
REGISTER STACKAND OPTIMAL ALLOCATION INSTRUCTIONPLACEMENT
byAlban Douillet

A thesis submitted to the Faculty of the University of Delaware in partialful�llment of the requirements for the degree of Master of Science in ComputerSciences Spring 2001c 2001 Alban DouilletAll Rights Reserved

REGISTER STACKAND OPTIMAL ALLOCATION INSTRUCTIONPLACEMENT
byAlban Douillet

Approved: Guang R. Gao, Ph.D.Professor in charge of thesis on behalf of the Advisory CommitteeApproved: Jose Nelson Amaral, Ph.D.Professor in charge of thesis on behalf of the Advisory CommitteeApproved: Sandra M. Carberry, Ph.D.Chair of the Department of Computer and Information SciencesApproved: Conrado M. Gempesaw II, Ph.D.Vice Provost for Academic and International Programs

ACKNOWLEDGMENTSFirst I thank my advisor, professor Guang R. Gao for his unconditional sup-port. Since my �rst day in his lab, he helped me in every aspect of my student lifeand enlightened me in wide variety of areas. His high expectations always forced toget the best of myself.My co-advisor, professor Jose Nelson Amaral, was always there when I neededhim. His patience and his quick and very clear answers to my questions were of greathelp during my studies. I feel lucky to have been able to work with professor Amaral,who showed dedication and passion for his work.I thank Gerolf Hoehner and Jim Pierce, from Intel Corporation, who pro-vided me with the subject of the thesis. They and the entire Intel IA-64 compilerteam were always full of insight advice. I greatly appreciated the discussions witheveryone of them. Their kindness and patience will always be remembered.The thesis could not have been written without the right environment. Isincerely thank all my labmates Thomas Geiger, Mark Butala, Chris Morrone, RishiKumar, Hongbo Yang, Mark Legutko, Andres Marquez, Adalberto Castelo, ChuanSheng, Shreedhar Sampath, Juan Cuvillo, Fransisco Useche, Rishi Kahn, KevinTheobald. I will always remember the intense discussions we had at lunch and ourpassionate games at night.I would like to thank Andrea Michels for her patience and her kindness duringthe entire writing of the thesis.Finally I wish to thank my parents Marysette and Jean-Patrick for theirunwavering support and love, despite the distance. They always approved any ofiii

my choices, even when it was hard for them. Thanks for being the best parents Icould have ever dreamed of.

iv

DEDICATION

To my parents and my brother.

v

TABLE OF CONTENTS

vi

LIST OF FIGURES

vii

ABSTRACTPower consumption and execution speed are two of the most studied charac-teristics of modern processors. Optimizing the use of registers in a processor, a taskknown as register allocation, can increase he speed of execution of a program whilereducing the power consumption. A new technique for register allocation is the useof a register stack managed by a register stack engine as implemented in the IA-64architecture. After the compiler assigns registers to the variables of a procedure,the number of registers used must be allocated through a speci�c instruction: theallocation instruction.We consider the optimal allocation instruction placement (OAIP) problem:Given a control-ow graph G for a procedure P and a register assignment for thevariables of P, insert the minimum number of allocation instructions in the procedureP in such a way that, for every path in G, the number of registers allocated isminimum.This thesis makes the following contributions for the solution of the OAIPproblem:� we present a formulation for the OAIP problem considering a register stackarchitecture with an idealized allocation instruction;� we demonstrate that ine�ciencies in the allocation of registers in the stackinducing an unnecessary growth of the register stack are caused by (1) registersallocated in a caller function that are unused while a callee function is beingexecuted, and by (2) the allocation of extra registers for a control path thatis not taken at runtime. viii

� we develop a linear time algorithm, MAIA (Minimum Allocation InstructionAlgorithm), that addresses the OAIP problem. MAIA minimizes the num-ber of registers allocated in each control path of the control-ow path. Weconjecture that MAIA uses the minimum number of allocation instructions.� we present di�erent optimizations to apply to MAIA in order to acceleratethe execution speed of the code generated. The optimizations consider thecost of the allocation instruction, the redundant calls to the same allocationinstruction and the pro�ling information.� we adapt MAIA to take into consideration the architectural features of a ma-chine with stack registers, the Intel IA-64, including the interference betweenthe allocation instructions, the rotating registers, and predicated execution ofcode.

ix

Chapter 1INTRODUCTION1.1 BackgroundThe two main features of modern processors are power consumption and ex-ecution speed. Most of the time, these characteristics are closely related. Executionspeed requires power, and a decrease of the power consumption induces a decreaseof the execution speed.However there are some compiler optimizations that can improve both fea-tures at the same time. The register allocation, i.e. the process of assigning physicalregisters to variables in the source code, is a compiler optimization that can reducepower consumption and increase the execution speed of programs. Registers use alarge area of the processor chip and therefore signi�cantly contribute to the powerconsumption of the entire processor.A smart register allocation uses less registers and consequently requires lesspower. At the same time, only the most accessed variables of programs are storedin registers, reducing memory tra�c and increasing the execution speed of the pro-grams.Most modern architectures use a small bank of static registers visible tothe user and a large bank of hidden registers dedicated to register renaming. Forinstance, the Intel Pentium Pro processors provides the user with 8 visible staticregisters while 40 hidden registers are used for register renaming. The static registersare few and need to be saved or restored at every function call. The registers used1

by the register renaming are very expensive and are known to contribute for asigni�cant part of the power consumption and the area of processor chips.A newly de�ned architecture, the IA-64 architecture from Intel, uses a di�er-ent mechanism to manage the registers. For the Itanium processor, besides the 32static registers, the new architecture provides the user with a stack of 96 registers.The stacked registers are automatically spilled and restored by the hardware whenthe program needs more registers than currently available on the stack. The stackuses a smaller area of the processor chip while being more exible than the registersused for register renaming.The compiler does not need to spill or restore the stacked registers. Theseregisters can be directly accessed with only one condition: the registers have tobe allocated on the stack �rst. Because there is no need for spilling and restoringinstructions, the source code is shorter and faster to execute. Since the area of theregister stack on the die chip is smaller than for an equivalent set of hidden registers,the power consumption is also expected to be reduced.1.2 Problem StatementEven though the use of a register stack simpli�es the compiler task, there isone challenge left: how to decide when and where to allocate the stacked registers.We assume that the register assignment already occurred. We now need to inserta speci�c instruction, the allocation instruction, in the source code to make surethat the stacked registers are allocated when accessed by the program. At the sametime, we want to insert the minimum number of allocation instructions. Insertingtoo many allocation instructions would signi�cantly decrease the execution speedof the program. Also we do not want to allocate more stacked registers than thenumber e�ectively needed.The problem, named as the optimal allocation instruction placement (OAIP)problem, can be formulated in the following way: Given a control-ow graph G for2

a procedure P and a register assignment for the variables of P, insert the minimumnumber of allocation instructions in the procedure P in such a way that, for everypath in G, the number of registers allocated is minimum.A method to solve the OAIP problem is said to be optimal if it insertsthe minimum number of allocation instructions while allocating the exact numberof stacked registers needed for every control path in the control-ow graph. Theoptimality of a method only concerns the static number of allocation instructionsinserted in the code. We do not try to minimize the number of calls to the allocationinstructions at run-time. We consider the static optimization, not the dynamicoptimization.1.3 ContributionsIn this dissertation, we show the relationship between the global size of theregister stack and the OAIP problem. Solving the OAIP problem consists in reducingthe size of the stack. We identify the two components responsible for the uselessgrowth of the register stack: function calls and overestimation of the stack registerrequirement.Then we propose three di�erent non-optimal straightforward methods tosolve the OAIP problems. The methods only ensure either that the register al-location is respected, or that the minimum number of allocation instructions isused, but not both.A linear time algorithm is presented, commented and conjectured to providean optimal solution to the OAIP problem. Optimizations are proposed to takeinto account practical problems such as dynamic ows of execution, the cost ofthe allocation instruction of frequency of execution information. The inuence ofspeci�c features of the IA-64 architecture, such as the use of predication and rotatingregisters, in our algorithm are studied in Chapter ??. Speci�c problems related tothe IA-64 architecture like predication and rotating registers are also studied.3

1.4 Related WorkTo the best of our knowledge, the register stack concept is only used in theSPARC architecture [?]. A stack of registers is available to the user. However thenumber of registers allocated in a register window for each function is �x and thecompiler has no control over the size of the windows. Each function has access toonly one window.The IA-64 architecture, while using the idea of overlapping register windows,chose a variable size register window where the size can be recon�gured on the y.As a consequence, a speci�c instruction is needed to allocate registers in the registerwindow: the allocation instruction.The insertion of allocation instructions to allocate registers before they areused has not been studied before. David Wall studied the use of register windowsbut did not windows [?][?] but did not introduce an algorithm to allocate registersin the windows [?, ?]. He windows. He focused on the study of miss ratios, not onthe e�ciency of the allocation insertion algorithm.1.5 SynopsisThe next chapter presents the register stack and the allocation instruction.The Chapter ?? introduces the three non-optimal straightforward algorithms, whileChapter ?? introduces MAIA, Minimum Allocation Instruction Algorithm, a linearsupposedly optimal algorithm. Chapter ?? deals with practical optimizations forMAIA. Problems speci�cally related to the IA-64 architecture are considered inChapter ??. Chapter ?? exposes some open problems that need to be solved orstudied.
4

Chapter 2DESCRIPTION OF THE REGISTER STACK2.1 The Register StackThe register stack is a pool of registers managed as a stack. The numberof registers in the pool (RT) is �xed and assumed to be implemented in hardware.Therefore the size of the stack is bounded.The register stack is managed as a standard system stack, with frames andframe pointers. Each function has its own register stack frame and a set of framepointers. We assume that the hardware transparently takes care of managing framesand frame pointers, since both are of no direct interest for the OAIP problem.The current active function can only access the registers in its own frame.The registers from other frames, and consequently from other functions, are notvisible. Within a frame, the registers are partitioned in three groups: the incomingregisters, the local registers and the outgoing registers. When the function is called,the incoming registers contain the value of the parameters passed to the function.By symmetry, the outgoing registers are used to pass values to the functions thatare going to be called. Therefore the outgoing registers of the caller function arethe incoming registers of the callee function. The frames of the caller and the calleeoverlap over the incoming/outgoing registers of the callee/caller. The registers in theframe that are not incoming registers or outgoing registers are called local registers.When a function is called, a new register stack frame is created. The sizeof the new frame is equal to the number of incoming registers. To simplify our5

presentation, we assume that the hardware transparently allocate the size of thenew frame according to the number of incoming registers. If the program needs touse any stack register, other than the incoming registers, it must explicitly allocatethese registers before their use.On Figure ??, the function foo1 uses 30 stacked registers. Four of the reg-isters are outgoing registers when calling foo2. foo2 can access incoming registervalues thanks to the overlap between the two stack frames. foo2 uses 40 registerstotal. When the register stack is full and there is not enough available stackedregisters for the application, spilling of previous frames into memory occurs. Thuseach function can have access to at most RT stacked registers. When the functionexits, previous frames are restored if possible and visible again. The operations offrame spill and restore are transparently executed by the hardware. They requireno explicit software intervention.The creation of a new register stack frame is a register renaming operation.Two functions referencing the same stacked register number are not necessarilyusing the same physical register in the stack. The hardware maps the stackedregisters as seen by the function to the corresponding physical registers in the stack.Assume that the �rst available register in the stack when the function issues anallocation instruction is registerRS. Then the registerR1 of the procedure is mappedto the physical register RS. The register Rk of the procedure will be mapped toR(S+k)modRT . The wrapping at the end of the physical stack works because functionscannot allocate more than RT registers.The two functions foo1 and foo2 on Figure ?? use respectively 30 and 40stacked registers. foo1 has no incoming registers, 4 outgoing registers and 26 localregisters. foo2 has no outgoing registers, 4 incoming registers and 36 local registers.The 4 outgoing registers of foo1 overlaps with the 4 incoming registers of foo2.6

