
A STUDY OF SIMULATION AND VERIFICATION OF

A MANY-CORE ARCHITECTURE ON TWO MODERN

RECONFIGURABLE PLATFORMS

by

Dimitrij Krepis

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Summer 2007

c© 2007 Dimitrij Krepis
All Rights Reserved

A STUDY OF SIMULATION AND VERIFICATION OF

A MANY-CORE ARCHITECTURE ON TWO MODERN

RECONFIGURABLE PLATFORMS

by

Dimitrij Krepis

Approved:
Guang R. Gao, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Gonzalo R. Arce, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Eric W. Kaler, Ph.D.
Dean of the College of Engineering

Approved:
Carolyn A. Thoroughgood, Ph.D.
Vice Provost for Research and Graduate Studies

ACKNOWLEDGMENTS

I would first thank Prof. Gao for giving me the opportunity to study and

work in CAPSL.

I would thank Fei Chen, Yuhei Hayashi, Peiheng Zhang and Joseph Manzano

for giving me valuable support and always being great friends.

I would thank XtremeData Inc. and specifically Gary Finley for providing

us with the XD1000 Development platform and valuable support.

I would thank DRC Computer Corporation for providing us with the DS1000

Development platform and valuable support.

I want to thank everybody in CAPSL who helped me. You are truly a won-

derful group of friends and colleagues. You were my family in the last years.

I want to thank the University of Applied Sciences Esslingen, the DAAD and

the University of Delaware for giving me the opportunity to participate in a great

exchange program.

iii

DEDICATION

To my parents.

iv

TABLE OF CONTENTS

LIST OF FIGURES . viii

ABSTRACT . x

Chapter

1 INTRODUCTION . 1

1.1 Background . 1

1.1.1 Cyclops64 Supercomputer Architecture 1
1.1.2 Cyclops64 Crossbar Switch . 4
1.1.3 DIMES Technology . 4
1.1.4 MrsClops Emulation Engine 6

1.2 Problem Statement . 8

1.2.1 Crossbar Switch Verification 8
1.2.2 SEmulator . 9
1.2.3 FPGA Coprocessing Accelerator platform 10

1.3 Contributions . 10
1.4 Synopsis . 11

2 INTRODUCTION TO FPGA BASED CO-PROCESSING 12

2.1 Contributions . 12
2.2 Introduction . 12
2.3 XtremeData XD1000 . 14

2.3.1 Hardware Programming . 14

v

2.3.2 Software Programming . 15

2.4 DRC DS1000 . 16

2.4.1 Hardware Programming . 16
2.4.2 Software Programming . 17

2.5 Porting of Cyclops64 Crossbar Switch Emulation 18

2.5.1 General Guidelines on Porting 18
2.5.2 Implementation Issues with FPGA-Coprocessing Accelerators 21

3 SEMULATOR . 23

3.1 Contributions . 23
3.2 Introduction . 23
3.3 Problem Formulation . 24
3.4 Solution Methodology and Implementation 25

3.4.1 Integration . 25
3.4.2 Performance Improvements 27

3.5 Conclusions and Performance Results 27

4 VERIFICATION UTILITY: DESIGN AND

IMPLEMENTATION . 29

4.1 Contributions . 29
4.2 Overview . 29
4.3 Crossbar Switch Details and Principals of operation 30
4.4 C64 Packet Construction Format . 33
4.5 Tests to implement . 35
4.6 General Implementation . 36
4.7 Experimental Results . 42
4.8 VHDL Testbench Creation . 44

5 RELATED WORK . 46

6 FUTURE WORK . 47

6.1 Existent Design Improvements . 47
6.2 Algorithm Development . 47

vi

6.3 MiniMrsClops . 48

Appendix

A SEMULATOR AND VERIFICATION UTILITY 50

A.1 SEmulator . 50
A.2 Verification Utility . 51

B LOADING OF BITFILES ONTO FPGA ACCELERATOR

PLATFORMS . 52

B.1 XtremeData: Altera FPGA . 52
B.2 DRC: Xilinx FPGA . 54

BIBLIOGRAPHY . 57

vii

LIST OF FIGURES

1.1 Cyclops-64 Chip Architecture . 2

1.2 Cyclops-64 System Configuration 3

1.3 Single Logic Module with Multiple States. 5

1.4 Virtual Cycle vs Clock Cycle. 5

1.5 MrsClops Emulation Engine. 6

2.1 Opteron and FPGA Coprocessor. 13

2.2 XD1000 Logic Design. 14

2.3 DRC100-L60 RPU Diagram. 17

2.4 C64 Crossbar - Initial Interface. 19

2.5 C64 Crossbar - Common Interface. 20

2.6 C64 Crossbar - XD1000 Platform Interface. 20

2.7 DRC Manual 1.1.2: Single 32-bit HT DMA Read(1 Cycle Wait, 2
Cycle Latency). 21

4.1 C64 Switch Verification Environment with Visualization 31

4.2 A block diagram of C64 Crossbar Switch 32

4.3 A Logic Channel of The C64 Crossbar Switch 33

4.4 Data Flow Diagram of the Verification Tool 38

viii

4.5 Flow Diagram of Input Pattern Generation 39

4.6 Flow Diagram of I/O with Emulation Hardware 40

4.7 Flow Diagram of Output Analysis 41

B.1 Altera Programmer: Main Screen 53

B.2 Altera Programmer: Device Selection 53

B.3 Altera Programmer: Programming Complete 54

B.4 Xilinx iMPACT: Startup . 54

B.5 Xilinx iMPACT: Boundary Scan 55

B.6 Xilinx iMPACT: Device Selection and Programming 56

ix

ABSTRACT

Recent advancements in computer performance have been hindered by the

physical limitations of the current state-of-the-art semiconductor manufacturing

technology. Steady performance growth, by means of increasing the operational

frequency, is not possible any longer.

