions will
be split into a linear chain of 3 basic blocks. The split will occur right before
each allocation instruction. Thus the allocation instructions are always the first
instructions on the basic blocks. The split is necessary for MAIA presented in
Chapter 77?.

On Figure 7?7, we look for the function calls in the control-flow graph. Then
we insert the preallocation and postallocation instructions in B B4 and split the basic
block into two blocks BB4a and BB4b. The preallocation instruction is the first
allocation of BB4a. The postallocation is the first instruction of BB4b. The value
of the preallocation instruction is the number of greatest stacked registers currently
in use when the function call occurs (here 5). The postallocation instruction value
is the number of stacked registers allocated before the corresponding preallocation

instruction (60).

3.2.2 Optimality

Only the second hypothesis of the RA optimality definition Definition ?7)
is fulfilled. The around call shrinkage solution does not ensure that the minimum
number of stacked registers is allocated for every control path in the control-flow
graph. The around call shrinkage solution is not RA optimal, and therefore cannot
be OAIP optimal.

For instance, the control path BB1-BB2-BB3-BB7-BB8 on Figure 7?7 uses
only 20 stacked registers maximum. But the required allocation instruction, the
only allocation instruction in the control path, allocates 60 stacked registers. The

around call shrinkage solution is not optimal.

24

BB1| alloc60 |10]

BB2 &

BB3 20| BB4al alloc5 [40]
call foo()

I

BB4b| alloc 60 |40]

BB5 [30] BB6 60|

BB7 20]
]
BB8 10|

Figure 3.2: Around Call Shrinkage Example.

25

We may note that the required allocation instruction could allocate only 40
registers and the postallocation instruction 60. Nevertheless, since the solution is
based on the minimum requirement solution, the around call shrinkage solution

cannot achieve such results without more advanced optimizations.

3.3 The Brute-Force Solution
3.3.1 Overview

The brute-force solution takes an opposite approach from the minimum re-
quirement solution. Instead of inserting the minimum number of allocation instruc-
tions, the brute-force solution inserts one allocation instruction per basic block. The
value of the allocation instruction is equal to the stacked register requirement of the
basic block. The solution is based on the around call shrinkage solution.

Because of existing preallocation and postallocation instructions from the
around call shrinkage solution, we split basic blocks to maintain one allocation
instruction per basic block. The first instruction of every basic block is always an
allocation instruction then.

On Figure 7?7, we consider each basic block of the control-flow graph. We
look at the register requirement and insert the corresponding allocation instruction.
The algorithm is linear.

Although the brute-force solution seems to be very inefficient, the solution is

used as a starting point for the MATA solution.

3.3.2 Optimality

The brute-force solution is not be OAIP optimal in general. The maximum
number of allocation instructions, one per basic block, is inserted. There may be
a different way to insert the allocation instructions that would use less instructions

while allocating the same number of stacked registers.

26

However the brute-force solution is RA optimal. We allocate the minimum
number of stacked registers needed by each basic block. We shrink or expand the
register stack frame only when necessary. The two conditions of the RA optimality
definition (Definition ?7) are fulfilled.

On Figure 7?7, we notice that we never allocate more stacked registers than
needed by every basic block. However the brute-force solution does not solve the
OAIP problem because the number of allocation instructions is not minimal. For
instance we could have removed the allocation instruction of BB8. The register

requirement of BBS is covered by the allocation instruction in BB7.

27

BB1| alloc 10 |10]
BB2| aloc20 |20]
BB3| aloc20 |20| BB4a| dloc 40 @
BB4b| alloc5 [40]
call foo()

BB4c| alloc40 |40
BB5[alloc 30 [30] BB6|[alloc60 |60]
BB7| aloc 20 [20]

g
BB8| aloc10 [10]

Figure 3.3: Brute Force Example.

28

Chapter 4

MATA, MINIMUM ALLOCATION INSTRUCTION
ALGORITHM

4.1 Problem statement

All the solutions presented in Chapter 7?7 do not give an optimal solution
to the OAIP problem. Either the number of allocation instructions is minimized
(Section ?7?), or the the number of stacked registers allocated is minimized (Sec-
tion ?7), but not both. The around call shrinkage solution (Section ??) is a simple
compromise and only considers one part of the problem: the register stack increase
due to function calls.

In this section, we present an algorithm that efficiently addresses the OAIP
problem: Given a control-flow graph G of a procedure P and a register assignment
for the variables of P, insert the minimum number of allocation instructions in the
procedure P in such a way that, for every path in G, the number of registers allo-
cated is minimum. Our solution is conjectured to be optimal in the sense that we
only allocate the stack registers that are needed for allocate for the stacked regis-
ters we need for a given control path while using a minimum number of allocation
instructions

Note that we assume that all the paths in the control-flow graph are equally
likely to be executed. Later we will introduce control-flow graphs with frequency of
execution information. Also we assume that there is no predicated instruction and

that the cost of the allocation instruction is ignored.

29

We also restrict to programs with reducible flow-graphs only [?]. Therefore
there are only natural loops and the edges of the control-flow graph can be par-
titioned into two groups: forward edges and back edges. From now on, we only
consider the forward edges. The control-flow graphs we consider are the actual
control-flow graphs from which we removed the back edges. The back edges and the

natural loops will be considered later.

4.2 Rule Definitions

The idea behind MAIA is to start with the brute-force solution (Section ?7?)
and to remove all the unnecessary allocation instructions. For every control path
in the control-flow graph, we want the register stack frame size to only increase
as the stacked register demand grows. We shrink the frame only before function
calls. Therefore the register allocation increases along every control path in the
control-flow graph. We use three rules to obtain an efficient allocation instruction
placement: the downward propagation rule, the upward propagation rule and the

reduction rule.

Definition 4.1 (Downward Propagation Rule) Given a basic block A and k =
Minp,cpred(ayalloc(P;). If alloc(A) < k then alloc(A) = k.

The downward propagation rule propagates downward the information of a
higher allocation value. Given a basic block B, if a dominant basic block of B has a
higher allocation value, then B will be informed. The downward propagation phase
acts a pre-pass to the two others rules. The downward propagation rule provides
allocation information to the basic blocks below in the control-flow graph for a finer
allocation instruction placement.

In Figure ?7(a) each basic block has an allocation instruction. The basic
block A has only one direct successor S and alloc(A) > alloc(S). Moreover all the

direct predecessors of S have an higher allocation value. In any case, when a flow

30

A laloc20 |[20] P |aloc30 |30] A laloc20 [20] P |aloc30 |30]

S[alloc10 [10] S[alloc20 [19]
(a) Before downward propagation (b) After downward propagation

Figure 4.1: Example of the downward propagation rule

of execution reaches S, at least 20 stacked registers will be allocated. Propagat-
ing downward the allocation instruction of A does not hurt the register allocation.
However the allocation instruction of P cannot be propagated downward to .S. Oth-
erwise, if the flow of execution comes from A to S, we would allocate more stacked

registers than required. The result of the propagation is shown on Figure ?7(b).

Definition 4.2 (Upward Propagation Rule) Given a basic block A, if, for ev-

ery direct predecessor P of A, all the following conditions are true:
(i) alloc(A) > alloc(P)
(ii) VS € succ(P), alloc(A) < alloc(S)

then alloc(P) = alloc(A), for every direct predecessor P of A.

Intuitively, the upward propagation rule considers that, since for any control
path starting from a predecessor of A we have to increase the register stack frame
size, we would better increase the size before the flow of execution reaches A and
maybe avoid the execution of some unnecessary allocation instructions. The allo-
cation instruction is not propagated upward if another parent B of A has a lower
allocation value. If a flow comes from B to A, the allocation instruction may be

needed.