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

40 registers
r1 to r40

30 registers
r1 to r30

registers
4 overlapping

outgoing parameters

incoming parameters

physical registers
in the stack

R1

R27

R31

R67

foo1

foo2

register stack frames

Figure 2.1: Register Stack and Register Stack Frames.Although foo1 and foo2 access the registers on the stack using the same stackedregister numbers, the mapping is di�erent for the two functions. For instance, whenfoo1 wants to read the value in r10, the physical register accessed is R10. But,when foo2 wants to read the value in r10, the physical register accessed is R36.Note that on Figure ?? RT has to be greater than 66.The stacked registers are complementary to the usual static registers. Stackedregisters are only visible to the current function, need to be allocated and are restoredand spilled transparently by the hardware. Whereas static registers are fewer, areshared by all the functions, are always available, need to be manually spilled andrestored following speci�c software convention rules (callee/caller saved for instance).
7

2.2 The Allocation InstructionSince most of the operations on the register stack are hardware-controlled,the software interface is reduced to only one instruction: the allocation instruction.The instruction is used to specify the size of the current register stack frame.alloc stack frame sizeFigure 2.2: Syntax of the allocation instruction.For the development of the base algorithm we will assume that the allocationinstruction, called alloc, has a single parameter, stack frame size, that speci�es thenumber of registers to be allocated in the current register stack frame. When mul-tiple allocations are executed in the same procedure, every allocation overrides theprevious ones. Therefore an alloc 40 followed by an alloc 30 allocates 30 registers,not 70, to the current stack frame (cf. Figure ??). The allocation instruction valuemust be between 0 and RT .
2

3

4

2

3

5

1

5

alloc 40
...
alloc 30
...
alloc 70
...
return

1

4

foo:

time

8

30

40

70

0

frame size

(a) assembly code (b) foo register stack frame sizeFigure 2.3: Allocation instruction e�ects on the register stack.In this paper, we assume that the allocation instruction is ideal, i.e. theinstruction can be used at any time and does not interfere with other instructions.8

The e�ects of the allocation instruction are instantaneous. We present some al-gorithms using this ideal allocation instruction in Chapters ?? and ??. Then wewill consider a real allocation instruction as implemented in the IA-64 architecture(Chapter ??).2.3 The Cost of the Allocation InstructionThe register stack is managed by the hardware. Anytime there is not enoughregisters to be allocated for the current function, registers already allocated byprevious functions are transparently spilled and available for other uses. Even ifthe process of automatic spills and restores simpli�es the work of the compiler byavoiding the need to insert speci�c spill and restore instructions, we would like toavoid expensive uses of the allocation instruction.We may encounter the case where the spilling and restoring of stacked reg-isters could be avoided. The compiler may have overestimated the stacked registerrequirement and allocated too many registers. We need to identify the parametersthat inuence the behavior of the register stack.Since the allocation instruction is the only way for the compiler to commu-nicate with the register stack, we only have to focus on this instruction.As long as the stack is not �lled, we assume the allocation instruction isvirtually costless. We can allocate and deallocate registers without any further con-siderations. However, as soon as all the registers in the stack are in use and thecurrent function needs to allocate more stacked registers, we can expect some laten-cies from the allocation instruction: the spill and restore operations might increasethe memory tra�c and require the processor to stall. Our goal is to minimize theoccurrences of such situations.Depending of the implementation of the allocation instruction, costs mayvary. To simplify, we represent the allocation instruction cost as an binary function.The instruction has a cost of 0 as long as the total number of stacked registers in9

use is less than the physical register stack size RT . When the number of registersexceeds RT and spills of stacked registers is necessary, the allocation instruction hasan arbitrary cost of 1, no matter how many stacked registers are to be spilled. Ifregisters need to be restored, the allocation instruction is also considered as havinga cost of 1.
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������1

R
register stack size

alloc instruction cost

TFigure 2.4: Cost of the allocation instruction depending on the number of stackedregisters currently in use.Therefore to reduce the cost of the allocation instruction, we need to limitthe size of the virtual register stack. We want to keep the virtual register stack sizebelow the physical register stack size value RT . In other words, we want to minimizethe growth of the register stack.However, since register allocation already occurred, the only way to limitthe growth of the register stack is to allocate only the registers needed and avoiduseless allocations that could cause spills and restores. We identify the two sourcesof stacked register waste:Overestimated allocation in the current routine Wemay want to allocate themaximum number of stacked registers we might need. However if we actuallydo not need the registers, because of a very speci�c control path in the control-ow graph, the allocated registers are never used. We wasted the registers.Note that once the registers have been allocated, deallocation is worthlessbecause the earlier overallocation already caused the stacked registers to bespilled. Also, if all the registers allocated have been used at least once, then10

there is no waste, even if later on only a subset of the allocated registers areused.Frozen allocation of the previous register stack frames Every function callallocates a new register stack frame on the register stack. As a consequence,all the registers allocated for the previous function are frozen, used or not.In other words, a new register stack frame freezes the size of the previousstack frame. We do not have access to the previous frames anymore. If someregisters allocated to previous functions were not used, they are wasted.The two origins of stacked register waste are orthogonal.
������������ ������������ ������������

register stack frames
of previous routines
deeper in the call stack

register stack frame
of the function called

unused registers still
allocated when the
function was called

the register stack frame
size is now frozen.stacked registers that

will NEVER be used

������
������
������
������
������
������

������
������
������
������
������
������

(a) register allocation (b) the real register need (c) when a function is called

the register need is
unknown

register stack frame
of the current routine.

Figure 2.5: The two origins of the growth of the virtual register stack.On Figure ??, we observe the behavior of the register stack. In (a), thecurrent routine has already allocated registers in the register stack frame. Otherstack frames from previous functions in the call stack are allocated too. In (b), wediscover that we actually allocated too much because of a speci�c control path inthe control-ow graph. There are unused registers. The current register stack frameand the virtual register stack size were not worth increasing that much. In (c),we now call another function. Unfortunately, at that point, we were using only a11

small percentage of the registers allocated in the register stack frame. The unusedregisters of the caller function are now wasted and cannot be deallocated from thecallee function. The function calls indirectly increased the size of the virtual registerstack. In order to achieve optimality, an algorithm must address the two sources ofthe stacked register waste: current registers in use and frozen register stack framesize due to function calls. The classi�cation in the next section will help to identifywhich uses of the allocation instructions contributes to the growth of the registerstack.2.4 Allocation Instruction Classi�cationThe following classi�cation of the allocation instruction is only based on theposition of the allocation instruction in the code and the status of the register stackwhen the allocation instruction is called. There is only one allocation instruction,but for a better understanding and for clearer explanations, some classi�cation wasnecessary.2.4.1 Required Allocation InstructionExcept for the case when a routine does not need any stacked register, theremust be at least one allocation instruction at the beginning of each routine. Theinstruction is the �rst allocation instruction to appear in the code of the routine.We call it: required allocation instruction.The required allocation instruction is necessary and is found in every routine.The instruction is directly linked to the �rst type of stacked register waste: a badprediction, and the register stack frame size is increased too much.
12

2.4.2 Expanding Allocation InstructionEvery allocation instruction that increases the current register stack framesize is called expanding allocation instruction. Note that the required allocationinstruction is not considered as so, because the current register stack frame has notbeen allocated yet.The expanding allocation instruction is directly linked to the �rst type ofstacked register waste: overestimation. The required and expanding allocation in-structions are the only two types of allocation instruction that increase the registerstack frame size.2.4.3 Shrinking Allocation InstructionThe opposite allocation instruction to the expanding allocation instructionis called shrinking allocation instruction.Note that the shrinking type allocation instruction is useless and ideallyshould not appear in the code. Since the registers have already been allocatedto the current register stack frame, we do not gain anything into deallocating somestacked registers.The shrinking allocation instruction is not responsible for wasting stackedregisters. However, because the instruction is worthless, we would rather not use it.2.4.4 Preallocation InstructionIn order to deallocate useless registers before calling another function, weintroduce an arti�cial shrinking allocation instruction called the preallocation in-struction.The preallocation instruction is necessary to reduce the number of unusedregisters due to function calls and is used as a prevention against the second typeof wasted registers. 13

2.4.5 Postallocation InstructionWhen a preallocation instruction is used, too few registers are now allocatedwhen the function returns. We need to reallocate the deallocated registers using aspeci�c expanding allocation instruction: the postallocation instruction.The postallocation instruction is a necessary allocation instruction.

20

20

10

40

BB3

alloc 40

alloc 5
call foo()

alloc 20

alloc 60

BB5

50 60

alloc 20

BB2

alloc 30 30

BB1

alloc 10

alloc 50

BB4

BB6

BB7

required allocation instruction

expanding allocation instruction

preallocation instruction

postallocation instruction

shrinking allocation instruction

Figure 2.6: Example of di�erent types of allocation instructions.On Figure ??, we can observe all the types of allocation instruction. Thealloc10 in BB1 is the �rst allocation in the control-ow graph and therefore is therequired minimum allocation instruction. The allocation instructions in BB2, BB5and BB6 are expanding instructions because they increase the register stack sizecompared to the parents of the basic block of the allocation instructions. The allo-cation instructions on BB4 and BB7 are shrinking allocation instructions becausethey decrease the register stack size (compared to the parents in the control-ow14

graph). The two allocation instructions in BB3 are preallocation and postallocationinstruction because alloc 5 has been inserted right before the function call and alloc40 right after.Note that the same allocation instruction can be a shrinking and an expand-ing allocation instruction depending on which control path was taken to reach thebasic block that contains the instruction.2.5 NotationsLet us consider a node A in a control-ow graph G.� succ(A) is the set of direct successors of A in G. In Figure ??, succ(BB4) =fBB5; BB6g.� pred(A) is the set of direct predecessors of A in G. In Figure ??, pred(BB4) =fBB2; BB3g.� need(A) is the highest number of stacked registers alive at any point of thebasic block A. need(A) is the width of the fat point of the basic block A. InFigure ??, need(BB3) = 40.� alloc(A) is the value of the parameter of the allocation instruction in A. Thevalue can be greater but never less than need(A), except if the value is 0. Ifalloc(A) = 0, then A does not have any allocation instruction. The stackedregisters of the basic block A have been allocated by a previous allocationinstruction in G. In Figure ??, alloc(BB4) = 20In our examples, the basic block we are interested in will be called A. Thedirect predecessors of A will be called P1, P2,... and direct successors S1, S2,...The control-ow graphs are represented using large and small boxes. Thelarge boxes represent basic blocks. Only the allocation and the function call in-structions are shown. The other instructions are hidden. The small boxes attached15

to the basic block boxes contains the highest number of stacked register used by thecorresponding basic block (need(A)). In Figure ??, two allocation instructions andone function calls appears in BB3. need(BB3) is equal to the parameter value ofone of the allocation instructions present in BB3.2.6 Register Allocation Optimality
alloc 60