On the one hand we are “Hitting the Memory Wall”[1]: We need to increase

the cache size to reduce the probability of cache misses. With the increased cache

size and resulting transistor count on the other hand, we increase static and dynamic

current leaks[2]. This results in an exponential growth of power consumption.

To keep up with the steady demand of increased performance, a paradigm

shift towards multicore and many-core computer architecture designs has been made

by the major microprocessor manufacturers.

This trend is going as far as integrating a very large number of simple pro-

cessors onto a single die. This type of architecture is excellent for high-performance

acceleration of domain-specific tasks. To achieve the best possible results, these ac-

celerator platforms should be coupled with general-purpose microprocessors, which

can take over the burden of running the operating system. One should note that

the recent advancements in GPGPU technology along with steadily growing FPGA

performance present other pathways of creating alternative acceleration platforms.

The IBM Cyclops64 Chip is part of a Petaflop class supercomputer architec-

ture. This chip is a multicore architecture with a very large number of execution

cores, memory banks and other components integrated on a single die. Each of

these chip components are interconnected via the C64 Crossbar Switch, an efficient

x

interconnection network. Simulation of such an interconnection network is a very

important task throughout the design and implementation process.

This thesis describes the design, implementation, and experimentation with

an environment that may be used for acceleration, verification and validation of

this interconnection network. In addition to this, a latency accurate Cyclops64

architectural simulator environment has been extended and accelerated.

Under the iterative emulation technology first proposed at CAPSL, named

“DIMES”[3], a portion of FPGA resources will be time-shared among several iden-

tical modules of the target design and iteratively used to emulate them in multiple

steps. The representation of the identical modules in the FPGA consists of (1) a

single module copy and (2) a storage block holding all the states of the modules

during iterative emulation. With the help of this technology, the Cyclops32[4, 5]

chip along with the Cyclops64 Crossbar Switch[6] have been implemented on the

AlphaData[7] platform earlier. Additionally, the Cyclops64 chip has been recently

fully implemented on the IBM MrsClops[8] Emulation Engine.

Major contributions of this document are:

(i) We have ported the Cyclops64 interconnection network logic onto several state-

of-the-art FPGA-Coprocessing Accelerator platforms. The increase in emula-

tion speed as well as new logic designs of the Cyclops64 Architecture were the

main driving forces for this work. Platforms such as XtremeData[9] XD1000

and DRC Computer[10] DS1000 were used for this work. Working on those

novel platforms was a particularly interesting and challenging experience. We

had to work on a range of different FPGA devices; we have faced and solved

problems associated with bugs in vendor provided user interface logic, doc-

umentation and hardware device implementation. Throughout the process,

we have provided valuable feedback to the platform designers. The result-

ing upgrades for future generations of these platforms will benefit from our

xi

efforts.

(ii) With the use of those FPGA Accelerator platforms and based on the work

of Fei Chen on the “LAST”1[11] simulator, we were able to create a new

type of computer architecture simulation. By combining software Simulation

with hardware Emulation, called the “SEmulator,”2 we were able to im-

prove the “LAST” simulator. Using the accelerated “DIMES” emulation of

the Cyclops64 interconnection network, we have dramatically increased the

performance of this Cyclops64 Architecture simulator.

(iii) The newly developed verification utility for the Cyclops64 Interconnection

Network has proven itself as an excellent tool for design verification and eval-

uation in various stages of development, such as verifying the initial KSM3

design for AsapSim4[12] simulation. It can provide VHDL test benches for

design debugging during the creation of FPGA based emulation. In addition

to that it can be used for the evaluation of these designs on the FPGA Ac-

celerator platforms. The underlying framework also ensures portability over

various emulation platforms for the “SEmulator.” With this tool we have also

demonstrated that the various interconnection network designs work as ex-

pected.

1 Latency Accurate Software Testbench - Cyclops64 Architecture Simulator. Cre-
ated by Fei Chen at CAPSL.

2 Named “SEmulator” first by Fei Chen.
3 HDL Language created at IBM. The Cyclops64 logic design is created in this

language.
4 Software simulator of the MrsClops Emulation Engine, created by Fei Chen at

CAPSL.

xii

Chapter 1

INTRODUCTION

1.1 Background

It is common knowledge that the number of transistors, integrated on a chip,

has doubled every 18 months in the last three decades. Due to this, the power

density of the chip becomes a big hindrance to the continuous improvement of its

performance. In addition, after the CPU clock rate reaches multiple Gigahertz,

the long memory access latency becomes unbearable. Now, a cache miss may cost

several hundreds or even nearly a thousand CPU cycles. It is increasingly clear that,

following the traditional architecture design methodology, it is not possible to solve,

or even alleviate, these problems.

1.1.1 Cyclops64 Supercomputer Architecture

Under this background, ”multi-core-on-a-chip” is emerging as a new architec-

ture design methodology with very high potential for the next generation computer

processor. It utilizes the huge number of transistors to integrate tens or hundreds

of simple processor cores on a chip. Each of these ”processors” can independently

run a thread. If any thread is stalled because of accessing memory, other threads

can still keep running to hide the memory latency. Usually, the chip operates at a

moderate clock rate to keep power consumption at a low level. Therefore, multi-

core has becomes the main trend in architecture design. Many companies have

announced their multi-core plan or have already shipped out their multi-core prod-

ucts. Cyclops-64 (C64) [13, 14] is one of these multi-core architectures designed for

1

high end computing. It is under development by IBM T.J. Watson Research Cen-

ter, ET International Inc., and the University of Delaware. A C64 supercomputer

will be built out of tens of thousands of C64 processing nodes (chips), which are

arranged in 3D-mesh cellular structure. Figure 1.1 shows the internal structure of a