31

Pl aloc10 [10] Pl alloc20 [10]

A [aloc20 [20] S [aloc30 [30] A [aloc20 [20] S [aloc30 [30]
(@) Before upward propagation (b) After upward propagation

Figure 4.2: Example of the upward propagation rule

In Figure ?7(a) each basic block has an allocation instruction. All the direct
successors of P have a higher allocation need. In Figure ??(b), the basic block A,
which has the minimum allocation needs among the direct successors of P, does
not need the allocation instruction anymore. The allocation instruction of A is
propagated to the basic block P, which now allocates 20 stacked registers instead

of 10. The redundant allocation instruction in A is removed by the reduction rule.

Definition 4.3 (Reduction Rule) Given a basic block A, if all the following con-

ditions are true:
(i) alloc(A) is not a preallocation instruction
(ii) for every direct predecessor P of A, alloc(P) > alloc(A)

then remove alloc(A).

On the other hand, the reduction rule considers that the registers have already
been allocated in the predecessors of A and do not need to be allocated again in A.
If all the direct predecessors of A have a higher allocation value, then the allocation
instruction of A is reduced.

In Figure ??(a) each basic block has an allocation instruction. All the direct
predecessors of S have a higher allocation need. Therefore S does not need the allo-

cation instruction. The registers have already been allocated. In Figure ?7(b), after

32

A laloc20 |[20] P |aloc30 |30] A laloc20 [20] P |aloc30 |30]

S[aloc10 [10] S 10]

(a) Before reduction (b) After reduction

Figure 4.3: Example of the reduction rule

reduction, the allocation instruction from S has been removed. The two allocation
instructions of A and S have been reduced to a single allocation instruction (we
assume that A was considered before P by the algorithm).

To complete the algorithm we have to consider the function calls. We saw in
Section ?7? that the function calls must be surrounded by two allocation instructions:
the preallocation instruction to shrink the register stack frame to the minimum num-
ber of registers necessary for the call and the postallocation instruction to reallocate
the deallocated registers.

The preallocation instruction cannot be avoided or removed. We do not want
to allocate more registers than the ones required for the function call. However
we may move the instruction earlier in the control-flow graph if possible. The
only condition that needs to be satisfied is that, when the control path reaches the
function call, only the necessary registers are allocated. Therefore the preallocation
cannot be reduced or be the recipient of a propagation.

In Figure 77, we can see that the reduction of preallocation instruction causes
20 registers to be allocated in basic block A before the function call, although only
5 registers were necessary in S.

The postallocation instruction must appear after the function call to reallo-
cate the registers that the preallocation instruction might have deallocated. There-

fore the postallocation instruction cannot be propagated across the function call.

33

Al alloc20 [20] aloc20 |20]
S| alocs |5 | 5 |
call foo() call foo()
aloc10 |10] aloc10 |10]

(a) Before reduction (b) After reduction

Figure 4.4: The preallocation instruction cannot be reduced.

Consequently we must forbid any propagation of the postallocation instruction.
However the instruction can be replaced by another allocation instruction that is
propagated. The replacing instruction is then declared as the new postallocation

instruction.

alocs |5 | dlocs |5 |

call foo() call foo()
Pl alloc30 [30] aloc50 [30]
Al aloc50 |50 aloc50 [50]

(a) Before propagation (b) After propagation

Figure 4.5: The postallocation cannot be propagated, but the allocation value can
be replaced by a propagated allocation instruction value.

In Figure 77, the postallocation instruction cannot be propagated in the place

of the preallocation instruction. The propagation would break the entire purpose of

34

these the preallocation and postallocation instructions. However the alloc 50 can
be propagated in place of the current postallocation instructions. the alloc 50 must
then be declared as a postallocation instruction in order not to be propagated across
the function call.

For the same reasons, a preallocation instruction cannot be downward prop-
agated. The instruction must appear before the function call. If the preallocation
instruction appears after the function call in the code, the all purpose of shrinking
the current stack frame before the call is broken.

Consequently the allocation instructions surrounding function calls have a
special status that could be marked with a flag. Also, the propagation and reduction
rules would apply only if the flags are correct. Which brings us to a revised version

of the definitions of the rules:

Definition 4.4 (Downward Propagation Rule) Given a basic block A and k =
minpiepred(A)alloc(Pi) such that the allocation instruction in P; is not a preallocation

instruction. If all the following conditions are true:
(i) alloc(A) is not a preallocation instruction
(ii) alloc(A) < k

then alloc(A) = k

Definition 4.5 (Revised Upward Propagation Rule) Given a basic block A,

if, for every direct predecessor P of A, all the following conditions are true:
(i) alloc(A) is not a postallocation instruction
(ii) alloc(A) > alloc(P)

(111) VS € succ(P), alloc(A) < alloc(S)

then alloc(P) = alloc(A), for every direct predecessor P of A.

35

Definition 4.6 (Revised Reduction Rule) Given a basic block A, if all the fol-

lowing conditions are true:
(i) alloc(A) is not a preallocation instruction
(i1) for every direct predecessor P of A, alloc(P) > alloc(A)

then remove alloc(A).

4.3 MAIA

MATA is a three-pass algorithm. The control-flow graph is traversed for
every transformation to be applied: the downward propagation rule, the upward

propagation rule and the reduction rule.

G = brute-force solution of the original CFG;

/* Downward propagation phase */
Traverse G top-down in topological order {
BB = current basic block;
if (downward propagation rule applies on BB) {
apply downward propagation rule on BB;

}

/* Upward propagation phase */
Traverse G bottom-up in reverse topological order {
BB = current basic block;
if (upward propagation rule applies on BB) {
apply up propagation rule on BBj;
X

/* Downward propagation phase */
Traverse G bottom-up in reverse topological order {
BB = current basic block;
if (reduction rule applies on BB) {
apply reduction rule on BB;

}

Figure 4.6: MATA

36

BB1| aloc20 |10
] flow 1: 20 registers
[] flow 2: 30 registers
+l O flow 3: 40 registers
BB2 20] E flow 4: 50 registers

BB3

aloc 30

BB7 E
g
BBS 10|

Figure 4.7: The different control paths and the allocation instructions inserted by
MATA. Note that the result is OAIP optimal.

37

Figure 77 shows a pseudo-code algorithm that uses the three rules. The
order in which the rules are applied is not arbitrary. The downward propagation
rule needs to be applied first to provide information about higher allocation value
earlier in the control-flow graph for the upward propagation rule. The reduction
rule uses the results of the upward propagation rule.

Note that “the rule applies” means that the revised definition hypothesis are
verified (Definitions ??, 7?7 and ?77).

The three rules are applied on the basic blocks of the control-flow graph,
traversed in topological order. The downward propagation rule traverses the control-
flow graph from the entry node to the exit node, while the two others rules start
from the exit node and end at the entry node.

On Figure 7?7, we show the different steps of the algorithm that ended up
with Figure ?7?7. The algorithm starts on Figure ?7(a).

The top-down downward propagation phase propagates only the allocation
instructions from BBT to BBS&. The allocation instruction in BB1, BB2 and BB3
are not propagated because Definition ?7?(iii) is not satisfied. The allocation instruc-
tion in BB4b is a preallocation instruction. Therefore, the allocation instruction of
BB4a and BB4b cannot satisfy Definition ?7(i) or (ii). The instruction of BB4c
cannot be propagated downward to BB6 because Definition ?7(iii) is not satisfied
or to BB5 because Definition ?7(iv) is not satisfied. Definition ?7?(iv) cannot be
satisfied for BB5 and the corresponding allocation instruction is not propagated.
Because BB8 has no child, there is no downward propagation. The end of the
downward propagation phase is shown on Figure ?7(b).