BB2

BB1

BB4BB3

BB5 BB6

BB7

BB8

10

20

20 40

30 60

20

10

call foo()

Figure 2.7: Example of a non-RA optimal procedure.We saw that the number of stacked register spills/restores is directly linkedto the size of the register stack. Consequently, we want to avoid useless registerallocations. We saw there were two types of such allocations: overestimation of
16

BB2

BB1

BB4BB3

BB5 BB6

BB7

BB8

10

20

20 40

30 60

20

10

call foo()

alloc 60

alloc 40

alloc 30

alloc 10

alloc 20

alloc 20

alloc 20

alloc 10Figure 2.8: Example of an RA optimal procedure.the current register stack frame and frozen allocation in the previous register stackframes.Therefore, for the control-ow graph and a register assignment of a givenprocedure P, the number of stacked registers allocated for the variables of P isoptimal if and only if the number of wasted stacked registers is minimized.The number of wasted registers is minimized if and only if the two typesof useless allocations are minimized. The overestimation is minimized by a �ne-grain allocation (for any control path in the control-ow graph, we allocate theexact number of registers needed). The frozen allocation is minimized by the useof preallocation and postallocation instruction (we shrink the register stack frame17

as much as possible just before any function call and restore the frame size to theoriginal value afterwards).De�nition 2.1 (RA Optimality) Given a control-ow graph G of a procedure Pand a register assignment for the variables of P, the number of stacked registersallocated for the variables of P is minimized if and only if:(i) for every control path in G, the minimum number of stacked registers is allo-cated,(ii) and for every function call in P, the current register stack frame is shrunk tothe minimum.The procedure is then said to be Register Allocation (RA) optimal.The �rst bullet of De�nition ?? means that, given a speci�c control pathin G, we allocate exactly the maximum number of stacked registers needed at anypoint of the execution of the control path.The procedure, whose control-ow graph is represented on Figure ??, is notRA optimal. For instance, if the ow of execution is composed of the basics blocksBB1, BB2, BB3, BB5, BB7 and BB8, then we allocated 60 stacked registers andused only 20. The �rst bullet of the RA optimality de�nition is not veri�ed.However, the same procedure with di�erent allocation instructions repre-sented on Figure ?? is RA optimal. Every allocation instruction ensures that, forevery control paths in the control-ow graph, we allocate only the number of stackedregisters needed along the path. For instance, the path BB1�BB2�BB3�BB7�BB8 requires only 20 stacked registers at most and only one 20 stacked registers areallocated. Also the current register stack frame is shrunk to the minimum beforethe only function call in BB4. Note that only allocation instructions and functioncalls are shown in the basic blocks. The two conditions of De�nition ?? are veri�ed.18

2.7 Optimal Allocation Instruction PlacementThe Optimal Allocation Instruction Placement (OAIP) problem is formu-lated in the following way: Given a control-ow graph G for a procedure P and aregister assignment for the variables of P, insert the minimum number of allocationinstructions in the procedure P in such a way that, for every path in G, the numberof registers allocated is minimum.Part of the OAIP problem consists in solving the register allocation problemdescribed in the previous section. The second part consists in minimizing the num-ber of allocation instructions used to achieve optimality for the register allocationproblem. Therefore we can de�ne optimality for the OAIP problem.De�nition 2.2 (OAIP optimality) A procedure P is said to be OAIP optimal fora given register assignment for the variables of P if the following conditions are true:(i) P is RA optimal and if(ii) P uses the minimum number of allocation instructions to achieve (i).The example described on Figure ?? is not OAIP optimal, although the RAoptimality is reached. The number of allocations used to achieve the RA optimalityis not minimum. For instance, the allocation instruction of BB3 could be removedwithout any impact on the register allocation. The allocation instruction of BB2already allocated the necessary stacked registers in the corresponding control path.Figure ?? presents a OAIP optimal solution for the same procedure. There is onlyone allocation per control path in the control-ow graph. No allocation instructioncan be removed without sacri�cing the RA optimality.
19

BB5 BB6

BB7

BB8

30 60

20

10

alloc 60alloc 30

BB2

BB1

BB4BB3

10

20

20 40alloc 40

alloc 20

alloc 40

alloc 5
call foo()

Figure 2.9: Example of a OAIP optimal procedure.
20

Chapter 3NON-OPTIMAL STRAIGHTFORWARD ALGORITHMSWe present three non-optimal straightforward algorithms for the OAIP prob-lem that we will use as reference for MAIA presented in chapter ??. The algorithmspresented in this chapter are important to understand the philosophy behind MAIA.The minimum requirement solution is the simplest solution we may think about. Thearound-call shrinkage solution only deals with the stacked register waste caused byfrozen allocations. The brute-force solution minimizes the waste of stacked registersbut uses too many allocation instructions.3.1 The Minimum Requirement Solution3.1.1 OverviewThe minimum requirement solution to the OAIP problem is straightforward.We simply compute the maximum number of registers used anywhere in the functionand allocate that number on the �rst basic block executed. The value is computed byexamining every basic block requirement and taking the maximum. The allocationinstruction is the �rst instruction of the routine.The solution is called minimum requirement solution because every functionrequires at least one allocation instruction to allocate the stacked registers andthe minimum requirement solution inserts a single allocation instruction for everyfunction.The minimum requirement solution is the implementation chosen for the IA-64 architecture. The IA-64 allocation instruction has been designed to allocate21

stacked registers once and for all for every function. However the allocation in-struction has other uses and may appear more than once in the code (for rotatingregisters in a loop for instance).On Figure ??, we see that only one allocation instruction has been inserted.The number of stacked registers allocated is equal to the highest basic block stackedregister requirement: 60 registers for BB6. For every control path in the control-ow graph, there is always enough registers allocated on the stack. Note that moreregisters could be allocated, but they would not be used in any of the control path,and therefore would be wasted.3.1.2 OptimalityThe minimum requirement solution is obviously not OAIP optimal. Theminimum number of allocation instructions has been reached, but depending onwhich control path of the control-ow graph is executed, we may allocate moreregisters than needed: the RA optimality has not been achieved.On Figure ??, if the ow of execution only follows the left branches e.g. thebasic blocks BB1, BB2, BB3, BB7 and BB8, then we have allocated an excess of10 registers.3.2 The Around Call Shrinkage Solution3.2.1 OverviewThe around call shrinkage of the stacked register frame directly prevents theunused stacked registers allocation from freezing when a function call occurs (cf.Chapter ??). Every time a function call appears in the code, we surround thecall instruction with a preallocation instruction and a postallocation instruction.We use the preallocation instruction to shrink the current register stack frame tothe minimum by deallocating unused registers and the postallocation instruction toreallocate the registers that had been deallocated by the preallocation instruction.22

alloc 60

BB2

BB1

BB4BB3

BB5 BB6

BB7

BB8

10

20

20 40

30 60

20

10

call foo()

Figure 3.1: Minimum Requirement Example.

23

The around call shrinkage solution is based on the minimum requirementsolution. The required allocation instruction cannot be avoided.In order to make the algorithm simpler, we want to have only one allocationinstruction per basic block. Therefore we may to split existing basic blocks intoseveral basic blocks. For instance, a basic block with 3 allocation instructions willbe split into a linear chain of 3 basic blocks. The split will occur right beforeeach allocation instruction. Thus the allocation instructions are always the �rstinstructions on the basic blocks. The split is necessary for MAIA presented inChapter ??.On Figure ??, we look for the function calls in the control-ow graph. Thenwe insert the preallocation and postallocation instructions in BB4 and split the basicblock into two blocks BB4a and BB4b. The preallocation instruction is the �rstallocation of BB4a. The postallocation is the �rst instruction of BB4b. The valueof the preallocation instruction is the number of greatest stacked registers currentlyin use when the function call occurs (here 5). The postallocation instruction valueis the number of stacked registers allocated before the corresponding preallocationinstruction (60).3.2.2 OptimalityOnly the second hypothesis of the RA optimality de�nition De�nition ??)is ful�lled. The around call shrinkage solution does not ensure that the minimumnumber of stacked registers is allocated for every control path in the control-owgraph. The around call shrinkage solution is not RA optimal, and therefore cannotbe OAIP optimal.For instance, the control path BB1-BB2-BB3-BB7-BB8 on Figure ?? usesonly 20 stacked registers maximum. But the required allocation instruction, theonly allocation instruction in the control path, allocates 60 stacked registers. Thearound call shrinkage solution is not optimal.24

BB2 20

BB1 10

BB5 30

BB7 20

BB8 10

60BB6

alloc 60

BB3 20

alloc 60

alloc 5 40BB4a

call foo()

40BB4b

Figure 3.2: Around Call Shrinkage Example.
25

We may note that the required allocation instruction could allocate only 40registers and the postallocation instruction 60. Nevertheless, since the solution isbased on the minimum requirement solution, the around call shrinkage solutioncannot achieve such results without more advanced optimizations.3.3 The Brute-Force Solution3.3.1 OverviewThe brute-force solution takes an opposite approach from the minimum re-quirement solution. Instead of inserting the minimum number of allocation instruc-tions, the brute-force solution inserts one allocation instruction per basic block. Thevalue of the allocation instruction is equal to the stacked register requirement of thebasic block. The solution is based on the around call shrinkage solution.Because of existing preallocation and postallocation instructions from thearound call shrinkage solution, we split basic blocks to maintain one allocationinstruction per basic block. The �rst instruction of every basic block is always anallocation instruction then.On Figure ??, we consider each basic block of the control-ow graph. Welook at the register requirement and insert the corresponding allocation instruction.The algorithm is linear.Although the brute-force solution seems to be very ine�cient, the solution isused as a starting point for the MAIA solution.3.3.2 OptimalityThe brute-force solution is not be OAIP optimal in general. The maximumnumber of allocation instructions, one per basic block, is inserted. There may bea di�erent way to insert the allocation instructions that would use less instructionswhile allocating the same number of stacked registers.26

However the brute-force solution is RA optimal. We allocate the minimumnumber of stacked registers needed by each basic block. We shrink or expand theregister stack frame only when necessary. The two conditions of the RA optimalityde�nition (De�nition ??) are ful�lled.On Figure ??, we notice that we never allocate more stacked registers thanneeded by every basic block. However the brute-force solution does not solve theOAIP problem because the number of allocation instructions is not minimal. Forinstance we could have removed the allocation instruction of BB8. The registerrequirement of BB8 is covered by the allocation instruction in BB7.