GMSP

SP

TU

TU GM

GM

GM

SP

SP

TU

TU

GMSPTU

TU SP GM

GMSPTU

TU SP GM

GMSPTU

TU SP GM

GMSPTU

TU SP GM

F
P

U TU SP GM

GMSPTU
2

1
3

4
5

80
6

DDR2 Controller

DDR2 Controller

DDR2 Controller

DDR2 Controller

F
P

U
F

P
U

F
P

U
F

P
U

F
P

U
F

P
U

Host Interface

A−Switch

icache−5P

icache−5P
icache−5P

icache−5P

icache−5P
icache−5P
icache−5P
icache−5P

icache−5P
icache−5P
icache−5P
icache−5P

icache−5P
icache−5P
icache−5P
icache−5P

IC
−

G
lu

e
IC

−
G

lu
e

IC
−

G
lu

e
IC

−
G

lu
e

...
...

C64 Chip

F
P

G
A

3D−mesh

Gigabit Ethernet

IDE

Control Network

1G
 O

ffc
hi

p
D

R
A

M

C64 Node

96
−

P
or

t C
ro

ss
ba

r
S

w
itc

h

Figure 1.1: Cyclops-64 Chip Architecture

C64 processing node. Each C64 node consists of a C64 chip, 1GB external DRAM,

and a small amount of external interface circuitry. The C64 chip has 80 integrated

”processors”, each processor has two thread units, one floating point unit, and two

SRAM memory banks, each 32KB. A thread unit is a 64-bit, single issue, in-order

RISC processor core operating at clock rate of 550MHz. A 32KB instruction cache,

not shown in the figure, is shared among five processors. There is no data cache

in the processor because it is very difficult to maintain cache coherence efficiently

across so many processors. For this reason, a portion of each SRAM memory bank

can be configured as scratchpad memory (SP), which is a fast temporary storage

that can be used to exploit locality under software control. All of the remaining

part of the SRAM form the global memory (GM) and is uniformly addressable from

all thread units. The A-switch interface in the chip connects the C64 node to its six

2

neighbors in the 3D-mesh network. This network may scale up to several thousands

of nodes, which will form the powerful parallel computational engine of the C64 su-

percomputer. All of the intra-chip components are connected by a 96-port crossbar

network to form a tightly coupled SMP structure. The C64 Crossbar Switch has

many unique properties, such as being non-blocking, pipelined, fairly arbitrated and

delivering a very high level of data throughput.

Figure 1.2: Cyclops-64 System Configuration

The proposed system configuration will consist of 96 Cabinets arranged in

the pattern shown in Figure 1.2. Each cabinet contains 144 processor boards as

well as local I/O Storage and Gigabit Ethernet ports for host communication and

diagnostics.

The whole C64 system is designed to provide petaflop computer performance.

It is targeted at applications that are highly parallelizable and require enormous

amounts of computing power.

3

1.1.2 Cyclops64 Crossbar Switch

A crossbar switch is a mechanical or electrical switch that has a physical

element for every possible connection between users, in which every input has a

”cross point” with every output [15, 16, 17].

The Cyclops64 crossbar switch provides communication between the pro-

cessors, on-chip SDRAM memory banks, off-chip DRAM memories, I-caches, I/O

devices, A-switches and host interfaces [3]. The Cyclops64 crossbar switch is a 96 x

96 port buffered and pipelined design with input and output queues. Every port can

create a connection to any other port, including itself. It provides 2 virtual chan-

nels, for forwarded and returned traffic. It also supports block transfers: a sequence

transfer between two channels that cannot be interrupted by any other connection.

The Cyclops64 crossbar is supposed to provide a stable, non-blocking intra-

connection network, supporting an efficient communication between components of

the C64 chip. The full hardware bandwidth of the crossbar is 96 x 921 = 8832

bits /cycle. A performance analysis of the crossbar switch with micro benchmarks

has shown an expected throughput of 0.59[17]. The performance of this part will

strongly affect the overall performance of the chip. Correct implementation of the

C64 Crossbar Switch component is crucial in the process of building the Cyclops64

Chip.

1.1.3 DIMES Technology

The DIMES2[3] technology is FPGA based hardware emulation for large logic

systems, incorporating a number of identical functional modules. Under this tech-

nology, a part of the FPGA resources will be time-shared among several identical

modules of the target design and iteratively used to emulate them in multiple stages.

Figure 1.3 shows a logic design consisting of many instances of identical logic. This

1 Fixed 92-bit payloads are delivered through each source-destination pair
2 Delaware Iterative Multiprocessor Emulation System

4

Stacked
Logic

Reduced Logic
+ Memory

Figure 1.3: Single Logic Module with Multiple States.

design can be reduced to a single instance of logic and a memory block containing

the states of every instance. By swapping the states, we can iteratively emulate the

entire design. The implementation of the DIMES technology requires that all reg-

isters within the source logic must consist of the same logic primitive and all state

bits must be load/storable via the top-level of the module. An automatic parser3

is usually required to reach this condition. A state machine, for iterative emulation

Virtual Cycle

Iteration
Cycle

Figure 1.4: Virtual Cycle vs Clock Cycle.

3 Such as moveRRReg. Created by Fei Chen

5

control, must be implemented to control the transition of logic state bits to and

from the the memory. As we can see in Figure 1.4, the iterative emulation operates

at a given clock speed on the FPGA. It takes a number of iteration cycles to finish

one virtual cycle, hence to emulate the target logic for one cycle.