With the same reasoning and using Definition 7?7, we apply the bottom-up
upward propagation phase to the control-flow graph. Only one change is visible. The
allocation instruction of BB2 has been propagated to BB1. Some other allocation

instructions have been moved, but there is no change to the control flow-graph. For

38

BB1[aloc10 [10] BB1[aloc10 [10]
Al 5 il
BB2| alloc 20 [20] | BB2 alloc 20 [20]
; v ; : v
| BB3[aloc20 |20] BB4a[dloc40 [40] { | BB3[dloc20 [20]BB4a/ alloc40 [40]
BB4b[aloc5 [40] BB4b[aloc5 [40]
call foo() : call foo()
. 2 P . A
BB4c[alloc40 [40] P BB4c| alloc40 [40]
BB5[alloc30 [30] BB6[alloc60 [60] BB5[alloc30 [30] BB6[alloc60 [60]
BB7[alloc20 |20] | BB7[alloc 20 |20]
BB8[aloc 10 [10] BB8/ aloc 20 [10]
(@ (b)
BB1[alloc20 [10] BB1[alloc20 [10]
4 | v
BB2[aloc 20 [20] | BB2 [20]
; h 4 ! ' v
i BB3[dloc20 [20]BB4a[aloc40 [40] i i BB3 20| BB4a| aloc 40 [40]
BB4b[aloc5 |40 P BB4b[aloc5 |40
call foo() call foo()
BB4c[dloc40 |40] P BB4c[dloc40 |40]
BB5| aloc30 [30] BB6[alloc60 |60] BB5| alloc30 [30] BB6[alloc60 |60]
BB7[aloc 20 [20] BB7 [20]
BB8[aloc 20 [10] BB8 [10]
39
() (d)

Figure 4.8: Application of MAIA on an example.

instance, the instruction in BB3 has been moved to BB2, but since the allocation
value is the same, nothing happens. The resulting control-flow graph appears on
Figure ??(c).

We then apply the bottom-up reduction phase to the control-flow graph.
The allocation instruction of a basic block is removed if all the parents have a
higher allocation greater or equal to the basic block. The allocation instructions in
BB2, BB3, BB7T and BBS8 are reduced. The others instructions cannot be reduced
because at least one of the parent had a lower allocation value. Figure ??(d) shows

the final result.

4.4 Time Complexity

In this section we study the time complexity of MATA. We want to establish
the complexity in relation to the number of basic blocks in the control flow graph.
Thus we start by showing, in Lemma 7?7 a bound in the number of edges in the

original control flow graph.

Lemma 4.1 The number of edges in a control-flow graph is proportional to the

number of basic blocks.

Proof. Each edge is an outgoing edge from a basic block. A basic block can only
have at most two outgoing edges. Therefore there can at most be twice more edges

than basic blocks in a control-flow graph. O

Theorem 4.1 Assuming the number of parents of a given basic block is bounded by
a constant k, independent of the number of basic blocks in the control-flow graph,

MAIA s linear in the number of basic blocks in the original control-flow graph.

Proof. The algorithm has three phases: the downward propagation phase, the

upward propagation phase and the reduction phase.

40

The downward propagation rule visits the children and the parents of the
children of the current basic block. Since the number of parents for a given basic
block is bounded, the downward propagation rule visits 1 basic block, the children of
the basic block (2 maximum) and the parents of the children (k maximum per child).
At most, the rule visits 2k 4+ 3 basic blocks, where k is independent of the number
of basic blocks in the control-flow graph. Therefore, the downward propagation rule
can be applied in constant time.

The upward propagation rule visits the parents and the other child of every
parent if any. Visiting the parents is equivalent to following upward all the incoming
edges of a basic block. The edges of the control-flow graph are followed upward only
once. Because a basic block has at most two children, visiting the other child of
the parent requires that at most one edge be followed downward. Therefore, in the
worst case, the upward propagation rule visits each edge in the control-flow graph at
most three times. Using Lemma ?? we can conclude that the upward propagation
rule can be applied in linear time in the number of basic blocks.

The reduction rule visits only the parents of a basic block. With a reasoning
similar to the upward propagation rule, we show that the reduction phase is applied
in linear time in the number of basic blocks in the control-flow graph.

We may have introduced new basic blocks because of the function calls and
the corresponding preallocation and postallocation instructions. However, since we
do not create more than two basic blocks per original basic block, the overall cost
remains linear in the original number of basic blocks. Therefore, MATIA is linear in
the number of basic blocks in the control-flow graph. O

The assumption that the number of parents of a basic block is bounded by a
constant k, independent of the number of basic blocks in the control-flow graph is
a fair assumption. Therefore, if the number of immediate predecessors of any basic

block is bounded by a constant, then MAIA is linear.

41

4.5 A Two-Pass Version of the Algorithm

MAITA presented in Section 7?7 is a three-pass algorithm. However, it can be
converted into a two-pass algorithm by merging the upward propagation phase and
the reduction phase into one single phase.

We chose to describe a three-pass version of the algorithm in this thesis in
order to provide a more straightforward description of the algorithm. To implement
the algorithm in a two-pass version, we need to consider the basic blocks in a specific
order. When the bottom-up algorithm considers a new level of basic blocks in
the control-flow graph, the basic blocks with the lowest allocation value should be
considered first. Otherwise reduction opportunities may be missed.

To implement the order in linear time, we use one hash table that is filled
with the basic blocks of the current level. the index function of the hash table simply
returns the allocation value of the basic block. Therefore, the size of the hash table is
equal to Ry, the maximum number of stacked registers that an allocation instruction
can allocate. If two basic blocks at the same level share the same allocation value,
then they are stored in the linked list in the hash table. When a basic block is
inserted in the hash table, a pointer is created. Thus, the basic block always points
to its entry in the hash table. With the described implementation of the hash table,
the insertion and deletion of a basic block from a hash table are done in constant
time, and the overall bottom-up pass remains linear in the number of basic blocks
in the control-flow graph.

To conclude, the two-pass algorithm is faster, because one pass of the control-
flow graph is avoided. Moreover the memory usage does not dramatically increase
because only one fixed-size hash table is used. The number of entries in the hash

table is bounded by the number of basic block in the control-flow graph.

42

4.6 Optimality
To prove the OAIP optimality of MAIA, we first need to prove the RA opti-
mality. Then we show that the minimum number of allocation instructions is used

to achieve the RA optimality.

4.6.1 RA Optimality
Lemma 4.2 Let B be a basic block of a control flow graph G and Cy,...,C), be
control paths from the entry node of G to B. After the phase (1) of MAIA, alloc(B)

18 equal to the minimum path register requirement of Cq, ..., C,.

Proof. By induction. The algorithm traverses the basic blocks of G in topological
order. We prove that the following property is satisfied at each step:

Induction Property. If B is a visited basic block and C4,...,C,, are all the
control paths from the entry node of G to B, then alloc(B) is equal to the minimum
path register requirement of Cy, ..., C,.

Induction Base: The first node visited by the algorithm is the entry node
S of G. The only control path to reach S is C' = S. From the phase(0) of the
algorithm, the initial value for alloc(S) is equal the local register requirement of S,
which is the minimum path register requirement for C'. Applying the downward
propagation rule to node S cannot change the value of alloc(S) because S has no
parents, therefore S still satisfies the induction property after it is visited.

Induction Step: Let B be a node in GG and let Py, ..., P, be the set of all
immediate predecessors of B. We assume that P;,..., P, are already visited and
therefore that they satisfy the induction property. We will prove that B satisfies the
induction property after it is visited. Let P, be the predecessor of B with minimum
allocation. Upon visiting B the algorithm can only change the allocation of B to
alloc(P,,) or keep the allocation value as it is. If the allocation value of B changes

to alloc(P,,), then the new value for alloc(B) is equal the register requirement

43

of the path {S,..., P, B} which is the path with minimum register requirement
— otherwise P,, would not have the minimum allocation amongst the immediate
predecessors of B. If the allocation of B does not change when B is visited, then
B has a register requirement that is higher than all its predecessors, and thus all
paths from S to B have a register requirement equal the local register requirement

of B. Thus, in both cases, B satisfies the induction property. O

Lemma 4.3 Given a control-flow graph G with a start node S and an exit node E.
Let B be a basic block of G. After the upward propagation phase of MAIA, alloc(B)
15 a lower bound to the path register requirement of all the paths from S to E that
include B.