27

BB3 20

BB2 20

BB1 10

BB5 30

BB7 20

BB8 10

60BB6

40BB4a

40BB4c

alloc 10

alloc 20

alloc 20 alloc 40

alloc 5

alloc 40

alloc 30 alloc 60

alloc 20

alloc 10

40BB4b

call foo()

Figure 3.3: Brute Force Example.
28

Chapter 4MAIA, MINIMUM ALLOCATION INSTRUCTIONALGORITHM4.1 Problem statementAll the solutions presented in Chapter ?? do not give an optimal solutionto the OAIP problem. Either the number of allocation instructions is minimized(Section ??), or the the number of stacked registers allocated is minimized (Sec-tion ??), but not both. The around call shrinkage solution (Section ??) is a simplecompromise and only considers one part of the problem: the register stack increasedue to function calls.In this section, we present an algorithm that e�ciently addresses the OAIPproblem: Given a control-ow graph G of a procedure P and a register assignmentfor the variables of P, insert the minimum number of allocation instructions in theprocedure P in such a way that, for every path in G, the number of registers allo-cated is minimum. Our solution is conjectured to be optimal in the sense that weonly allocate the stack registers that are needed for allocate for the stacked regis-ters we need for a given control path while using a minimum number of allocationinstructionsNote that we assume that all the paths in the control-ow graph are equallylikely to be executed. Later we will introduce control-ow graphs with frequency ofexecution information. Also we assume that there is no predicated instruction andthat the cost of the allocation instruction is ignored.29

We also restrict to programs with reducible ow-graphs only [?]. Thereforethere are only natural loops and the edges of the control-ow graph can be par-titioned into two groups: forward edges and back edges. From now on, we onlyconsider the forward edges. The control-ow graphs we consider are the actualcontrol-ow graphs from which we removed the back edges. The back edges and thenatural loops will be considered later.4.2 Rule De�nitionsThe idea behind MAIA is to start with the brute-force solution (Section ??)and to remove all the unnecessary allocation instructions. For every control pathin the control-ow graph, we want the register stack frame size to only increaseas the stacked register demand grows. We shrink the frame only before functioncalls. Therefore the register allocation increases along every control path in thecontrol-ow graph. We use three rules to obtain an e�cient allocation instructionplacement: the downward propagation rule, the upward propagation rule and thereduction rule.De�nition 4.1 (Downward Propagation Rule) Given a basic block A and k =minPi2Pred(A)alloc(Pi). If alloc(A) < k then alloc(A) = k.The downward propagation rule propagates downward the information of ahigher allocation value. Given a basic block B, if a dominant basic block of B has ahigher allocation value, then B will be informed. The downward propagation phaseacts a pre-pass to the two others rules. The downward propagation rule providesallocation information to the basic blocks below in the control-ow graph for a �nerallocation instruction placement.In Figure ??(a) each basic block has an allocation instruction. The basicblock A has only one direct successor S and alloc(A) > alloc(S). Moreover all thedirect predecessors of S have an higher allocation value. In any case, when a ow30

(b) After downward propagation(a) Before downward propagation

alloc 30 30

10

alloc 20 20A P

S

alloc 30 30

10

alloc 20 20A P

S alloc 10 alloc 20

Figure 4.1: Example of the downward propagation ruleof execution reaches S, at least 20 stacked registers will be allocated. Propagat-ing downward the allocation instruction of A does not hurt the register allocation.However the allocation instruction of P cannot be propagated downward to S. Oth-erwise, if the ow of execution comes from A to S, we would allocate more stackedregisters than required. The result of the propagation is shown on Figure ??(b).De�nition 4.2 (Upward Propagation Rule) Given a basic block A, if, for ev-ery direct predecessor P of A, all the following conditions are true:(i) alloc(A) � alloc(P)(ii) 8S 2 succ(P), alloc(A) � alloc(S)then alloc(P) = alloc(A), for every direct predecessor P of A.Intuitively, the upward propagation rule considers that, since for any controlpath starting from a predecessor of A we have to increase the register stack framesize, we would better increase the size before the ow of execution reaches A andmaybe avoid the execution of some unnecessary allocation instructions. The allo-cation instruction is not propagated upward if another parent B of A has a lowerallocation value. If a ow comes from B to A, the allocation instruction may beneeded. 31

alloc 10 10P

alloc 30 30Salloc 20 20A alloc 30 30Salloc 20 20A

alloc 20 10P

(a) Before upward propagation (b) After upward propagationFigure 4.2: Example of the upward propagation ruleIn Figure ??(a) each basic block has an allocation instruction. All the directsuccessors of P have a higher allocation need. In Figure ??(b), the basic block A,which has the minimum allocation needs among the direct successors of P , doesnot need the allocation instruction anymore. The allocation instruction of A ispropagated to the basic block P , which now allocates 20 stacked registers insteadof 10. The redundant allocation instruction in A is removed by the reduction rule.De�nition 4.3 (Reduction Rule) Given a basic block A, if all the following con-ditions are true:(i) alloc(A) is not a preallocation instruction(ii) for every direct predecessor P of A, alloc(P) � alloc(A)then remove alloc(A).On the other hand, the reduction rule considers that the registers have alreadybeen allocated in the predecessors of A and do not need to be allocated again in A.If all the direct predecessors of A have a higher allocation value, then the allocationinstruction of A is reduced.In Figure ??(a) each basic block has an allocation instruction. All the directpredecessors of S have a higher allocation need. Therefore S does not need the allo-cation instruction. The registers have already been allocated. In Figure ??(b), after32

(a) Before reduction (b) After reduction

alloc 30 30

10

alloc 20 20A P

S

alloc 30 30

alloc 10 10

alloc 20 20A P

S

Figure 4.3: Example of the reduction rulereduction, the allocation instruction from S has been removed. The two allocationinstructions of A and S have been reduced to a single allocation instruction (weassume that A was considered before P by the algorithm).To complete the algorithm we have to consider the function calls. We saw inSection ?? that the function calls must be surrounded by two allocation instructions:the preallocation instruction to shrink the register stack frame to the minimum num-ber of registers necessary for the call and the postallocation instruction to reallocatethe deallocated registers.The preallocation instruction cannot be avoided or removed. We do not wantto allocate more registers than the ones required for the function call. Howeverwe may move the instruction earlier in the control-ow graph if possible. Theonly condition that needs to be satis�ed is that, when the control path reaches thefunction call, only the necessary registers are allocated. Therefore the preallocationcannot be reduced or be the recipient of a propagation.In Figure ??, we can see that the reduction of preallocation instruction causes20 registers to be allocated in basic block A before the function call, although only5 registers were necessary in S.The postallocation instruction must appear after the function call to reallo-cate the registers that the preallocation instruction might have deallocated. There-fore the postallocation instruction cannot be propagated across the function call.33

alloc 20 20

(b) After reduction

alloc 20 20

alloc 5 5

(a) Before reduction

alloc 10 10

call foo()

S

A

5

alloc 10 10

call foo()

S

A

Figure 4.4: The preallocation instruction cannot be reduced.Consequently we must forbid any propagation of the postallocation instruction.However the instruction can be replaced by another allocation instruction that ispropagated. The replacing instruction is then declared as the new postallocationinstruction.
alloc 5 5

alloc 50 50

alloc 30 30

call foo()

A

P

(b) After propagation(a) Before propagation

alloc 5 5

alloc 50 50

alloc 50 30

call foo()

A

P

Figure 4.5: The postallocation cannot be propagated, but the allocation value canbe replaced by a propagated allocation instruction value.In Figure ??, the postallocation instruction cannot be propagated in the placeof the preallocation instruction. The propagation would break the entire purpose of34

these the preallocation and postallocation instructions. However the alloc 50 canbe propagated in place of the current postallocation instructions. the alloc 50 mustthen be declared as a postallocation instruction in order not to be propagated acrossthe function call.For the same reasons, a preallocation instruction cannot be downward prop-agated. The instruction must appear before the function call. If the preallocationinstruction appears after the function call in the code, the all purpose of shrinkingthe current stack frame before the call is broken.Consequently the allocation instructions surrounding function calls have aspecial status that could be marked with a ag. Also, the propagation and reductionrules would apply only if the ags are correct. Which brings us to a revised versionof the de�nitions of the rules:De�nition 4.4 (Downward Propagation Rule) Given a basic block A and k =minPi2Pred(A)alloc(Pi) such that the allocation instruction in Pi is not a preallocationinstruction. If all the following conditions are true:(i) alloc(A) is not a preallocation instruction(ii) alloc(A) < kthen alloc(A) = kDe�nition 4.5 (Revised Upward Propagation Rule) Given a basic block A,if, for every direct predecessor P of A, all the following conditions are true:(i) alloc(A) is not a postallocation instruction(ii) alloc(A) � alloc(P)(iii) 8S 2 succ(P), alloc(A) � alloc(S)then alloc(P) = alloc(A), for every direct predecessor P of A.35

De�nition 4.6 (Revised Reduction Rule) Given a basic block A, if all the fol-lowing conditions are true:(i) alloc(A) is not a preallocation instruction(ii) for every direct predecessor P of A, alloc(P) � alloc(A)then remove alloc(A).4.3 MAIAMAIA is a three-pass algorithm. The control-ow graph is traversed forevery transformation to be applied: the downward propagation rule, the upwardpropagation rule and the reduction rule.G = brute-force solution of the original CFG;/* Downward propagation phase */Traverse G top-down in topological order {BB = current basic block;if (downward propagation rule applies on BB) {apply downward propagation rule on BB;}}/* Upward propagation phase */Traverse G bottom-up in reverse topological order {BB = current basic block;if (upward propagation rule applies on BB) {apply up propagation rule on BB;}}/* Downward propagation phase */Traverse G bottom-up in reverse topological order {BB = current basic block;if (reduction rule applies on BB) {apply reduction rule on BB;}} Figure 4.6: MAIA36

flow 1: 20 registers
flow 2: 30 registers
flow 3: 40 registers
flow 4: 50 registers

alloc 40

alloc 5

alloc 40

alloc 30 alloc 60

40BB4b

call foo()

alloc 20

BB8 10

BB7 20

BB5 30 BB6

40BB4c

40BB4a

60

BB3 20

BB2 20

BB1 10

Figure 4.7: The di�erent control paths and the allocation instructions inserted byMAIA. Note that the result is OAIP optimal.
37

Figure ?? shows a pseudo-code algorithm that uses the three rules. Theorder in which the rules are applied is not arbitrary. The downward propagationrule needs to be applied �rst to provide information about higher allocation valueearlier in the control-ow graph for the upward propagation rule. The reductionrule uses the results of the upward propagation rule.Note that \the rule applies" means that the revised de�nition hypothesis areveri�ed (De�nitions ??, ?? and ??).The three rules are applied on the basic blocks of the control-ow graph,traversed in topological order. The downward propagation rule traverses the control-ow graph from the entry node to the exit node, while the two others rules startfrom the exit node and end at the entry node.On Figure ??, we show the di�erent steps of the algorithm that ended upwith Figure ??. The algorithm starts on Figure ??(a).The top-down downward propagation phase propagates only the allocationinstructions from BB7 to BB8. The allocation instruction in BB1, BB2 and BB3are not propagated because De�nition ??(iii) is not satis�ed. The allocation instruc-tion in BB4b is a preallocation instruction. Therefore, the allocation instruction ofBB4a and BB4b cannot satisfy De�nition ??(i) or (ii). The instruction of BB4ccannot be propagated downward to BB6 because De�nition ??(iii) is not satis�edor to BB5 because De�nition ??(iv) is not satis�ed. De�nition ??(iv) cannot besatis�ed for BB5 and the corresponding allocation instruction is not propagated.Because BB8 has no child, there is no downward propagation. The end of thedownward propagation phase is shown on Figure ??(b).With the same reasoning and using De�nition ??, we apply the bottom-upupward propagation phase to the control-ow graph. Only one change is visible. Theallocation instruction of BB2 has been propagated to BB1. Some other allocationinstructions have been moved, but there is no change to the control ow-graph. For38

BB3 20

BB2 20

BB1 10

BB5 30

BB7 20

BB8 10

60BB6

40BB4a

40BB4c

alloc 10

alloc 20

alloc 20 alloc 40

alloc 5

alloc 40

alloc 30 alloc 60

alloc 20

alloc 10

40BB4b

call foo()