1.1.4 MrsClops Emulation Engine

Processor boards

Switch boards

20->20
1-bit wide

switch

20->20
1-bit wide

switch

20->20
1-bit wide

switch

20->20
1-bit wide

switch

10

FPGA FPGA

10

FPGA FPGA

FPGA FPGA

5

FPGA FPGA

5

Host board
FPGAFPGAFPGAFPGA

FPGAFPGAFPGAFPGAiCon 8MB

D
IM

M

SRAM

FPGA
for emulation

1GB

FPGA

8MB

D
IM

M

SRAM

FPGA
for emulation

1GB

FPGA

8MB

D
IM

M

SRAM

FPGA
for emulation

1GB

FPGA

8MB

D
IM

M

SRAM

FPGA
for emulation

1GB

FPGA

C
onnectors

for the host board

Host PCHost PC

EthernetEthernet

MrsClops

Figure 1.5: MrsClops Emulation Engine.

MrsClops is an FPGA-based high performance logic emulation and data pro-

cessing engine. Developed in collaboration between IBM T.J. Watson Research

Center and CAPSL4, it is specifically designed for an efficient emulation of the Cy-

clops64 architecture. IBM has developed the hardware, the firmware and supporting

software was developed entirely at CAPSL.

4 by Yuhei Hayashi and Fei Chen

6

Figure 1.5 shows the basic internal structure of the MrsClops unit. The

main part of the system consists of 30x Altera 2S90 FPGAs, 20 of them are used for

emulation purposes. The remaining 10 provide the interconnection network between

the emulation FPGAs. The MrsClops emulation engine is controlled by a host PC

over an Ethernet connection.

The MrsClops system can emulate a large-scale logic design by distributing

it over multiple FPGAs. The communication between those design partitions is

controlled by the ECL5 logic, which is present in every emulation FPGA. The ECL

implements a NIOS II softcore processor to control this task.

To fit a large-scale design onto the MrsClops emulation engine, it must be

distributed by submodules. Every submodule will be assigned to an emulation

FPGA. We should not forget that we are trying to emulate the Cyclops64 chip

architecture; it consists of a large number of identical modules. Depending on the

size of these modules, we have a hybrid approach of emulation: ”DIMES” and

”ASAP” modes.

In DIMES mode, we will try to emulate multiple instances of the same mod-

ule in a time-shared fashion. This can be done by swapping out the inputs, outputs

and the internal state of the module iteratively. This approach is the preferred

solution in terms of emulation speed; however the implementation of DIMES tech-

nology requires a considerable amount of work and may not be possible for some

submodules.

ASAP: Any logic design can be represented as a data-flow graph for functional

simulation. This data-flow graph can be translated into program code and executed

on a processor. A number of simple execution units can be implemented onto an

FPGA to execute the program code representation of a logic design in SIMD fashion.

The ASAP mode comes into play in case that the DIMES approach is not possible

5 Emulation Control Logic, created by Yuhei Hayashi.

7

due to fitting constraints.

AsapSCG6: AsapSCG creates the stack code representation of a logic design

for emulation and ECL instructions for communication, according to the ”shell”

file7. This code can be natively executed on MrsClops and AsapSIM8.

1.2 Problem Statement

1.2.1 Crossbar Switch Verification

The development of a high performance interconnection network for a multicore-

chip is a very critical task in the system design workflow. This becomes especially

important when handling a one-of-its-kind design which has never seen the light of

day before. It is crucial, in the design phase, to verify the performance expectations

and wisely choose the right design decision path.[6]

Based on those results, as well as, on implementation constraints such as die

space usage, operation frequency requirements and the actual layout, the design will

undergo multiple revisions. Each of these revisions must be verified to make sure

that the components will perform to the specifications.

The Cyclops64 Crossbar Switch is a crucial part of the Cyclops64 Chip.

It consists of 96 in/output ports with 102 Bits each and is a stateful logic. A

direct verification, by applying every possible input vector and comparing the output

vectors to expected results, is impractical, if not impossible, to apply within a

reasonable amount of time.

The functionality of the C64 Crossbar Switch can be obviously verified ”in-

vitro”: running the Cyclops64 Crossbar design against an architecture simulator.

Such a simulator is the latency accurate system simulator for the Cyclops64 Archi-

tecture, called ”LAST”. Running programs on this simulator creates real traffic,

6 Stack Code Generator for ASAP mode. Created by Fei Chen.
7 Top file of a logic design. Describes how the submodules are interconnected.
8 Simulator for MrsClops Emulation Engine, created by Fei Chen.

8

thus it can test the functionality of the C64 Switch design. However, this approach

has advantages as well as flaws. Its obvious advantage is the fact that running a

program and receiving correct calculation output from the run may seem like a good

result, but a program execution does not cover enough corner cases and may not

necessarily reveal errors and run successfully to completion.

The only usable approach for verification, in this case, is functional verifica-

tion. By feeding the inputs with valid packets and checking the outputs for correct

packet delivery, we can determine that the switch logic is performing as required.

The input packets must be created according to the specifications, thus only legal

input is provided. At the same time, the broadest range of input combinations

should be covered to reveal weak points in the design.

To verify that the Cyclops64 Crossbar Switch is a reliable interconnection

network, the following properties that define a reliable network must be confirmed:

• no data corruption

• no duplication

• in order delivery

• no lost data

These properties can be confirmed by the creation of an automatic testing utility

that will create legitimate traffic on the C64 Crossbar Switch. Furthermore, the

testing utility should be able to handle various design versions, support multiple

emulation platforms and provide visualization and statistics.

1.2.2 SEmulator

It is common knowledge that a new computer architecture should have a

short time-to-market in the HPC field. This also means that system software for this

architecture should be on the market before the system is delivered. This will ensure

9

that the end-user base already has enough experience with the system environment

and can productively use the system upon delivery, thus reducing the initial down-

time. A successful creation of system software requires more then just following the

set of system specifications; it requires creation of architectural simulators to verify

the system software functionality as well as performance.