Proof. By induction. The algorithm traverses the basic blocks of G in reverse
topological order. We prove that the following property is satisfied at each step:

Induction Property. If B is a visited basic block and C4,...,C,, are all the
control paths from S to E that include B, then alloc(B) is less or equal to the
minimum path register requirement of C, ..., C),.

Induction Base: The first node visited by the algorithm is the exit node F
of G. alloc(E) has been computed during the downward propagation phase. Using
Lemma ?7?, alloc(F) is equal to the minimum path register requirement of all the
incoming paths of £. Because F is the exit node of G, the incoming paths of E are
all the control paths of G. Thus, before E is visited, alloc(F) is the minimum path
register requirement of all the control paths from the entry node of G to E. When
E is visited, the upward propagation rule does not modify the allocation value of
E. The induction property is satisfied for F.

Induction Step: Let B be a node in G and let Sy,...,S, be the set of all
immediate successors of B. Because the upward propagation phase of MAIA visits
the nodes in reverse topological order, Sy,..., S, are already visited and therefore

that they satisfy the induction property. We will prove that B satisfies the induction

44

property after it is visited. According to Definition 7?7, alloc(B) = alloc(S;) if S; has
been propagated to B, and alloc(B) < alloc(S;) otherwise'. Therefore alloc(B) <
alloc(S;). Since the allocation values of Si,...,S, represents a lower bound to
the minimum path register requirement of all the paths going through Sy,...,S,,
alloc(B) represents a lower bound to all the paths from E to S that include B.
The allocation value of B will not change when the upward propagation rule will be

applied to B. O

Lemma 4.4 Given a control-flow graph G, after the reduction phase of MAIA, for
every control path C of G, the mazimum number of stacked registers allocated does

not exceed the path register requirement of C.

Proof. After the upward propagation phase, thanks to Lemma 77, the number of
stacked registers allocated for any control path C of G does not exceed the path
register requirement of C. The reduction phase only removes allocation instruction.
Therefore the number of stacked registers allocated for a given control path can only

decrease. Lemma 77 is true. O

Lemma 4.5 Given a control-flow graph G, after MAIA is applied to G, for every
basic block B of G, the local register requirement of B is satisfied.

Proof. After the initialization of MAIA, there is one allocation instruction per
basic block and the allocation value is equal to the local register requirement of
the basic block. Therefore the local register requirement of every basic block B of
G is satisfied before applying the downward propagation phase of MAIA. We now
prove that none of the three transformations applied in the successive phases of the

algorithm will cause a basic block not to have enough stacked registers allocated.

' If Definition ?7?(iii) is not verified for S;, then Definition ??(ii) will be verified for
S; with ¢ # j and the corresponding allocation instruction will be propagated
to B.

45

Because of Definition ??(ii) and Definition ??(ii), the downward propagation
rule and the upward propagation rule only increase the values of the allocation
instructions already in place. Therefore, if the local register requirement of a basic
block was satisfied by an existing allocation instruction, only more registers can be
allocated and the local register requirement of the basic block is still satisfied after
the propagation phases of MATA.

During the reduction phase of the algorithm, the reduction rules only re-
moves allocation instructions. Let A be a basic block whose allocation instruction
is removed. According to Definition ?7(ii), all the predecessors of A in G have an
allocation instruction with a higher allocation value. Therefore, if the allocation in-
struction of A is removed, the stacked registers allocated by the removed allocation
instruction will still be executed. If the local register requirement of A was satisfied
before reduction, then the local register requirement of A will still be satisfied after
reduction.

Therefore the local register requirement of every basic block B in G is satisfied
at the beginning of MAIA and none of the phases of the algorithm will cause a basic

block not to have enough stacked registers allocated. We proved Lemma ?7. O
Theorem 4.2 MAIA is RA optimal.

Proof. Lemma ?? and Lemma ?? prove Definition ??(i). The use of preallocation
and postallocation instructions ensures that Definition ??(ii) is satisfied. Therefore

MATA is RA optimal. O

4.6.2 OAIP optimality
Conjecture 4.1 MAIA is OAIP optimal.

Proof. Theorem 77 established the RA optimality of MATA. We conjecture that the

number of allocation instructions inserted by MAIA is minimum. The intuition is to

46

have at most one allocation instruction inserted in each control path in the control-
flow graph. If a the path register requirement of a path is already covered by the
allocation instruction of another path, then no allocation instruction is required.O

On Figure 77, the control-flow graph has 4 different control paths. The
control paths are colored with the intensity proportional to the number of stacked
registers needed. When control paths overlap on the same basic block, we color
the basic block with the least intensive color. We notice that there is only one
allocation instruction per control path, except for the control path 3 that has also
one preallocation and one postallocation instructions too. The minimum number of
allocation instructions has been inserted. Since the RA optimality is satisfied, the

solution is OAIP optimal.

4.6.3 About Natural Loops

In our description of MATA we only considered forward edges therefore the al-
gorithm only optimizes the static placement of allocation instructions in the control-
flow graph. However, if we consider back edges, the repeated execution of the same
allocation instruction in a loop can be costly. In such a case only the first call to
the allocation instruction is necessary. We consider the dynamic optimization of the

allocation instruction placement in the next chapter.

4.7 Conclusion

We have a one-pass bottom-up efficient linear algorithm that fulfills all the
requirements of the OAIP problem: the minimum number of registers is allocated for
every control path of the control-flow graph while the minimum number of allocation
instructions is used. The memory size necessary to execute MATA is linear: we need
one hash table with at most as many entries as there are basic blocks in the control-

flow graph.

47

However MAIA is theoretical, and we did not consider implementation prob-
lems and conflicts that may appear with specific architectures. A set of allocation
instructions that is OAIP optimal does not necessarily result in the generation of
fast code. In the next chapter we will study the effect of optimal placement of

instruction allocation on the execution time of the code generated.

48

Chapter 5

OPTIMIZATIONS AND FINE-TUNING

In the previous chapter we described an efficient linear algorithm. We as-
sumed that the allocation instruction was free: there was no dependence or conflict
of any type, and the execution time of the instruction was negligible. Also optimal
was meant statically, not dynamically.

In this chapter, we will rise some issues when we try to implement the algo-
rithm in a real compiler in a specific architecture (IA-64 architecture for instance).
We will consider the cost of the allocation instruction itself, the redundant call to

allocation instructions in loops and the use of frequency of execution information.

5.1 Cost of the Allocation Instruction and Tuning

Until now, the allocation instruction was assumed to have no cost. However,
the instructions in the source code using stacked registers are very likely to depend
on the allocation instructions: the stacked registers cannot be used before the allo-
cation instruction terminates. The [A-64 architecture, based on Instruction-Level
Parallelism (ILP), may see scheduling opportunities reduced because all the other
instructions are waiting for the allocation instruction. The IA-64 architecture also
requires that the allocation instruction be the first instruction in an instruction
group ([7]).

Moreover the cost of the instruction itself should not be neglected. The
register stack engine is expected to spill and restore registers when needed in a

transparent manner. But depending on whether spills and restores are necessary

49

or not and how many registers need to be moved to/from memory, the cost of the
allocation instruction may vary.

Overall we have to take into account the cost of the allocation instruction.
Depending on the architecture, the implementation and the assembly code itself,
the cost differs. Too many allocation instructions, even if optimal, may slow down
the execution of the program.

We have to assign some priority to the allocation instructions. Some are less
useful than others. Is it worth inserting an allocation instruction to save one or two
registers?