BB3 20

BB2 20

BB1 10

BB5 30

BB7 20

BB8 10

60BB6

40BB4a

40BB4c

alloc 10

alloc 20

alloc 20 alloc 40

alloc 5

alloc 40

alloc 30 alloc 60

40BB4b

call foo()

alloc 20

alloc 20

(a) (b)

BB3 20

BB2 20

BB5 30

BB7 20

BB8 10

60BB6

40BB4a

40BB4c

alloc 20

alloc 20

alloc 20 alloc 40

alloc 5

alloc 40

alloc 30 alloc 60

40BB4b

call foo()

alloc 20

alloc 20

BB1 10

BB5 30

BB7 20

60BB6

40BB4a

40BB4c

(c) (d)

alloc 20

alloc 40

alloc 5

alloc 40

alloc 30 alloc 60

40BB4b

call foo()

BB1 10

BB8 10

BB3 20

BB2 20

Figure 4.8: Application of MAIA on an example.39

instance, the instruction in BB3 has been moved to BB2, but since the allocationvalue is the same, nothing happens. The resulting control-ow graph appears onFigure ??(c).We then apply the bottom-up reduction phase to the control-ow graph.The allocation instruction of a basic block is removed if all the parents have ahigher allocation greater or equal to the basic block. The allocation instructions inBB2, BB3, BB7 and BB8 are reduced. The others instructions cannot be reducedbecause at least one of the parent had a lower allocation value. Figure ??(d) showsthe �nal result.4.4 Time ComplexityIn this section we study the time complexity of MAIA. We want to establishthe complexity in relation to the number of basic blocks in the control ow graph.Thus we start by showing, in Lemma ?? a bound in the number of edges in theoriginal control ow graph.Lemma 4.1 The number of edges in a control-ow graph is proportional to thenumber of basic blocks.Proof. Each edge is an outgoing edge from a basic block. A basic block can onlyhave at most two outgoing edges. Therefore there can at most be twice more edgesthan basic blocks in a control-ow graph. 2Theorem 4.1 Assuming the number of parents of a given basic block is bounded bya constant k, independent of the number of basic blocks in the control-ow graph,MAIA is linear in the number of basic blocks in the original control-ow graph.Proof. The algorithm has three phases: the downward propagation phase, theupward propagation phase and the reduction phase.40

The downward propagation rule visits the children and the parents of thechildren of the current basic block. Since the number of parents for a given basicblock is bounded, the downward propagation rule visits 1 basic block, the children ofthe basic block (2 maximum) and the parents of the children (k maximum per child).At most, the rule visits 2k + 3 basic blocks, where k is independent of the numberof basic blocks in the control-ow graph. Therefore, the downward propagation rulecan be applied in constant time.The upward propagation rule visits the parents and the other child of everyparent if any. Visiting the parents is equivalent to following upward all the incomingedges of a basic block. The edges of the control-ow graph are followed upward onlyonce. Because a basic block has at most two children, visiting the other child ofthe parent requires that at most one edge be followed downward. Therefore, in theworst case, the upward propagation rule visits each edge in the control-ow graph atmost three times. Using Lemma ?? we can conclude that the upward propagationrule can be applied in linear time in the number of basic blocks.The reduction rule visits only the parents of a basic block. With a reasoningsimilar to the upward propagation rule, we show that the reduction phase is appliedin linear time in the number of basic blocks in the control-ow graph.We may have introduced new basic blocks because of the function calls andthe corresponding preallocation and postallocation instructions. However, since wedo not create more than two basic blocks per original basic block, the overall costremains linear in the original number of basic blocks. Therefore, MAIA is linear inthe number of basic blocks in the control-ow graph. 2The assumption that the number of parents of a basic block is bounded by aconstant k, independent of the number of basic blocks in the control-ow graph isa fair assumption. Therefore, if the number of immediate predecessors of any basicblock is bounded by a constant, then MAIA is linear.41

4.5 A Two-Pass Version of the AlgorithmMAIA presented in Section ?? is a three-pass algorithm. However, it can beconverted into a two-pass algorithm by merging the upward propagation phase andthe reduction phase into one single phase.We chose to describe a three-pass version of the algorithm in this thesis inorder to provide a more straightforward description of the algorithm. To implementthe algorithm in a two-pass version, we need to consider the basic blocks in a speci�corder. When the bottom-up algorithm considers a new level of basic blocks inthe control-ow graph, the basic blocks with the lowest allocation value should beconsidered �rst. Otherwise reduction opportunities may be missed.To implement the order in linear time, we use one hash table that is �lledwith the basic blocks of the current level. the index function of the hash table simplyreturns the allocation value of the basic block. Therefore, the size of the hash table isequal to RT , the maximum number of stacked registers that an allocation instructioncan allocate. If two basic blocks at the same level share the same allocation value,then they are stored in the linked list in the hash table. When a basic block isinserted in the hash table, a pointer is created. Thus, the basic block always pointsto its entry in the hash table. With the described implementation of the hash table,the insertion and deletion of a basic block from a hash table are done in constanttime, and the overall bottom-up pass remains linear in the number of basic blocksin the control-ow graph.To conclude, the two-pass algorithm is faster, because one pass of the control-ow graph is avoided. Moreover the memory usage does not dramatically increasebecause only one �xed-size hash table is used. The number of entries in the hashtable is bounded by the number of basic block in the control-ow graph.
42

4.6 OptimalityTo prove the OAIP optimality of MAIA, we �rst need to prove the RA opti-mality. Then we show that the minimum number of allocation instructions is usedto achieve the RA optimality.4.6.1 RA OptimalityLemma 4.2 Let B be a basic block of a control ow graph G and C1; : : : ; Cn becontrol paths from the entry node of G to B. After the phase (1) of MAIA, alloc(B)is equal to the minimum path register requirement of C1; : : : ; Cn.Proof. By induction. The algorithm traverses the basic blocks of G in topologicalorder. We prove that the following property is satis�ed at each step:Induction Property: If B is a visited basic block and C1; : : : ; Cn are all thecontrol paths from the entry node of G to B, then alloc(B) is equal to the minimumpath register requirement of C1; : : : ; Cn.Induction Base: The �rst node visited by the algorithm is the entry nodeS of G. The only control path to reach S is C = S. From the phase(0) of thealgorithm, the initial value for alloc(S) is equal the local register requirement of S,which is the minimum path register requirement for C. Applying the downwardpropagation rule to node S cannot change the value of alloc(S) because S has noparents, therefore S still satis�es the induction property after it is visited.Induction Step: Let B be a node in G and let P1; : : : ; Pn be the set of allimmediate predecessors of B. We assume that P1; : : : ; Pn are already visited andtherefore that they satisfy the induction property. We will prove that B satis�es theinduction property after it is visited. Let Pm be the predecessor of B with minimumallocation. Upon visiting B the algorithm can only change the allocation of B toalloc(Pm) or keep the allocation value as it is. If the allocation value of B changesto alloc(Pm), then the new value for alloc(B) is equal the register requirement43

of the path fS; : : : ; Pm; Bg which is the path with minimum register requirement| otherwise Pm would not have the minimum allocation amongst the immediatepredecessors of B. If the allocation of B does not change when B is visited, thenB has a register requirement that is higher than all its predecessors, and thus allpaths from S to B have a register requirement equal the local register requirementof B. Thus, in both cases, B satis�es the induction property. 2Lemma 4.3 Given a control-ow graph G with a start node S and an exit node E.Let B be a basic block of G. After the upward propagation phase of MAIA, alloc(B)is a lower bound to the path register requirement of all the paths from S to E thatinclude B.Proof. By induction. The algorithm traverses the basic blocks of G in reversetopological order. We prove that the following property is satis�ed at each step:Induction Property: If B is a visited basic block and C1; : : : ; Cn are all thecontrol paths from S to E that include B, then alloc(B) is less or equal to theminimum path register requirement of C1; : : : ; Cn.Induction Base: The �rst node visited by the algorithm is the exit node Eof G. alloc(E) has been computed during the downward propagation phase. UsingLemma ??, alloc(E) is equal to the minimum path register requirement of all theincoming paths of E. Because E is the exit node of G, the incoming paths of E areall the control paths of G. Thus, before E is visited, alloc(E) is the minimum pathregister requirement of all the control paths from the entry node of G to E. WhenE is visited, the upward propagation rule does not modify the allocation value ofE. The induction property is satis�ed for E.Induction Step: Let B be a node in G and let S1; : : : ; Sn be the set of allimmediate successors of B. Because the upward propagation phase of MAIA visitsthe nodes in reverse topological order, S1; : : : ; Sn are already visited and thereforethat they satisfy the induction property. We will prove that B satis�es the induction44

property after it is visited. According to De�nition ??, alloc(B) = alloc(Si) if Si hasbeen propagated to B, and alloc(B) < alloc(Si) otherwise1. Therefore alloc(B) �alloc(Si). Since the allocation values of S1; : : : ; Sn represents a lower bound tothe minimum path register requirement of all the paths going through S1; : : : ; Sn,alloc(B) represents a lower bound to all the paths from E to S that include B.The allocation value of B will not change when the upward propagation rule will beapplied to B. 2Lemma 4.4 Given a control-ow graph G, after the reduction phase of MAIA, forevery control path C of G, the maximum number of stacked registers allocated doesnot exceed the path register requirement of C.Proof. After the upward propagation phase, thanks to Lemma ??, the number ofstacked registers allocated for any control path C of G does not exceed the pathregister requirement of C. The reduction phase only removes allocation instruction.Therefore the number of stacked registers allocated for a given control path can onlydecrease. Lemma ?? is true. 2Lemma 4.5 Given a control-ow graph G, after MAIA is applied to G, for everybasic block B of G, the local register requirement of B is satis�ed.Proof. After the initialization of MAIA, there is one allocation instruction perbasic block and the allocation value is equal to the local register requirement ofthe basic block. Therefore the local register requirement of every basic block B ofG is satis�ed before applying the downward propagation phase of MAIA. We nowprove that none of the three transformations applied in the successive phases of thealgorithm will cause a basic block not to have enough stacked registers allocated.1 If De�nition ??(iii) is not veri�ed for Si, then De�nition ??(ii) will be veri�ed forSj with i 6= j and the corresponding allocation instruction will be propagatedto B. 45