In case of the Cyclops64 Architecture there are 2 architectural level simulators

existent: ”FAST”[18] - a functionally accurate simulator and ”LAST”[11] - a latency

accurate counterpart. As the names may already suggest, the latency accurate

simulator reflects the performance of the architecture very well due to the cycle

accurate simulation of the interconnection network, however at a very low speed.

This issue was addressed by improving the performance of the simulator in terms of

emulating the interconnection network logic in FPGA hardware.

1.2.3 FPGA Coprocessing Accelerator platform

The use of SEmulator with PCI-Bus based FPGA platforms was limited due

to the relatively high latency associated with such a shared interconnection bus.

With the availability of state-of-the-art FPGA Coprocessing Accelerator platforms,

directly coupled with the CPU over the HyperTransport Bus, an opportunity has

arisen for the improvement of the SEmulator.

1.3 Contributions

This document introduces our design, implementation, and experiments with

the following projects:

(i) The porting of the Cyclops64 interconnection network emulation using various

state-of-the-art FPGA-Coprocessing Accelerator platforms. Platforms such as

XtremeData[9] XD1000 and DRC Computer[10] DS1000 were used for this

work.

10

(ii) Creation of a new type of computer architecture simulator, combining software

Simulation with hardware Emulation, named the ”SEmulator,” and thus

improving the Latency Accurate Simulation Testbench - ”LAST”[11].

(iii) Creation of a verification utility for the Cyclops64 Interconnection Network

as well as the underlying framework which ensures portability over various

emulation platforms.

1.4 Synopsis

The paper is organized as follows. Chapter 2 introduces state-of-the-art

FPGA Coprocessing Platforms and their programming. Chapter 3 introduces the

SEmulator project, the acceleration of the LAST simulator with a FPGA emula-

tion of the Crossbar Switch. Chapter 4 introduces the Verification of the Cyclops64

Crossbar Switch. Chapter 5 shows the related work. Chapter 6 gives a brief de-

scription of future work. Appendix A will teach users how to use the SEmulator,

the Verification Utility Appendix B will show how to load bit-files onto XtremeData

and DRC platforms.

11

Chapter 2

INTRODUCTION TO FPGA BASED CO-PROCESSING

2.1 Contributions

We have ported the Cyclops64 interconnection network logic onto several

state-of-the-art FPGA-Coprocessing Accelerator platforms. The increase in emu-

lation speed as well as new logic designs of the Cyclops64 Architecture were the

main driving forces for this work. Platforms such as XtremeData[9] XD1000 and

DRC Computer[10] DS1000 were used for this work. Working on those novel plat-

forms was a particularly interesting and challenging experience. We had to work on

a range of different FPGA devices; we have faced and solved problems associated

with bugs in vendor provided user interface logic, documentation and hardware de-

vice implementation. Throughout the process, we have provided valuable feedback

to the platform designers. The resulting upgrades for future generations of these

platforms will benefit from our efforts.

2.2 Introduction

The recent advances in FPGA acceleration technology have made it possi-

ble to use FPGA as coprocessors. Platform solutions from DRC Computers and

XtremeData Inc. make it possible to have a very low latency and high bandwidth

connection between the FPGA and the main processor.

Both platforms are quite similar: Using a Dual-Processor computer main-

board, replace one of the processors with an FPGA. The communication with the

12

Other
Components

CPU FPGA
Hyper

Transport

4GB DRAM4GB DRAM

Dual Processor Mainboard

Figure 2.1: Opteron and FPGA Coprocessor.

processor runs over the HyperTransport interface. Using off-the-shelf computer

parts, most of the hardware infrastructure is already present on the system. As we

can see in Figure 2.1, the main processor and the FPGA have their own, logically

and physically independent DRAM memory plugged into the mainboard directly.

The platform vendors have to supply the PCB to electrically connect the FPGA

into the mainboard socket. Both platforms also contain additional SRAM, a JTAG

connection and FLASH memory for FPGA reprogramming.

The main difference between those two platforms is the vendor-supplied API

for the user logic. We should also not forget that XtremeData is using Altera’s

FPGA products while DRC is using Xilinx. This is only important if the designer

is taking advantage of FPGA vendor’s exclusive functionality.

13

2.3 XtremeData XD1000

2.3.1 Hardware Programming

CPU

CPU DRAM

XD1000 FPGA

SRAM IF

FPGA DRAM

HT Interface
xd1000_ht_core

HT Control IF

HT Write

HT Read

DRAM
Controller DDR Write

DDR Read

SRAM

FLASH IF

Hyper
Transport

FLASH

LED

Data Check

Data Gen

Data Check

Data Gen

User Logic

C
on

tr
ol

 B
us

 A
va

lo
n

CTRL Decode

Figure 2.2: XD1000 Logic Design.

Figure 2.2 shows the reference design of the XD1000 FPGA Logic. As we can

see, we have several important components for the hardware programming of this

platform: We have the HyperTransport IP Core that controls the traffic between the

host processor and the FPGA. We have a DDR controller for the off-board DRAM. In

the XD1000 platform, the FPGA has access to 4GB of external memory exclusively.

The CPU does not have direct access to this memory unless this functionality is

implemented by the user within the user logic. We have the SRAM interface to

communicate to the off-chip SRAM, in case the logic designer should run out of

on-chip memory blocks. We also have FLASH memory to load FPGA images upon

system bootup.

The communication between the FPGA and the Opteron processor is per-

formed over the HyperTransport bus. The reference design utilizes a HyperTrans-

port Controller Interface, xd1000 ht core, to translate packets from HT Traffic

into internal bus signals on the FPGA logic side. Altera Avalon[19] is used as the

internal control bus with a 16 Bit address space. On the software side, this creates a

64kByte BAR window in shared memory, which is used to access the user logic. The

14

ht ctrl if module is responsible for bus access of each logic submodule in the user

logic. It enables the select signal for the appropriate submodule and multiplexes the

outputs.