What we propose here is a simple heuristic to reduce the number of allocation
instructions in the code if the cost of the allocation instruction appears to be too
high. We insert an allocation instruction if we save enough registers. We introduce a
threshold value: R,,. R,, is the minimum number of stacked registers that must be
saved when we insert an allocation instruction. Therefore the cost of the allocation
instruction is inversely proportional to the number of stacked registers saved by the
instruction.

The only change that needs to be done to the main algorithm concerns the
upward propagation rule. We want to force the propagation if the number of registers

saved is too low (less than R,,).

Definition 5.1 (Heuristic Upward Propagation Rule) Given a basic block A,

if, for every direct predecessor P of A, all the following conditions are true:
(i) alloc(A) is not a postallocation instruction
(ii) alloc(A) > alloc(P)

(i11) VS € succ(P), alloc(A) < alloc(S) + Ry,

then alloc(P) = alloc(A), for every direct predecessor P of A.

20

BB1| alloc40 [10|
] flow 1: 20 registers
[] flow 2: 30 registers
*l O flow 3: 40 registers
BB? 20] B flow 4: 50 registers

BB3

BB7 E
g
BBS8 10|

Figure 5.1: A new solution when the register-saving heuristic is used.

ol

If we apply the new propagation rule instead with R,, = 10, the example of
Figure 77 changes. The allocation instruction in BB5 is propagated all the way to
BB2, where the allocation instruction of BB4a is also propagated. Eventually, we
decrease the number of allocation instructions by 33%. But control path 1 allocates
20 registers more than the minimum required for that control path, and control
path 2 allocates 10 extra registers.

As a consequence, the solution cannot be optimal anymore. We may allocate
more registers than needed. FExperiments must be done to correctly choose the
value R, and make a compromise between stacked register allocation and execution

speed.

5.2 Redundant Calls to Allocation Instructions in Loops

We described the algorithm as statically optimal. Which does not mean
that dynamically the number of calls to allocation instructions is minimized. If a
run-time flow of execution only follows forward edges in the control-flow graph, the
number of calls is optimal. But if one back edge of the control-flow graph is used,
we may call the same allocation instructions several times unnecessarily.

On Figure 77, if no back-edge is used, the four flows of execution are optimal.
At run-time, we are very likely to iterate more than once the two loops by using
the back edges of the control-flow graph. If we execute BB3 and BB7 in a loop
using the left back edge, no harm is done. There is no allocation instruction on the
way. On the other hand, if we execute BB3, BB5, and BB7 in a loop, then the
allocation instruction in BB5 is going to be called more than once, even though the
stacked registers are already allocated. A worse case exists for the loop BB4alb|c
and BB6: the allocation instruction in BB4a shrinks the register stack frame. We
know that shrinking allocation instructions are useless.

We propose two solutions to reduce redundant calls to allocation instructions.

The first one only avoids one special case without breaking the static optimality.

02

The second avoids all the redundant calls, but the solution is not optimal anymore:

too many stacked registers might be allocated.

5.2.1 Avoiding the First Allocation Instruction of a Loop

There is one special case: the first instruction of a loop is an allocation
instruction. Although only the first allocation is necessary, the allocation instruction
is executed at every iteration of the loop. Since the register allocation increases along
every control path, we know that the other calls are redundant. We avoid redundant
calls by creating a fake basic block for the allocation instruction. The back edge of
the loop points to the successor of the basic block. Thus, at the entry of the loop,
the allocation instruction is executed once. Then the subsequent iterations skip the
new basic block, and the allocation instruction is not called. In other words, the
allocation instruction is moved to the header of the loop.

On Figure 7?7, BB4a is the first basic block of a loop and contains one alloca-
tion instruction. We introduce another basic block (BB4x) to avoid the allocation
instruction to be executed more than once. The solution appears on Figure ?7.

The move of the first allocation instruction to the loop header does not mod-
ify the number of allocation instructions and the register allocation optimality is

maintained.

5.2.2 Avoiding Redundant Calls to Allocation Instructions

We want to avoid redundant calls to allocation instructions within a loop.
The proposed algorithm lists the basic blocks of the outer loop and consider the
highest allocation instruction value of these basic blocks. Then we apply the solution
than the previous section: we create a fake basic block with one allocation instruction
that covers the needs of all the basic blocks in the loop.

We consider the outer loop only, because inner loops are part of the outer

loop and their needs are therefore covered by the outer loop.

23

BB1| aloc20 |10)
[0 flow 1: 20 registers
[flow 2: 30 registers
v l O flow 3: 40 registers
BB2 20] E flow 4: 50 registers

BB3

BB5| alloc30 30| BB6

BB7 E
g
BBS8 10|

Figure 5.2: The first allocation instruction of a loop can be executed only once.

04

However, we need to apply the allocation instruction insertion algorithm
again to consider the changes made. We want to avoid a second call to the allocation
instruction insertion algorithm.

Another way to solve redundant calls to allocation instructions in loops is
to set the stacked register requirement of all the basic blocks in the outer loops to
the highest value needed by the basic blocks of the loops, even before applying the
allocation instruction insertion algorithm.

When applied to our example, the stacked register requirement of the outer
loop (BB2 to BBT) is increased to 60. All the basic blocks of the loops have the
same register requirement. When MAIA is applied, we end up with only three
allocation instructions for the entire control-flow graph (Figure ??). All the allo-
cation instructions (except preallocation and postallocation allocation instructions)
are called only once. Note that, by coincidence, the solution is the call-shrinkage
one (Figure ?77).

Several calls to preallocation and postallocation instructions are not con-
sidered as redundant because they are necessary to avoid the frozen allocation of
stacked registers (Chapter ?7).

The number of stacked registers allocated in the loops may be too high for
specific flows of execution inside the loop, but we expect that the number of times

the loop is executed will amortize the waste of stacked registers.

5.3 Frequency of Execution Information

We may expect from the compiler to provide static or dynamic information
about the the frequency of execution of each basic block in the control-flow graph.
The information can be used to avoid useless upward propagations: if a very ex-
pensive basic block is almost never executed, then we would like to see allocation

instruction of the basic block to remain in place.

95

BB1| aloc60 [10|
] flow 1: 60 registers
[] flow 2: 60 registers
+l O flow 3: 60 registers
BB? 60] E flow 4: 60 registers

BB3

BB7 E
g
BBS8 10|

Figure 5.3: Control-flow graph without redundant calls to allocation instructions.

o6

We assume we are given a weighted control-flow graph, i.e. where each edge
has a specific weight. The higher the weight, the more likely the edge will be taken
at run-time.

The idea is to form regions in the control-flow graph. There would be a
main region (or hot region), that would include the basic blocks the most often
executed at run-time. Then, there would be the other regions less often executed,
and therefore less important. We would apply the algorithm on the entire control-
flow graph but differentiate between the regions. Thus the allocation instructions
from less important regions would not interfere with the other basic blocks of the
control-flow graph: we only consider the important allocation instructions.

We might use the profile-sensitive region formation algorithm originally used

in the IMPACT compiler[?] and described in [?][?]. The algorithm has four steps:

(i) Choose a seed block: We choose the basic block with the highest frequency

of execution.

(ii) Propagation to the successors: From the seed block, we propagate the
region to the successors. We only stop if there is a function call, if the frequency
of execution of an edge is too low (less than 50% of the immediate predecessor

and that of the seed block) or if the region becomes too large.

(iii) Propagation to the predecessors: From the same seed block, we propagate

the region to the predecessors using the same method.

(iv) Propagation to the successors of the blocks in the region: We try to
include other blocks by considering all the blocks in the current region as seed
blocks. We extend the region only by following the successors. Thus we obtain

a multi-flow region.