Because of De�nition ??(ii) and De�nition ??(ii), the downward propagationrule and the upward propagation rule only increase the values of the allocationinstructions already in place. Therefore, if the local register requirement of a basicblock was satis�ed by an existing allocation instruction, only more registers can beallocated and the local register requirement of the basic block is still satis�ed afterthe propagation phases of MAIA.During the reduction phase of the algorithm, the reduction rules only re-moves allocation instructions. Let A be a basic block whose allocation instructionis removed. According to De�nition ??(ii), all the predecessors of A in G have anallocation instruction with a higher allocation value. Therefore, if the allocation in-struction of A is removed, the stacked registers allocated by the removed allocationinstruction will still be executed. If the local register requirement of A was satis�edbefore reduction, then the local register requirement of A will still be satis�ed afterreduction.Therefore the local register requirement of every basic block B inG is satis�edat the beginning of MAIA and none of the phases of the algorithm will cause a basicblock not to have enough stacked registers allocated. We proved Lemma ??. 2Theorem 4.2 MAIA is RA optimal.Proof. Lemma ?? and Lemma ?? prove De�nition ??(i). The use of preallocationand postallocation instructions ensures that De�nition ??(ii) is satis�ed. ThereforeMAIA is RA optimal. 24.6.2 OAIP optimalityConjecture 4.1 MAIA is OAIP optimal.Proof. Theorem ?? established the RA optimality of MAIA. We conjecture that thenumber of allocation instructions inserted by MAIA is minimum. The intuition is to46

have at most one allocation instruction inserted in each control path in the control-ow graph. If a the path register requirement of a path is already covered by theallocation instruction of another path, then no allocation instruction is required.2On Figure ??, the control-ow graph has 4 di�erent control paths. Thecontrol paths are colored with the intensity proportional to the number of stackedregisters needed. When control paths overlap on the same basic block, we colorthe basic block with the least intensive color. We notice that there is only oneallocation instruction per control path, except for the control path 3 that has alsoone preallocation and one postallocation instructions too. The minimum number ofallocation instructions has been inserted. Since the RA optimality is satis�ed, thesolution is OAIP optimal.4.6.3 About Natural LoopsIn our description of MAIA we only considered forward edges therefore the al-gorithm only optimizes the static placement of allocation instructions in the control-ow graph. However, if we consider back edges, the repeated execution of the sameallocation instruction in a loop can be costly. In such a case only the �rst call tothe allocation instruction is necessary. We consider the dynamic optimization of theallocation instruction placement in the next chapter.4.7 ConclusionWe have a one-pass bottom-up e�cient linear algorithm that ful�lls all therequirements of the OAIP problem: the minimum number of registers is allocated forevery control path of the control-ow graph while the minimum number of allocationinstructions is used. The memory size necessary to execute MAIA is linear: we needone hash table with at most as many entries as there are basic blocks in the control-ow graph. 47

However MAIA is theoretical, and we did not consider implementation prob-lems and conicts that may appear with speci�c architectures. A set of allocationinstructions that is OAIP optimal does not necessarily result in the generation offast code. In the next chapter we will study the e�ect of optimal placement ofinstruction allocation on the execution time of the code generated.

48

Chapter 5OPTIMIZATIONS AND FINE-TUNINGIn the previous chapter we described an e�cient linear algorithm. We as-sumed that the allocation instruction was free: there was no dependence or conictof any type, and the execution time of the instruction was negligible. Also optimalwas meant statically, not dynamically.In this chapter, we will rise some issues when we try to implement the algo-rithm in a real compiler in a speci�c architecture (IA-64 architecture for instance).We will consider the cost of the allocation instruction itself, the redundant call toallocation instructions in loops and the use of frequency of execution information.5.1 Cost of the Allocation Instruction and TuningUntil now, the allocation instruction was assumed to have no cost. However,the instructions in the source code using stacked registers are very likely to dependon the allocation instructions: the stacked registers cannot be used before the allo-cation instruction terminates. The IA-64 architecture, based on Instruction-LevelParallelism (ILP), may see scheduling opportunities reduced because all the otherinstructions are waiting for the allocation instruction. The IA-64 architecture alsorequires that the allocation instruction be the �rst instruction in an instructiongroup ([?]).Moreover the cost of the instruction itself should not be neglected. Theregister stack engine is expected to spill and restore registers when needed in atransparent manner. But depending on whether spills and restores are necessary49

or not and how many registers need to be moved to/from memory, the cost of theallocation instruction may vary.Overall we have to take into account the cost of the allocation instruction.Depending on the architecture, the implementation and the assembly code itself,the cost di�ers. Too many allocation instructions, even if optimal, may slow downthe execution of the program.We have to assign some priority to the allocation instructions. Some are lessuseful than others. Is it worth inserting an allocation instruction to save one or tworegisters?What we propose here is a simple heuristic to reduce the number of allocationinstructions in the code if the cost of the allocation instruction appears to be toohigh. We insert an allocation instruction if we save enough registers. We introduce athreshold value: Rm. Rm is the minimum number of stacked registers that must besaved when we insert an allocation instruction. Therefore the cost of the allocationinstruction is inversely proportional to the number of stacked registers saved by theinstruction.The only change that needs to be done to the main algorithm concerns theupward propagation rule. We want to force the propagation if the number of registerssaved is too low (less than Rm).De�nition 5.1 (Heuristic Upward Propagation Rule) Given a basic block A,if, for every direct predecessor P of A, all the following conditions are true:(i) alloc(A) is not a postallocation instruction(ii) alloc(A) � alloc(P)(iii) 8S 2 succ(P), alloc(A) � alloc(S) +Rmthen alloc(P) = alloc(A), for every direct predecessor P of A.50

flow 1: 20 registers
flow 2: 30 registers
flow 3: 40 registers
flow 4: 50 registers

alloc 5

alloc 40

alloc 60

40BB4b

call foo()

BB8 10

BB7 20

BB5 30 BB6

40BB4c

40BB4a

60

BB3 20

BB2 20

BB1 10alloc 40

Figure 5.1: A new solution when the register-saving heuristic is used.
51

If we apply the new propagation rule instead with Rm = 10, the example ofFigure ?? changes. The allocation instruction in BB5 is propagated all the way toBB2, where the allocation instruction of BB4a is also propagated. Eventually, wedecrease the number of allocation instructions by 33%. But control path 1 allocates20 registers more than the minimum required for that control path, and controlpath 2 allocates 10 extra registers.As a consequence, the solution cannot be optimal anymore. We may allocatemore registers than needed. Experiments must be done to correctly choose thevalue Rm and make a compromise between stacked register allocation and executionspeed.5.2 Redundant Calls to Allocation Instructions in LoopsWe described the algorithm as statically optimal. Which does not meanthat dynamically the number of calls to allocation instructions is minimized. If arun-time ow of execution only follows forward edges in the control-ow graph, thenumber of calls is optimal. But if one back edge of the control-ow graph is used,we may call the same allocation instructions several times unnecessarily.On Figure ??, if no back-edge is used, the four ows of execution are optimal.At run-time, we are very likely to iterate more than once the two loops by usingthe back edges of the control-ow graph. If we execute BB3 and BB7 in a loopusing the left back edge, no harm is done. There is no allocation instruction on theway. On the other hand, if we execute BB3, BB5, and BB7 in a loop, then theallocation instruction in BB5 is going to be called more than once, even though thestacked registers are already allocated. A worse case exists for the loop BB4ajbjcand BB6: the allocation instruction in BB4a shrinks the register stack frame. Weknow that shrinking allocation instructions are useless.We propose two solutions to reduce redundant calls to allocation instructions.The �rst one only avoids one special case without breaking the static optimality.52

The second avoids all the redundant calls, but the solution is not optimal anymore:too many stacked registers might be allocated.5.2.1 Avoiding the First Allocation Instruction of a LoopThere is one special case: the �rst instruction of a loop is an allocationinstruction. Although only the �rst allocation is necessary, the allocation instructionis executed at every iteration of the loop. Since the register allocation increases alongevery control path, we know that the other calls are redundant. We avoid redundantcalls by creating a fake basic block for the allocation instruction. The back edge ofthe loop points to the successor of the basic block. Thus, at the entry of the loop,the allocation instruction is executed once. Then the subsequent iterations skip thenew basic block, and the allocation instruction is not called. In other words, theallocation instruction is moved to the header of the loop.On Figure ??, BB4a is the �rst basic block of a loop and contains one alloca-tion instruction. We introduce another basic block (BB4�) to avoid the allocationinstruction to be executed more than once. The solution appears on Figure ??.The move of the �rst allocation instruction to the loop header does not mod-ify the number of allocation instructions and the register allocation optimality ismaintained.5.2.2 Avoiding Redundant Calls to Allocation InstructionsWe want to avoid redundant calls to allocation instructions within a loop.The proposed algorithm lists the basic blocks of the outer loop and consider thehighest allocation instruction value of these basic blocks. Then we apply the solutionthan the previous section: we create a fake basic block with one allocation instructionthat covers the needs of all the basic blocks in the loop.We consider the outer loop only, because inner loops are part of the outerloop and their needs are therefore covered by the outer loop.53

flow 1: 20 registers
flow 2: 30 registers
flow 3: 40 registers
flow 4: 50 registers

alloc 5 40BB4b

call foo()

alloc 40

alloc 20

40BB4*BB3 20

BB2 20

BB1 10

alloc 40

alloc 30 alloc 60

BB8 10

BB7 20

BB5 30 BB6

40BB4c

60

40BB4a

Figure 5.2: The �rst allocation instruction of a loop can be executed only once.
54

However, we need to apply the allocation instruction insertion algorithmagain to consider the changes made. We want to avoid a second call to the allocationinstruction insertion algorithm.Another way to solve redundant calls to allocation instructions in loops isto set the stacked register requirement of all the basic blocks in the outer loops tothe highest value needed by the basic blocks of the loops, even before applying theallocation instruction insertion algorithm.When applied to our example, the stacked register requirement of the outerloop (BB2 to BB7) is increased to 60. All the basic blocks of the loops have thesame register requirement. When MAIA is applied, we end up with only threeallocation instructions for the entire control-ow graph (Figure ??). All the allo-cation instructions (except preallocation and postallocation allocation instructions)are called only once. Note that, by coincidence, the solution is the call-shrinkageone (Figure ??).Several calls to preallocation and postallocation instructions are not con-sidered as redundant because they are necessary to avoid the frozen allocation ofstacked registers (Chapter ??).The number of stacked registers allocated in the loops may be too high forspeci�c ows of execution inside the loop, but we expect that the number of timesthe loop is executed will amortize the waste of stacked registers.5.3 Frequency of Execution InformationWe may expect from the compiler to provide static or dynamic informationabout the the frequency of execution of each basic block in the control-ow graph.The information can be used to avoid useless upward propagations: if a very ex-pensive basic block is almost never executed, then we would like to see allocationinstruction of the basic block to remain in place.55

alloc 5

alloc 60

60BB4b

call foo()

alloc 60

BB8 10

BB7 60

BB5 60 BB6

60BB4c

60BB4a

60

BB3 60

BB2 60

BB1 10
flow 1: 60 registers
flow 2: 60 registers
flow 3: 60 registers
flow 4: 60 registers

Figure 5.3: Control-ow graph without redundant calls to allocation instructions.
56

We assume we are given a weighted control-ow graph, i.e. where each edgehas a speci�c weight. The higher the weight, the more likely the edge will be takenat run-time.The idea is to form regions in the control-ow graph. There would be amain region (or hot region), that would include the basic blocks the most oftenexecuted at run-time. Then, there would be the other regions less often executed,and therefore less important. We would apply the algorithm on the entire control-ow graph but di�erentiate between the regions. Thus the allocation instructionsfrom less important regions would not interfere with the other basic blocks of thecontrol-ow graph: we only consider the important allocation instructions.We might use the pro�le-sensitive region formation algorithm originally usedin the IMPACT compiler[?] and described in [?][?]. The algorithm has four steps:(i) Choose a seed block: We choose the basic block with the highest frequencyof execution.(ii) Propagation to the successors: From the seed block, we propagate theregion to the successors. We only stop if there is a function call, if the frequencyof execution of an edge is too low (less than 50% of the immediate predecessorand that of the seed block) or if the region becomes too large.(iii) Propagation to the predecessors: From the same seed block, we propagatethe region to the predecessors using the same method.(iv) Propagation to the successors of the blocks in the region: We try toinclude other blocks by considering all the blocks in the current region as seedblocks. We extend the region only by following the successors. Thus we obtaina multi-ow region.Note that we may have more than one seed block. The regions built fromthe seed blocks may merge into one single region or not.57