While it is possible to use the control bus for data communication, one should

use DMA1 transfer capabilities of the logic design. It can be used by programming

the ht write and ht read modules over the control bus. Programming of the DMA

controllers, to initiate a transfer, can be accomplished from the software side. In

the Reference Design, the modules data gen and data check are providing the

data for the transfer. In the actual design, the user logic modules can generate and

accept this data.

The modules ddr write and ddr read work identically to the DMA con-

troller modules. Once specified the address and word count, they can transfer data

to and from the FPGA attached DRAM memory modules.

Not shown in this picture, the PCB contains a small LED array, which can

be accessed by the user logic to display status information.

2.3.2 Software Programming

Software programming of the XtremeData machine is quite straight forward.

As mentioned in the hardware programming section, the device driver will create a

shared memory window within the user application. This shared memory window

is 64kByte big and directly maps into the control bus of the user logic design. All

the writes and reads to this memory location will be redirected to the FPGA logic.

Upon the examination of the reference test utility, one will notice, that no

address offsets are calculated directly to access each submodule within the reference

design. Instead, a struct construct is created that directly maps its variables into the

appropriate addresses. This is done by padding unused address space with dummy

1 Direct Memory Access

15

arrays. The resulting construct is 64kBytes big and maps over the entire shared

memory space. The following example is taken from the included test utility.

struct fpga_t {

struct led_t {

hw_uint32_t reserved1[3];

hw_uint32_t data;

hw_uint32_t reserved2[60];

};

struct dma_t {

hw_uint32_t addrL;

dummy_t<uint32_t> addrH;

hw_uint32_t size;

hw_uint32_t reserved1;

hw_uint32_t control;

hw_uint32_t reserved2[59];

}

........

};

As we can see, each submodule has a 256byte address space within the user logic.

Writing into the variables of those substructures, led t and dma t, will result in

direct access to the submodule’s registers.

2.4 DRC DS1000

2.4.1 Hardware Programming

Figure 2.3 shows the reference logic design by DRC, called ”RPWare”. It

consists of ”RPSysCore”, a communication API, and User Logic. Considering the

similarity of the two platforms, it contains the same basic building blocks. We have

the HyperTransport Interface, the DMA controller for data transfers, SRAM and

DRAM controllers for off-chip storage.

In contrast to XtremeData, the RPSysCore is only provided as a precompiled

netlist, we do not have access to the source code. This means that the interface

will be consistent, unless major improvements like bandwidth may change it. The

16

CPU

CPU DRAM

DRC100-L60 RPU

RPWare

RPSysCore

~75% of LX60
Available for User

Logic

User Logic

HT
Interface

Hyper
Transport

SRAM
Controller

DMA
Controller

DRAM
ControllerFPGA DRAM

SRAM

FLASH

HT

SRAM

DMA

DRAM

Figure 2.3: DRC100-L60 RPU Diagram.

communication between the user logic and RPWare is specified in the DRC User’s

Guide[10]. In case of this API, we only have DMA transfers to and from the logic.

Every transfer provides a 23 bit address to the user logic. Using this information,

the logic designer can direct the data to the proper location within the design. This

transferred data is stored inside a FIFO within the RPSysCore, until it is ready to

be consumed by the user logic.

2.4.2 Software Programming

Programming on the DS1000 platform is very straight forward. We have a

set of the following interesting functions:

Rpu()

WriteUser(offset,void*,,size)

ReadUser()

WriteRam()

ReadRam()

The function ”Rpu” will instantiate the driver connection to the FPGA logic. To

write data to the FPGA, we can simply invoke the ”WriteUser” and ”ReadUser”

17

functions. In contrast to the XtremeData machine, we don’t have to program the

DMA controllers ourselves, because this task is taken care of by the drivers. The

same method works for the off-chip DRAM, using ”WriteRam” and ”ReadRam”

functions, we can access data directly from the off-chip memory of the FPGA. We

can also check for the correctness of the transfers with the ”GetErrorNum/Message

functions”, they will tell us if a write or read operation has completed correctly.

One should take a closer look at the DRC User’s guide for the complete

reference on the API.

2.5 Porting of Cyclops64 Crossbar Switch Emulation

2.5.1 General Guidelines on Porting

The iterative crossbar design was originally present on the AlphaData plat-

form equipped with a Xilinx Virtex 2 FPGA. Porting this design onto the Xtreme-

Data platform has consisted of the following tasks: (1)Porting of the Xilinx based

design to Altera and (2)integration of the new design into the vendor-provided ref-

erence design of XtremeData. Currently, the C64 crossbar switch design is provided

for the MrsClops Emulation Engine in Altera IP format.

Porting of a design between different FPGA vendors usually consists of re-

placing the vendor-specific IP cores with their equivalents of the other vendor. In

case of the iterative C64 Crossbar Switch design, we need to replace the memory-

blocks containing the crossbar port data and state bits for iterative emulation.

Porting of IP Cores between Xilinx and Altera platforms requires an analysis

of the original IP core with the core generator to determine the correct functionality

and timing properties of the IP core. A simulation should verify those results,

especially the timing. One must be very careful about the number of output pipeline

stages and the registered ports.

After a new IP core is created according to the original specifications, it

should be instantiated together with the original module, sharing the same inputs.

18

In this case, output timing differences can be detected during simulation. It is often

necessary to rewrite wrappers for large memory blocks, such as those used to store

the logic states during iterative emulation, since different FPGAs have different

basic memory block sizes. The designer should not be wasteful with the resource

usage on an FPGA, as difficulties with design fitting will arise.

Figure 2.4: C64 Crossbar - Initial Interface.