Note that we may have more than one seed block. The regions built from

the seed blocks may merge into one single region or not.

o7

Once the regions are formed, we apply our algorithm to the control-flow
graph. The allocation instructions from the main region can be propagated into less
important regions, whereas allocation instructions from the other regions cannot

cross the boundaries between regions. Which brings us to a new propagation rule:

Definition 5.2 (Profile-Sensitive Propagation Rule) Given a basic block A,

if, for every direct predecessor P of A, all the following conditions are true:
(i) alloc(A) is not a postallocation instruction
(i1) alloc(A) > alloc(P)

(111) VS € succ(P), alloc(A) < alloc(S)

(iv) A is in the main region or P is not in the main region

then alloc(P) = alloc(A), for every direct predecessor P of A.

When applied to our example where weight has been added to the edges of
the control-flow graph (Figure ?7), we obtain one main region composed of four
basic blocks: BB2, BB3, BB5 and BB7. BB2 and BBT7 were the seed blocks
because of their highest frequency of information (1000). BB3 was included by the
second step of the region formation algorithm, BB5 by the fourth step.

The allocation instructions are propagated as usual. The only difference is
for the alloc 40 from BB4a, that cannot cross the boundary from its own region
to the main region. The allocation instruction cannot be propagated anymore. We
end up with a solution where 30 registers are allocated by default. More registers

are allocated only if the very unlikely to be executed inner loop is executed.

o8

BB1| alloc30 |10]] main region
(] other regions
999 ll
v
BB2 20|
800 200 10
BB3 20| BB4al adloc 40 [40]

'

BB4b| alloc5 [40]
call foo()

I

BB4c| alloc40 |40

\- 400 150 ~ ~._60

BB5 30] BB6[aloce0 |60
400 |550 50 L]
BB7 @
| ll
BBS 10|

Figure 5.4: Solution when considering frequency of execution.

29

Chapter 6

CONSIDERATIONS FOR THE TA-64 ARCHITECTURE

So far, we have studied the management of a theoretical register stack in a
fictitious architecture and solved the general related problems. We are now going to
consider the TA-64 architecture, developed by Intel. The architecture provides the
user with a register stack of 96 registers and a slightly larger interface.

In the next sections, we will specifically present the register stack in the IA-64
architecture and two major obstacles to MAIA: the rotating registers and predicated

instructions.

6.1 The Register Stack

The TA-64 register stack is very similar to our theoretical model with R, =
96. The restore and spill operations are transparently managed by the hardware-
implemented Register Stack Engine (RTE). When the restore and spill operations
become necessary, the RTE tries to take advantage of unused memory bandwidth
to access the register backing store and hopefully does not stop the execution of the
program. The outgoing parameters are passed by overlapping the stack frames of
the caller and the callee functions.

The main differences with our theoretical model comes with the interface:
there are 3 more instructions (flushrs, loadrs, cover) and the syntax of the allocation

instruction is more complete. Also the allocation must obey more constraining rules.

60

Instruction | Description

alloc allocate registers in the register stack frame
flushrs flush the register stack to the backing store
loadrs load the register stack from the backing store
cover cover current stack frame

Figure 6.1: TA-64 register stack interface.

6.1.1 The alloc Instruction

Basically everything that we assumed to be managed by the hardware is
explicitly controlled by the alloc instruction: the register stack frame pointer and
the passing parameters. Moreover, the instruction also explicitly allocates rotating

registers specific to the IA-64 architecture (cf. ?77).

alloc gri = ar.pfs,i,1, 0, r

Figure 6.2: Syntax of the alloc instruction.

When the alloc instruction is called, the value of Previous Function State
register ar.pfs is copied to gri;. gry is a static register caller/callee saved when
another function is called. Thus the previous register stack frame parameters are
saved and previous register stack frames can be restored.

The other arguments of the alloc instruction concerns the size of the current

register stack frame and the partitioning of the registers in the frame.

Arguments | Description

' number of incoming parameters
number of local registers
number of outgoing parameters
number of rotating registers

S QO — =

Figure 6.3: Alloc instruction argument description.

61

The incoming registers are considered as local. Therefore, the size of the

register stack frame (sof) can be deduced from the previous values: sof =1+ o.

A overlaps with the

next frame input i

sof

Vie————dvy ______ XY

Figure 6.4: Partition of the IA-64 register stack frame.

The number of rotating registers must a multiple of 8 and less than the size
of the register stack frame.

The alloc instruction must obey specific rules: the instruction has to be the
first instruction in an instruction group and cannot be predicated. The effects of the

alloc instruction are seen by the other instructions in the same group and thereafter.

6.1.2 The flushrs and loadrs Instructions

The flushrs instruction is used to explicitly save register stack frames from
previous functions in memory and free the space for the future allocations.

The loadrs instruction loads a number of bytes from the memory to the
register stack. The instruction is used to invalidate registers in the register stack.

As the alloc instruction, the flushrs and loadrs instructions have to be the

first instruction in an instruction group and cannot be predicated.

6.1.3 The cover Instruction
The cover instruction allocates a new stack frame of size zero. All the stacked

registers, even outgoing registers, are not available anymore.

62

The cover instruction must be the last instruction in an instruction group

and cannot be predicated.

6.2 The Rotating Register Allocation

In the TA-64 architecture, the decrease in the execution speed of the loops
induced by the lack of out-of-order execution was compensated by the use of rotating
registers. At each iteration of loops, these special registers are shifted in a register-
renaming process. For instance, a value that would have appeared in 35 in the first
iteration, would appear in 736 in the next, and thus reducing dependences between
iterations within the same loop.

The rotating registers are allocated in the register stack with the alloc in-
struction. The number of rotating registers must be a multiple of 8 and less than
96 (Ry). The rotating register base register must be cleared before allocating any
rotating register.

If there are at least two loops with different rotating register requirements
in the same routine, we need to insert extra alloc instructions to reallocate the
rotating registers. The newly inserted instructions do not change anything to the
size of the register stack and can be inserted independently from the allocation
algorithm. However we may want to merge the alloc instructions if possible, or even
take into consideration the new type of alloc instruction (rotating registers) right

from the beginning.

6.2.1 Insertion After The Allocation Algorithm

The first optimization is a simple patch to the solution given by MATA. We
simply insert the alloc instructions we need to allocate the rotating registers and
then try to move the inserted instructions up to an existing alloc instruction. Note

that the moving operation is not a propagation as defined in the previous chapters.

63

However, because two alloc instructions could be moved up to the same
existing alloc instruction and not be aware of it, the move would be limited to
a linear chain of basic blocks. As soon as a split node is encountered, the move
operation must stop and the alloc instruction cannot be merged with an existing
one. Therefore, the efficiency of the simple patch is limited.

Also there is no easy way to choose a value for the other arguments of the
alloc instruction. The number of local registers we need was determined by the
allocation instruction insertion algorithm and forgotten since. We could look for all
the existing alloc instructions above in the control-flow graph, but the operation

would be too expensive. Therefore the patch to MAIA is too time-consuming.

|
i existing alloc instruction
\ 4
BB1| alloc 30,164

Y

=5 -

' |

BB2| 4l0c 30,8 BB3| aloc 30,16

|R ﬁl

I v v '

rotating register alloc instructions

Figure 6.5: Example of inefficiency of a post-pass patch for the rotating register
allocation.

64

On Figure 7?7, the alloc instruction of BB1 covers the stacked register re-
quirements of the two control paths. The instruction has been inserted by MATA.
The second number appearing with the allocation instructions is the number of ro-
tating registers allocated. The default value is the maximum used by all the loops
of the routine. There is no other alloc instructions between BB2/BB3 and BB1
(the intermediary basic blocks are not shown).