Once the regions are formed, we apply our algorithm to the control-owgraph. The allocation instructions from the main region can be propagated into lessimportant regions, whereas allocation instructions from the other regions cannotcross the boundaries between regions. Which brings us to a new propagation rule:De�nition 5.2 (Pro�le-Sensitive Propagation Rule) Given a basic block A,if, for every direct predecessor P of A, all the following conditions are true:(i) alloc(A) is not a postallocation instruction(ii) alloc(A) � alloc(P)(iii) 8S 2 succ(P), alloc(A) � alloc(S)(iv) A is in the main region or P is not in the main regionthen alloc(P) = alloc(A), for every direct predecessor P of A.When applied to our example where weight has been added to the edges ofthe control-ow graph (Figure ??), we obtain one main region composed of fourbasic blocks: BB2, BB3, BB5 and BB7. BB2 and BB7 were the seed blocksbecause of their highest frequency of information (1000). BB3 was included by thesecond step of the region formation algorithm, BB5 by the fourth step.The allocation instructions are propagated as usual. The only di�erence isfor the alloc 40 from BB4a, that cannot cross the boundary from its own regionto the main region. The allocation instruction cannot be propagated anymore. Weend up with a solution where 30 registers are allocated by default. More registersare allocated only if the very unlikely to be executed inner loop is executed.
58

main region
other regions

alloc 40

alloc 5

alloc 40

alloc 60

40BB4b

call foo()

alloc 30

BB8 10

BB7 20

BB5 30 BB6

40BB4c

40BB4a

60

BB3 20

BB2 20

BB1 10

1999

200 10

60

550 50400

150400

800

1

Figure 5.4: Solution when considering frequency of execution.
59

Chapter 6CONSIDERATIONS FOR THE IA-64 ARCHITECTURESo far, we have studied the management of a theoretical register stack in a�ctitious architecture and solved the general related problems. We are now going toconsider the IA-64 architecture, developed by Intel. The architecture provides theuser with a register stack of 96 registers and a slightly larger interface.In the next sections, we will speci�cally present the register stack in the IA-64architecture and two major obstacles to MAIA: the rotating registers and predicatedinstructions.6.1 The Register StackThe IA-64 register stack is very similar to our theoretical model with RT =96. The restore and spill operations are transparently managed by the hardware-implemented Register Stack Engine (RTE). When the restore and spill operationsbecome necessary, the RTE tries to take advantage of unused memory bandwidthto access the register backing store and hopefully does not stop the execution of theprogram. The outgoing parameters are passed by overlapping the stack frames ofthe caller and the callee functions.The main di�erences with our theoretical model comes with the interface:there are 3 more instructions (flushrs, loadrs, cover) and the syntax of the allocationinstruction is more complete. Also the allocation must obey more constraining rules.
60

Instruction Descriptionalloc allocate registers in the register stack frameflushrs ush the register stack to the backing storeloadrs load the register stack from the backing storecover cover current stack frameFigure 6.1: IA-64 register stack interface.6.1.1 The alloc InstructionBasically everything that we assumed to be managed by the hardware isexplicitly controlled by the alloc instruction: the register stack frame pointer andthe passing parameters. Moreover, the instruction also explicitly allocates rotatingregisters speci�c to the IA-64 architecture (cf. ??).alloc gr1 = ar:pfs, i, l, o, rFigure 6.2: Syntax of the alloc instruction.When the alloc instruction is called, the value of Previous Function Stateregister ar:pfs is copied to gr1. gr1 is a static register caller/callee saved whenanother function is called. Thus the previous register stack frame parameters aresaved and previous register stack frames can be restored.The other arguments of the alloc instruction concerns the size of the currentregister stack frame and the partitioning of the registers in the frame.Arguments Descriptioni number of incoming parametersl number of local registerso number of outgoing parametersr number of rotating registersFigure 6.3: Alloc instruction argument description.61

The incoming registers are considered as local. Therefore, the size of theregister stack frame (sof) can be deduced from the previous values: sof = l + o.
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��

sof

i

l

o

r

overlaps with the
next frame input i

Figure 6.4: Partition of the IA-64 register stack frame.The number of rotating registers must a multiple of 8 and less than the sizeof the register stack frame.The alloc instruction must obey speci�c rules: the instruction has to be the�rst instruction in an instruction group and cannot be predicated. The e�ects of thealloc instruction are seen by the other instructions in the same group and thereafter.6.1.2 The flushrs and loadrs InstructionsThe flushrs instruction is used to explicitly save register stack frames fromprevious functions in memory and free the space for the future allocations.The loadrs instruction loads a number of bytes from the memory to theregister stack. The instruction is used to invalidate registers in the register stack.As the alloc instruction, the flushrs and loadrs instructions have to be the�rst instruction in an instruction group and cannot be predicated.6.1.3 The cover InstructionThe cover instruction allocates a new stack frame of size zero. All the stackedregisters, even outgoing registers, are not available anymore.62

The cover instruction must be the last instruction in an instruction groupand cannot be predicated.6.2 The Rotating Register AllocationIn the IA-64 architecture, the decrease in the execution speed of the loopsinduced by the lack of out-of-order execution was compensated by the use of rotatingregisters. At each iteration of loops, these special registers are shifted in a register-renaming process. For instance, a value that would have appeared in r35 in the �rstiteration, would appear in r36 in the next, and thus reducing dependences betweeniterations within the same loop.The rotating registers are allocated in the register stack with the alloc in-struction. The number of rotating registers must be a multiple of 8 and less than96 (RT). The rotating register base register must be cleared before allocating anyrotating register.If there are at least two loops with di�erent rotating register requirementsin the same routine, we need to insert extra alloc instructions to reallocate therotating registers. The newly inserted instructions do not change anything to thesize of the register stack and can be inserted independently from the allocationalgorithm. However we may want to merge the alloc instructions if possible, or eventake into consideration the new type of alloc instruction (rotating registers) rightfrom the beginning.6.2.1 Insertion After The Allocation AlgorithmThe �rst optimization is a simple patch to the solution given by MAIA. Wesimply insert the alloc instructions we need to allocate the rotating registers andthen try to move the inserted instructions up to an existing alloc instruction. Notethat the moving operation is not a propagation as de�ned in the previous chapters.63

However, because two alloc instructions could be moved up to the sameexisting alloc instruction and not be aware of it, the move would be limited toa linear chain of basic blocks. As soon as a split node is encountered, the moveoperation must stop and the alloc instruction cannot be merged with an existingone. Therefore, the e�ciency of the simple patch is limited.Also there is no easy way to choose a value for the other arguments of thealloc instruction. The number of local registers we need was determined by theallocation instruction insertion algorithm and forgotten since. We could look for allthe existing alloc instructions above in the control-ow graph, but the operationwould be too expensive. Therefore the patch to MAIA is too time-consuming.
alloc 30,16

existing alloc instruction

alloc 30,8 alloc 30,16

rotating register alloc instructions

BB3BB2

BB1

Figure 6.5: Example of ine�ciency of a post-pass patch for the rotating registerallocation.
64

On Figure ??, the alloc instruction of BB1 covers the stacked register re-quirements of the two control paths. The instruction has been inserted by MAIA.The second number appearing with the allocation instructions is the number of ro-tating registers allocated. The default value is the maximum used by all the loopsof the routine. There is no other alloc instructions between BB2/BB3 and BB1(the intermediary basic blocks are not shown).Then we insert two rotating register allocation instructions in BB2 and BB3.The number of local registers for the two instructions is computed by looking all theway up to the existing alloc instruction (30). We assumed the number of rotatingregisters needed for each loop is known (8 for BB2 and 16 for BB3). In the exam-ple, we cannot propagate the rotating register alloc instruction into the split nodewithout investigating the entire other branch of the split node. Therefore there is noway to cheaply merge the inserted alloc instruction with an existing in the speci�cexample with a post-pass patch to MAIA.6.2.2 A Rotating Register-Aware Allocation AlgorithmThe best way to handle the rotating registers is to modify the existing algo-rithm to take into account the rotating register allocation instruction type and therotating register value.We start with one allocation instruction per basic block as in the originalMAIA. But we now have to give a default rotating register value: all the allocationinstructions start with a rotating register default value of 0, except the instructionsin basic blocks included in a loop using rotating registers. A way to compute thelist of basic blocks in a natural loop can be found in [?].Since we use the algorithm of Section ??, all the allocation instructions inthe same loop at the beginning of the algorithm are the same: maximum number oflocal registers needed in the loop and maximum number of rotating registers neededin the loop. 65

Then we apply the algorithm with some modi�cations to the propagationand reduction rules. Besides the register stack frame size, the rules now consider therotating register values. The allocation instructions can be reduced or propagatedif the conditions about the allocation values AND the rotating register values arerespected. The rules are therefore more strict.Notation: rot(A) is the number of rotating registers allocated by the alloca-tion instruction of A. If A has no allocation instruction or if there is no rotatingregister allocated, the rotating register allocation value is 0. If alloc(A) = 0 androt(A) = 0, then there is no allocation instruction in A.De�nition 6.1 (Rotation Register-Aware Upward Propagation Rule) Givena basic block A, if, for every direct predecessor P of A, all the following conditionsare true:(i) alloc(A) is not a postallocation instruction(ii) alloc(A) � alloc(P)(iii) rot(A) � rot(P)(iv) 8S 2 succ(P), alloc(A) � alloc(S)then alloc(P) = alloc(A), for every direct predecessor P of A.De�nition 6.2 (Rotation Register-Aware Reduction Rule) Given a basic blockA, if all the following conditions are true:(i) alloc(A) is not a preallocation instruction(ii) for every direct predecessor P of A, alloc(P) � alloc(A) and rot(P) � rot(S)then remove alloc(A). 66

The upward propagation rule does not change concerning the register stackframe value. However the rotating register value adds a new constraint: the allo-cation instruction can be propagated as normally if the rotating register allocationvalue is at least as high as the preceding allocation instruction. Unlike the registerstack frame value, the rotating register value does not only increase along everycontrol path. The upward propagation rule does not take into account the rotatingregister value of the other children of the parent like for the register stack framevalue. Therefore we allow the number of rotating registers to shrink. Althoughshrinking was considered as not e�cient for the register stack frame value, reducingthe number of rotating registers has no impact on the execution speed of the pro-gram. There is no spill/restore due to a change in the number of rotating registers:the stacked registers are already allocated using the register stack frame value. Notethat we are sure not to allocate more rotating registers than the register stack framesize, because both alloc(A) and rot(A) are propagated at the same time.The reduction rule is modi�ed with the same idea in mind. If P covers theneeds of S in size of the frame and number of rotating registers, then the allocationinstruction of S is useless and can be reduced.The solution of the rotating register aware algorithm used on our example isshown on Figure ??. The outer loop is using 8 rotating registers, while the innerloop does not use any. Only one loop at the time can make use of the rotatingregisters. The solution is close to the one given in Figure ??. The rotating registervalue parameter has been added to the alloc instructions. One may notice thatthe preallocation instruction value has increased from 5 to 8. Since the number ofrotating register value has to be a multiple of 8 and must �t in the register stackframe, we had to adjust the register stack frame value. The updates of the valueof the preallocation instructions are automatically done at the beginning of thealgorithm when all the allocation instructions are inserted.67

flow 1: 20 registers
flow 2: 30 registers
flow 3: 40 registers
flow 4: 50 registers

alloc 40,8

alloc 8,8

alloc 40,8

alloc 30,8 alloc 60,8

40BB4b

call foo()

alloc 20,8

BB8 10

BB7 20

BB5 30 BB6

40BB4c

40BB4a

60

BB3 20

BB2 20

BB1 10

Figure 6.6: Rotating register aware solution.
68

alloc 90,8 alloc 32,32BB3BB2

BB1 alloc 60,16

Figure 6.7: Consequence of a partial order of the basic block: no allocation canbe propagated.However, from the the point of view of the upward propagation rule, we nowhave a partial order of the basic blocks. Before, from the two children of a splitnode, one allocation instruction was going to be propagated and reduced. Now,one instruction may have the largest register stack frame while the second has thehigher number of rotating registers. Therefore none of the two allocation instructionsare propagated or reduced, resulting in a higher number of allocation instructions.Figure ?? shows a speci�c con�guration where no allocation instruction among thechildren are propagated or reduced: BB2 does not allocate enough rotating registers,while BB3's register stack frame value is too small.As a conclusion, the rotating register may bring a lot of constraints. But therotating register aware algorithm is very likely to be used in correlation with theoptimization described in Section ??. Thus, the impact of the rotating registers onthe e�ciency of MAIA is limited.6.3 Predicated Control Path of InstructionsUnfortunately the alloc instruction cannot be predicated. As a consequence,MAIA must be applied after predication is done. Otherwise predication, one of the69

hot features of the IA-64 architecture, would be limited. The limitation of the allocinstructions is preferable to the limitation of predication.
 p1,p2 = ...
(p1) call foo1()
(p2) call foo2()

 alloc 90,0

(b) with predication

BB1

alloc 90,0 alloc 5,0BB3BB2

BB1

call foo1() call foo2()