While porting a design to a new platform, one should consider future work

to make the new design easily portable to other platforms. Figure 2.4 shows the

original interface of the Crossbar64 Switch, as used within the MrsClops Unit. As

we can see, this interface provides a lot of signals not interesting for our integration.

Editing this top file directly should be avoided, because the C64 logic is under

constant development. New versions will be provided to us and they should be

easy to integrate into our emulation platform. Creating a wrapper, which is a good

representation of the crossbar interface, will make it easy to access the crossbar

switch design, while being independent of the actual target platform. New versions

of the crossbar switch design will be easier to integrate.

19

Figure 2.5: C64 Crossbar - Common Interface.

Figure 2.5 shows the new common interface wrapper. It only contains signals

that are useful for the emulation of the C64 Crossbar Switch. We can write and read

the data of the crossbar ports; we can initialize the emulation logic, we can start

the emulation process and we have a notion of when the emulation cycle is finished.

This logic interface wrapper is independent of the actual emulation platform and

can be used on both, the XtremeData and the DRC machines.

Figure 2.6: C64 Crossbar - XD1000 Platform Interface.

Finally, Figure 2.5 shows the actual wrapper used for the XD1000 platform.

This is very platform specific. The wrapper logic provides access to the crossbar

ports and status registers. As we can see, the data width is only 32 bits; the

internal logic must make this wrapper compliant to the control-bus specifications

of the reference design. This design can be easily integrated into the emulation

platform.

20

2.5.2 Implementation Issues with FPGA-Coprocessing Accelerators

DRC and XtremeData have taken an entirely different approach with the

releases of their FPGA programming API. XtremeData has released their entire

communication logic to the customers, apart from the HyperTransport Core. This

makes the inner workings of the system transparent to the customer.

For example, we2 were able to fix the issue of not being able to freely set the

operational frequency of the control bus to any value. This problem was actually

caused by a copy-paste bug in the asynchronous FIFO control.

DRC has chosen a different path, their communication logic is provided as a

precompiled netlist only and we have a black-box system. This means, we can only

follow the documentation and hope that it is correct. At one point, we have noticed

that the read-channel throttling seems to not work correctly. We will illustrate this

problem with the following example:

HT0_dma_clk
HT0_dma_addr[39:0]
HT0_dma_req
HT0_dma_wait
HT0_dma_out[31:0]
HT0_dma_push

? A0

? D0

Figure 2.7: DRC Manual 1.1.2: Single 32-bit HT DMA Read(1 Cycle Wait, 2
Cycle Latency).

As we can see in Figure 2.7, reading from the user logic is throttled by the

”dma wait” signal. The communication API will assert a read request ”dma req”

and keep the signal high and the address unchanged until the user logic accepts the

read request. The user logic does this by deasserting the wait signal, or silently

when the wait signal is always low. Then the user logic must assert the data to the

”dma out” signal and signalize it by the ”dma push” signal. We can see that a high

2 Peiheng Zhang and Dimitrij Krepis

21

”dma wait” signal is a valid initial condition according to the manual. However

if we keep the ”dma wait” signal high as a general condition, so we don’t have to

buffer the address of the read request ourselves, we will never receive a read request

delivered to the user logic. The reason therefore is the following: The read request

is generated by a FIFO that queues the read requests and their respective addresses.

Actually, the read request is the ”data valid” signal from the FIFO. The ”dma wait”

signal is attached to the output enable signal of the FIFO. If we never enable the

output in the first place, we will never receive data from this FIFO.

The DRC and XtremeData platforms are both novel FPGA accelerators and,

as any new product, they have their ”children’s diseases”. It takes some engineering

effort and time until those problems are fixed by the platform manufacturer. We

can only try to avoid those problems and report them to the vendor.

22

Chapter 3

SEMULATOR

3.1 Contributions

With the use of state-of-the-art FPGA Coprocessing Accelerator platforms

and based on the work of Fei Chen on the ”LAST”1[11] simulator, we were able

to create a new type of computer architecture simulation. By combining software

Simulation with hardware Emulation, called the ”SEmulator,”2 we were able to

improve the ”LAST” simulator. Using the accelerated ”DIMES” emulation of the

Cyclops64 interconnection network, we have dramatically increased the performance

of this Cyclops64 Architecture simulator.

3.2 Introduction

It is common knowledge that a new computer architecture should have a

short time-to-market in the HPC field. This also means that system software for

this architecture should be on the market before the system is delivered. This

will ensure that the end-user base already has enough experience with the system

environment and can productively use the system upon delivery, thus reducing the

initial down-time. A successful creation of system software requires more then just

following the set of system specifications; it requires the creation of architectural

simulators to verify the system software functionality as well as performance.

1 Latency Accurate Software Testbench - Cyclops64 Architecture Simulator. Cre-
ated by Fei Chen at CAPSL.

2 Named ”SEmulator” first by Fei Chen.

23

In the case of the Cyclops64 architecture, there are 2 architectural level simu-

lators existent: ”FAST” - a functionally accurate simulator and ”LAST” - a latency

accurate counterpart. As the names may already suggest, the latency accurate simu-

lator reflects the performance of the architecture very well due to the cycle accurate

simulation of the interconnection network, however at a very low speed. This issue

was addressed by improving the performance of the simulator in terms of emulating

the interconnection network logic in hardware.

3.3 Problem Formulation

The ”LAST” simulator is a latency accurate simulator for the Cyclops64 ar-

chitecture. It does reflect the performance of the Cyclops64 computer architecture

precisely because of the accurate simulation of the on-chip interconnection network.