Then we insert two rotating register allocation instructions in BB2 and BB3.
The number of local registers for the two instructions is computed by looking all the
way up to the existing alloc instruction (30). We assumed the number of rotating
registers needed for each loop is known (8 for BB2 and 16 for BB3). In the exam-
ple, we cannot propagate the rotating register alloc instruction into the split node
without investigating the entire other branch of the split node. Therefore there is no
way to cheaply merge the inserted alloc instruction with an existing in the specific

example with a post-pass patch to MAIA.

6.2.2 A Rotating Register-Aware Allocation Algorithm

The best way to handle the rotating registers is to modify the existing algo-
rithm to take into account the rotating register allocation instruction type and the
rotating register value.

We start with one allocation instruction per basic block as in the original
MATA. But we now have to give a default rotating register value: all the allocation
instructions start with a rotating register default value of 0, except the instructions
in basic blocks included in a loop using rotating registers. A way to compute the
list of basic blocks in a natural loop can be found in [?].

Since we use the algorithm of Section 77, all the allocation instructions in
the same loop at the beginning of the algorithm are the same: maximum number of
local registers needed in the loop and maximum number of rotating registers needed

in the loop.

65

Then we apply the algorithm with some modifications to the propagation
and reduction rules. Besides the register stack frame size, the rules now consider the
rotating register values. The allocation instructions can be reduced or propagated
if the conditions about the allocation values AND the rotating register values are
respected. The rules are therefore more strict.

Notation: rot(A) is the number of rotating registers allocated by the alloca-
tion instruction of A. If A has no allocation instruction or if there is no rotating
register allocated, the rotating register allocation value is 0. If alloc(A) = 0 and

rot(A) = 0, then there is no allocation instruction in A.

Definition 6.1 (Rotation Register-Aware Upward Propagation Rule) Given
a basic block A, if, for every direct predecessor P of A, all the following conditions

are true:
(i) alloc(A) is not a postallocation instruction
(11) alloc(A) > alloc(P)

(iii) rot(A) > rot(P)

(iv) ¥S € succ(P), alloc(A) < alloc(S)

then alloc(P) = alloc(A), for every direct predecessor P of A.

Definition 6.2 (Rotation Register-Aware Reduction Rule) Given a basic block

A, if all the following conditions are true:
(i) alloc(A) is not a preallocation instruction

(ii) for every direct predecessor P of A, alloc(P) > alloc(A) and rot(P) > rot(S)

then remove alloc(A).

66

The upward propagation rule does not change concerning the register stack
frame value. However the rotating register value adds a new constraint: the allo-
cation instruction can be propagated as normally if the rotating register allocation
value is at least as high as the preceding allocation instruction. Unlike the register
stack frame value, the rotating register value does not only increase along every
control path. The upward propagation rule does not take into account the rotating
register value of the other children of the parent like for the register stack frame
value. Therefore we allow the number of rotating registers to shrink. Although
shrinking was considered as not efficient for the register stack frame value, reducing
the number of rotating registers has no impact on the execution speed of the pro-
gram. There is no spill /restore due to a change in the number of rotating registers:
the stacked registers are already allocated using the register stack frame value. Note
that we are sure not to allocate more rotating registers than the register stack frame
size, because both alloc(A) and rot(A) are propagated at the same time.

The reduction rule is modified with the same idea in mind. If P covers the
needs of S in size of the frame and number of rotating registers, then the allocation
instruction of S is useless and can be reduced.

The solution of the rotating register aware algorithm used on our example is
shown on Figure ??7. The outer loop is using 8 rotating registers, while the inner
loop does not use any. Only one loop at the time can make use of the rotating
registers. The solution is close to the one given in Figure ??7. The rotating register
value parameter has been added to the alloc instructions. One may notice that
the preallocation instruction value has increased from 5 to 8. Since the number of
rotating register value has to be a multiple of 8 and must fit in the register stack
frame, we had to adjust the register stack frame value. The updates of the value
of the preallocation instructions are automatically done at the beginning of the

algorithm when all the allocation instructions are inserted.

67

BB1

dloc 20,8

10]

BB3

BB2

'y

20]

aloc 30,8

BB7 E
g
BBS8 10|

] flow 1: 20 registers
[] flow 2: 30 registers
O flow 3: 40 registers
B flow 4: 50 registers

Figure 6.6: Rotating register aware solution.

68

I
\ 4
BB1| aloc 60,16

N

BB2| 4loc 90,8 BB3| aloc 32,32

v v

Figure 6.7: Consequence of a partial order of the basic block: no allocation can
be propagated.

However, from the the point of view of the upward propagation rule, we now
have a partial order of the basic blocks. Before, from the two children of a split
node, one allocation instruction was going to be propagated and reduced. Now,
one instruction may have the largest register stack frame while the second has the
higher number of rotating registers. Therefore none of the two allocation instructions
are propagated or reduced, resulting in a higher number of allocation instructions.
Figure 7?7 shows a specific configuration where no allocation instruction among the
children are propagated or reduced: B B2 does not allocate enough rotating registers,
while BB3’s register stack frame value is too small.

As a conclusion, the rotating register may bring a lot of constraints. But the
rotating register aware algorithm is very likely to be used in correlation with the
optimization described in Section ??7. Thus, the impact of the rotating registers on

the efficiency of MAIA is limited.

6.3 Predicated Control Path of Instructions
Unfortunately the alloc instruction cannot be predicated. As a consequence,

MAITA must be applied after predication is done. Otherwise predication, one of the

69

hot features of the IA-64 architecture, would be limited. The limitation of the alloc

instructions is preferable to the limitation of predication.

| |

| |

| |

\ 4 \ 4

St BBL aloc90,0

pl,p2=...
(p1) cal fool()
(p2) cal foo2()

BB2| 4loc 90,0 BB3| aloc 5,0

call fool() call foo2()
| | |
v v v
(8) without predication (b) with predication

Figure 6.8: Predication limits the efficiency of the algorithm.

To take into account the predicated instructions, we look at the control-
flow graph of the routines and consider all the instructions as always executed (the
predicate values are considered as true). Therefore we lose the fine-grain control
we had over the insertion of the alloc instruction: if two parallel control paths
are predicated and with very different stacked register requirements, we have to
consider the worst case and insert an alloc instruction to cover both needs instead
of one fine-tuned alloc instruction per control path. Predication is the main limit
to the allocation instruction insertion algorithm.

On Figure 7?7, foo2 can be preceded by a fine-tuned preallocation if the call
is not predicated. However, with predication, we must allocate for the two control
paths and 85 stacked registers are wasted if foo2 is called.

Unless the alloc instruction can be predicated, there is so far no easy solution
to solve the predication problem. We may want to consider huge differences in

stacked register requirements between two paths with function calls before applying

70

an if-conversion for instance. However we are not able to list all the cases. A
study of the impact of each optimization (predication or alloc instruction) would be

necessary beforehand.

71

Chapter 7

FUTURE WORK

So far, we introduced MATA, an efficient allocation insertion algorithm. We
presented different architecture independent optimizations and considered real-life
constraints with the TA-64 architecture. Besides the conflict with predicated in-
structions, there are still opened questions. The efficiency of the algorithm could
be enhanced if some other optimizations were more aware of the alloc instructions.
Also a deeper study of the alloc instruction would help to fine-tune the presented

algorithms.

7.1 Interactions With Other Optimizations
7.1.1 Copy Propagation

The copy propagation, a classic compiler optimization, consists of, given an
assignment = < y, replacing later uses of x with uses of y, as long as intervening
instructions have not changed the value of either z or y ([?]).

Copy propagation might reduce the efficiency of the allocation insertion al-
gorithm. Let us consider the TA-64 architecture. Assuming there is a function call,
the parameters are passed using the last registers of the register stack frame. If a
preallocation instruction is inserted, the register stack frame is shrunk and stacked
registers are saved. However if copy propagation is used, the definition of the param-
eters may appear far above in the control-flow graph, forcing the alloc instruction
to be inserted before (and reducing shrinking opportunities) or the insertion of copy

instructions (cancelling the copy propagation algorithm job).