(a) without predicationFigure 6.8: Predication limits the e�ciency of the algorithm.To take into account the predicated instructions, we look at the control-ow graph of the routines and consider all the instructions as always executed (thepredicate values are considered as true). Therefore we lose the �ne-grain controlwe had over the insertion of the alloc instruction: if two parallel control pathsare predicated and with very di�erent stacked register requirements, we have toconsider the worst case and insert an alloc instruction to cover both needs insteadof one �ne-tuned alloc instruction per control path. Predication is the main limitto the allocation instruction insertion algorithm.On Figure ??, foo2 can be preceded by a �ne-tuned preallocation if the callis not predicated. However, with predication, we must allocate for the two controlpaths and 85 stacked registers are wasted if foo2 is called.Unless the alloc instruction can be predicated, there is so far no easy solutionto solve the predication problem. We may want to consider huge di�erences instacked register requirements between two paths with function calls before applying70

an if-conversion for instance. However we are not able to list all the cases. Astudy of the impact of each optimization (predication or alloc instruction) would benecessary beforehand.

71

Chapter 7FUTURE WORKSo far, we introduced MAIA, an e�cient allocation insertion algorithm. Wepresented di�erent architecture independent optimizations and considered real-lifeconstraints with the IA-64 architecture. Besides the conict with predicated in-structions, there are still opened questions. The e�ciency of the algorithm couldbe enhanced if some other optimizations were more aware of the alloc instructions.Also a deeper study of the alloc instruction would help to �ne-tune the presentedalgorithms.7.1 Interactions With Other Optimizations7.1.1 Copy PropagationThe copy propagation, a classic compiler optimization, consists of, given anassignment x y, replacing later uses of x with uses of y, as long as interveninginstructions have not changed the value of either x or y ([?]).Copy propagation might reduce the e�ciency of the allocation insertion al-gorithm. Let us consider the IA-64 architecture. Assuming there is a function call,the parameters are passed using the last registers of the register stack frame. If apreallocation instruction is inserted, the register stack frame is shrunk and stackedregisters are saved. However if copy propagation is used, the de�nition of the param-eters may appear far above in the control-ow graph, forcing the alloc instructionto be inserted before (and reducing shrinking opportunities) or the insertion of copyinstructions (cancelling the copy propagation algorithm job).72

����
����
����

����
����
����

����
����
����

����
����
����

��������

r43

r32

BB1 r43 = ...

BB2 r60 = r43

call foo()

r60

r43

r32

BB1 r43 = ...

BB2 r60 = r43

call foo()
alloc 12,0

(a) (b)Figure 7.1: Allocation instruction insertion with no copy propagation.On the example Figure ??-a, foo() is called with only one parameter. Thevalue is passed using the register stack and stored in the last register allocated inthe current register stack frame: r60. However all the registers between r43 and r60are not used when the function is called, resulting in a waste of 16 stacked registers.When the allocation insertion algorithm is used (Figure ??-b), we can reducethe waste from 16 to 0. We shrink the register stack frame to the point where thelast register is r43 and no copy instruction is even needed. The shrink is possiblebecause the allocated stacked registers above r43 were not used.Now, when copy propagation is used, r60 happens to be de�ned far abovein the control ow graph in place of r43. The allocation instruction cannot shrinkanything when the call occurs and 16 stacked registers are wasted again (Figure ??-a). 73

����
����
����

����
����
����

����
����
����

����
����
����

��������

r43

r32

BB1 r60 = ...

BB2

call foo()

r60

r43

r32

BB1 r60 = ...

BB2

call foo()

alloc 29,0 r43 = r60
alloc 12,0

(a) (b)Figure 7.2: Allocation instruction insertion with copy propagation.Assuming we have an algorithm to �gure out when we can easily a largenumber of registers, we could copy the value of r60 into r43 and shrink the registerstack frame. However we inserted an extra instruction and simply undid the copypropagation job (Figure ??-b).A future work would be to study the impact of copy propagation on theallocation insertion algorithm. Maybe the copy propagation has more to o�er thana smart allocation instruction insertion and we should not bother about it. To forbidcopy propagation of outgoing parameters with some conditions, like the number ofstacked registers saved/wasted, might also be interesting to study..
74

7.1.2 Register AllocationThe register assignment algorithm and the allocation instruction insertionalgorithm are obviously deeply linked. While the �rst algorithm assigns registernumber to virtual registers, the second makes sure the stacked registers are ef-fectively allocated on the stack when needed. Therefore we might expect a goodcooperation between the two algorithms.The allocation instruction insertion algorithm does not make any change tothe register assignment. The algorithm assumes the assignment is �xed. Conse-quently, the register assignment algorithm is responsible for the assignments thatmay not looked interesting from an allocation instruction insertion point of view.The allocation instruction insertion algorithm cannot do anything against a largenumber of consecutive stacked registers not used and surrounded by live registers.The register assignment algorithm is responsible of making the register stack frameas dense as possible.
undesired unused
stacked registers

����
����
����

����
����
����

��������

��������

������
������
������
������

r60

r32

r40

Figure 7.3: Non dense register stack makes the allocation instruction less e�cient.On Figure ??, the registers r41 to r59 are not used while r40 and r60 are.The register stack frame is not dense. If the situation occurs before a functioncall, the allocation instruction is useless. We would like to see the register allocatorassigning r41 to hold the value currently assigned to r60. 18 registers would be75

saved. We do not expect all the holes in the frame to be �lled, but at least to reducetheir size.The idea is to assign long-life registers to the lowest register numbers whileshort-life registers are assigned at the top of the register stack frame. Assumingthe compiler uses graph coloring for register allocation ([?][?][?]), we want to makesure the color assignment routine follows the previous recommendation. Instead ofchoosing the �rst color available, the life range would be considered.However the allocation instruction aware register assignment algorithm needsto know in advance the �nal live ranges (after register coalescing) and the maximumnumber of stacked registers going to be used. Therefore we would better imagine apost-pass algorithm that would simply switch register number assignment dependingon the live ranges.The register allocator is so linked to the allocation instruction insertion al-gorithm that the idea deserves to be explored and studied. Depending on di�erentcompiler choices and optimizations, the optimization may not be needed.7.2 Study of the Allocation Instruction7.2.1 Register Stack UseThe goal of the thesis is to reduce the size of the register stack in order toavoid spills and restores. But if the maximum number of registers in the stack RT isnever reached, there is no need for such an optimization. We might expect recursivefunctions to be very good candidates. The depth of the call stack is an importantfactor. The larger the stack is, the more likely the limit of the register stack isreached and spills occur.Therefore there is a need to study the behavior of the register stack. Is themaximum number of stacked registers quickly reached? For every routine? Can wecharacterize the routines that are very likely going to need the allocation instructioninsertion optimizations? 76

A simple study would be to monitor the overall size of the register stack.Whenever the register stack size is increased and the resulting size is greater thanRT , we know that the allocation instruction spills registers. By monitoring the sizeof the register stack, we can evaluate how often the case appears and judge aboutthe importance of an e�cient allocation instruction placement algorithm.Interesting results could appear as a curve of the size of the register stackover the time, or as a ratio of the execution time spent with a register stack sizegreater than RT . The ratio could be subdivided for each function in the measuredapplication. By knowing which functions are more likely to create the spills, wecould choose to turn on the optimizations only on speci�c part of programs by usingfeedback pro�ling.The study could also lead to a better tuning of the allocation instructioninsertion algorithm. Maybe only preallocation and postallocation instructions mat-ter and the impact of the other types of allocation instructions is negligible. Thenthe algorithm could be simpli�ed and the �nal code cleaned from useless allocationinstructions.7.2.2 Cost of the Allocation InstructionAnother issue about the �ne-tuning of the algorithm is the real cost of theallocation instruction. The IA-64 architecture manuals ([?][?]) tells us that thealloc instruction makes use of unused memory bandwidth and stalls the processorif needed.However the real speci�cations depends of the actual processor and may varywith the context. Is it as cheap to stall the processor for one register than for 30?How often can we make use of memory bandwidth? How long does it take to stallthe processor, spill/restore stacked registers to/from the memory and restart theprocessor again? 77

Such a study could be combined with the register stack use and helps tounderstand the need for an e�cient allocation instruction insertion algorithm. Tochoose a threshold value for the number of register that must be saved before allow-ing propagation for instance (Section ??) would help.

78

Chapter 8CONCLUSION8.1 ContributionsThis thesis proposed a theoretical linear e�cient solution to the OAIP prob-lem. Starting from non-optimal straightforward solutions, we built an algorithmthat allocates the exact number of stacked registers needed by every control pathin a given control-ow graph with the minimum number of allocation instructions.The idea is to introduce one allocation instruction in every basic block and sim-plify the control-ow graph in a bottom-up fashion until there is only one allocationinstruction per control path.Then we considered more practical versions of the algorithm, where the allo-cation instructions are inserted only when the number of stacked registers was largeenough. We also proposed solutions to avoid redundant calls of allocation instruc-tions in loops and to take advantage of the frequency of execution information ifavailable. All the solutions are still linear but the static optimality is lost. Howeverthe solutions are expected to run faster.We studied the implementation of the allocation instruction in the IA-64architecture and the constraints related to the speci�c Intel architecture like therotating registers and predication.8.2 Future WorkThe allocation instruction and the register stack as implemented in the IA-64 architecture are a relatively new concept and more investigations need to be79

done. The need for an e�cient allocation instruction insertion algorithm must beevaluated, as well as the e�ciency of the algorithms proposed in this dissertation.The interactions of the solutions with existing compiler optimizations, like copypropagation or register allocation, must also be assessed.MAIA should be studied furthermore and the optimality proved or a counter-example found. If MAIA is not optimal, how far from an optimal solution is thesolution given by MAIA? An acceptable value for the upper bound for the numberof parents for any basic block in the control-ow graph should also be studied.Mainly, as soon as the processors using the register stack are available on themarket, the algorithms and the allocation instructions should be evaluated.

80