72

BB1| r43= ... BBL| ra3= ..
| |
I I
I I
= -
I I
| |
I I
l r60 l
BB2| (60 =r43 BB2| (60 =r43
143 dloc 12,0 143
call foo() call foo()
! r32 ! r32
v v
(a) (b)

Figure 7.1: Allocation instruction insertion with no copy propagation.

On the example Figure ?7-a, foo() is called with only one parameter. The
value is passed using the register stack and stored in the last register allocated in
the current register stack frame: r60. However all the registers between 743 and r60
are not used when the function is called, resulting in a waste of 16 stacked registers.

When the allocation insertion algorithm is used (Figure ??-b), we can reduce
the waste from 16 to 0. We shrink the register stack frame to the point where the
last register is 743 and no copy instruction is even needed. The shrink is possible
because the allocated stacked registers above r43 were not used.

Now, when copy propagation is used, 760 happens to be defined far above
in the control flow graph in place of r43. The allocation instruction cannot shrink

anything when the call occurs and 16 stacked registers are wasted again (Figure ?77?-

a).

73

BB1| rg0=...

BB2| gloc 29,0

call foo()
|

v

(@)

Figure 7.2: Allocation instruction insertion with copy propagation.

Assuming we have an algorithm to figure out when we can easily a large
number of registers, we could copy the value of 760 into 743 and shrink the register
stack frame. However we inserted an extra instruction and simply undid the copy
propagation job (Figure ?7-b).

A future work would be to study the impact of copy propagation on the
allocation insertion algorithm. Maybe the copy propagation has more to offer than
a smart allocation instruction insertion and we should not bother about it. To forbid

copy propagation of outgoing parameters with some conditions, like the number of

re0

r43

r32

BBL| re0=...
I
|
I
=
|
I
I
BB2| 43 =r60
aloc 12,0
call foo()
|
I
v

(b)

r43

r32

stacked registers saved/wasted, might also be interesting to study..

74

7.1.2 Register Allocation

The register assignment algorithm and the allocation instruction insertion
algorithm are obviously deeply linked. While the first algorithm assigns register
number to virtual registers, the second makes sure the stacked registers are ef-
fectively allocated on the stack when needed. Therefore we might expect a good
cooperation between the two algorithms.

The allocation instruction insertion algorithm does not make any change to
the register assignment. The algorithm assumes the assignment is fixed. Conse-
quently, the register assignment algorithm is responsible for the assignments that
may not looked interesting from an allocation instruction insertion point of view.
The allocation instruction insertion algorithm cannot do anything against a large
number of consecutive stacked registers not used and surrounded by live registers.
The register assignment algorithm is responsible of making the register stack frame

as dense as possible.

undesired unused
160 stacked registers
Q/
r40
r32

Figure 7.3: Non dense register stack makes the allocation instruction less efficient.

On Figure 7?7, the registers r41 to r59 are not used while r40 and r60 are.
The register stack frame is not dense. If the situation occurs before a function
call, the allocation instruction is useless. We would like to see the register allocator

assigning r41 to hold the value currently assigned to r60. 18 registers would be

75

saved. We do not expect all the holes in the frame to be filled, but at least to reduce
their size.

The idea is to assign long-life registers to the lowest register numbers while
short-life registers are assigned at the top of the register stack frame. Assuming
the compiler uses graph coloring for register allocation ([?][?][?]), we want to make
sure the color assignment routine follows the previous recommendation. Instead of
choosing the first color available, the life range would be considered.

However the allocation instruction aware register assignment algorithm needs
to know in advance the final live ranges (after register coalescing) and the maximum
number of stacked registers going to be used. Therefore we would better imagine a
post-pass algorithm that would simply switch register number assignment depending
on the live ranges.

The register allocator is so linked to the allocation instruction insertion al-
gorithm that the idea deserves to be explored and studied. Depending on different

compiler choices and optimizations, the optimization may not be needed.

7.2 Study of the Allocation Instruction
7.2.1 Register Stack Use

The goal of the thesis is to reduce the size of the register stack in order to
avoid spills and restores. But if the maximum number of registers in the stack Ry is
never reached, there is no need for such an optimization. We might expect recursive
functions to be very good candidates. The depth of the call stack is an important
factor. The larger the stack is, the more likely the limit of the register stack is
reached and spills occur.

Therefore there is a need to study the behavior of the register stack. Is the
maximum number of stacked registers quickly reached? For every routine? Can we
characterize the routines that are very likely going to need the allocation instruction

insertion optimizations?

76

A simple study would be to monitor the overall size of the register stack.
Whenever the register stack size is increased and the resulting size is greater than
Ry, we know that the allocation instruction spills registers. By monitoring the size
of the register stack, we can evaluate how often the case appears and judge about
the importance of an efficient allocation instruction placement algorithm.

Interesting results could appear as a curve of the size of the register stack
over the time, or as a ratio of the execution time spent with a register stack size
greater than R;. The ratio could be subdivided for each function in the measured
application. By knowing which functions are more likely to create the spills, we
could choose to turn on the optimizations only on specific part of programs by using
feedback profiling.

The study could also lead to a better tuning of the allocation instruction
insertion algorithm. Maybe only preallocation and postallocation instructions mat-
ter and the impact of the other types of allocation instructions is negligible. Then
the algorithm could be simplified and the final code cleaned from useless allocation

instructions.

7.2.2 Cost of the Allocation Instruction

Another issue about the fine-tuning of the algorithm is the real cost of the
allocation instruction. The TA-64 architecture manuals ([?][?]) tells us that the
alloc instruction makes use of unused memory bandwidth and stalls the processor
if needed.

However the real specifications depends of the actual processor and may vary
with the context. Is it as cheap to stall the processor for one register than for 307
How often can we make use of memory bandwidth? How long does it take to stall
the processor, spill/restore stacked registers to/from the memory and restart the

processor again?

7

Such a study could be combined with the register stack use and helps to
understand the need for an efficient allocation instruction insertion algorithm. To
choose a threshold value for the number of register that must be saved before allow-

ing propagation for instance (Section ??) would help.

78

Chapter 8

CONCLUSION

8.1 Contributions

This thesis proposed a theoretical linear efficient solution to the OAIP prob-
lem. Starting from non-optimal straightforward solutions, we built an algorithm
that allocates the exact number of stacked registers needed by every control path
in a given control-flow graph with the minimum number of allocation instructions.
The idea is to introduce one allocation instruction in every basic block and sim-
plify the control-flow graph in a bottom-up fashion until there is only one allocation
instruction per control path.

Then we considered more practical versions of the algorithm, where the allo-
cation instructions are inserted only when the number of stacked registers was large
enough. We also proposed solutions to avoid redundant calls of allocation instruc-
tions in loops and to take advantage of the frequency of execution information if
available. All the solutions are still linear but the static optimality is lost. However
the solutions are expected to run faster.

We studied the implementation of the allocation instruction in the IA-64
architecture and the constraints related to the specific Intel architecture like the

rotating registers and predication.

8.2 Future Work
The allocation instruction and the register stack as implemented in the TA-

64 architecture are a relatively new concept and more investigations need to be

79

done. The need for an efficient allocation instruction insertion algorithm must be
evaluated, as well as the efficiency of the algorithms proposed in this dissertation.
The interactions of the solutions with existing compiler optimizations, like copy
propagation or register allocation, must also be assessed.

MATA should be studied furthermore and the optimality proved or a counter-
example found. If MAIA is not optimal, how far from an optimal solution is the
solution given by MATA? An acceptable value for the upper bound for the number
of parents for any basic block in the control-flow graph should also be studied.

Mainly, as soon as the processors using the register stack are available on the

market, the algorithms and the allocation instructions should be evaluated.

80