The performance of the LAST simulator reaches about 500 cycles/second on a typ-

ical desktop machine. While it is possible to execute simple kernel benchmarks on

this simulator, they take a very long time to complete. For example, a simple matrix

multiplication of 64x64 elements takes about 24 hours to complete.[6]

A runtime analysis of the ”LAST” simulator has revealed that more then 90%

of processing resources are spent on the software simulation of the C64 Crossbar

Switch. In fact, this figure is independent of the amount of data processed by the

crossbar switch. This provides a great point of attack to improve this performance

bottleneck.

Typically, a DIMES mode emulation of the C64 crossbar switch can be syn-

thesized to run at 80MHz. The execution of one virtual cycle requires about 400

cycles for the iterative emulation. The reason for this length is the 4 iterations of

96 ports each, required for a correct execution of the crossbar logic. Running the

DIMES mode crossbar logic at 80MHz, we can expect a peak performance of 200,000

cycles/second for the emulation. Due to communication overhead however, the real

emulation speed will be significantly slower.

24

3.4 Solution Methodology and Implementation

The combination of the Cyclops64 simulator with an FPGA emulated version

of the C64 Crossbar Switch is the main idea behind the SEmulator. The base for

this project was the latency accurate C64 simulator ”LAST”. An iterative DIMES

implementation of the C64 crossbar switch has been originally created by Fei Chen

for the AlphaData [7] platform.

This project can be divided into the following phases:

• Initial Integration

• Performance Improvements

• Portability

3.4.1 Integration

The initial phase of the SEmulator project is the integration of the software

simulator and the crossbar switch emulation.

The basic idea of integrating an emulation of the crossbar switch is quite

simple. We must identify where input port data is inserted into the crossbar switch

and write this data into the emulation. Furthermore, we must identify the execution

of every simulation cycle to start the iterative emulation and stop the simulator until

the emulation is complete. Then the data must be read from the emulation logic

and inserted back into the simulation.

There are further steps involved, like the initialization phase to load drivers

and bit-files into the FPGA logic, perform a logic reset and terminate the emulation

logic connection upon finishing of the simulator. It is also of interest to collect

performance data to see the improvement over the purely software simulation speed.

Packet data must be conditioned prior to being written to the hardware. The

general format for the data is described in Table 4.1. Within the simulator, this data

25

is stored inside a word-aligned structure. To be processed by the emulation logic, it

must be compacted to 102 bits. Same goes to the decoding stage for received traffic.

Currently this data conversion is handled by an abstraction layer. The layer will

also encode acknowledgement packets for the Token protocol.

The following data structure is sufficient to describe the FPGA emulation of

the crossbar switch; it will not contain platform-specific data:

typedef struct FPGA_EMULATION

{

uint32 toCrossbar[4*PORT_NUM];

uint32 fromCrossbar[4*PORT_NUM];

uint32 cycle_cnt;

struct timeval t_start;

}fpga_emulation;

We have two data arrays here: toCrossbar and fromCrossbar. They will

contain a copy of the data that is currently inside the registers of the emulated

crossbar. The reasons being are the read and write latency associated with the

real hardware. Writing or reading data, especially with a DMA transfer, requires

a large amount of data to perform efficiently. The field ”cycle cnt” contains the

current number of executed emulation cycles; ”t start” has the timestamp of the

initialization. Those fields are interesting for performance analysis.

The abstraction layer provides the following essential functions:

fpga_init()

fpga_write_data()

fpga_run()

fpga_read_data()

fpga_term()

Those functions provide the driver and hardware initialization, data communication

between the shadow copies, as specified above, and the actual emulation hardware

execution of the iterative emulation and statistical analysis. The interface of those

26

functions is independent of the platform. However, they are platform-specific inter-

nally.

3.4.2 Performance Improvements

In a project requiring a large amount of live communication with hardware,

a low latency and high bandwidth connection with the emulation hardware is es-

sential. This issue has been attacked from both flanks. On the one hand, we can

use low-latency emulation hardware such as the FPGA accelerator platform from

XtremeData. On the other hand, we can reduce the amount of communication

by transmitting only new data and receiving where new data is expected. The

algorithm therefore was implemented within the hardware abstraction layer. This

algorithm is using the ”guest-list” as mentioned in the previous chapter for crossbar

switch verification.

One must consider a typical program execution pattern on the software sim-

ulator: Initially, code is loaded from DRAM into local SRAM. The only involved

crossbar ports are the DRAM and the Thread units. When the code is loaded, there

is virtually no communication happening. This fact can be used to our advantage

to improve the simulation time.

We can switch between a programmed I/O communication pattern when a

low number of ports is utilized, and switch to DMA transfers otherwise. With this

technique, we can typically increase performance by a factor of 3.

3.5 Conclusions and Performance Results

The SEmulator project has proven itself successful in merging two technolo-

gies, software simulation and hardware emulation. By doing so, we have significantly

accelerated the LAST simulator.

While the DIMES acceleration reaches a factor of 10 to 30 compared to a reg-

ular desktop machine, it only reaches a factor of 2 to 6 versus the software simulation

27

running on the accelerator platforms. The reason therefore is the improved microar-

chitecture of the AMD Opteron CPUs, thus alone providing a 5-fold acceleration

over a Intel Pentium 4.

This may lead to the question: Why do we need costly hardware acceleration

platforms? We should note that the latency accurate simulation of the Cyclops64

Crossbar Switch has been created manually, by transforming VHDL code into C,

with a considerable effort. Each new version of this logic design would result in a

repetition of this work, which we want to avoid.

We can use AsapSIM to easily emulate new versions of the crossbar switch in

software. However, we should note that the simulation speed of the AsapSIM cross-

bar is only 1.5 cycles/second. At this simulation speed, even micro benchmarking

would be out of reach.

28

Chapter 4

VERIFICATION UTILITY: DESIGN AND

IMPLEMENTATION

4.1 Contributions

The newly developed verification utility for the Cyclops64 Interconnection

Network has proven itself as an excellent tool for design verification and evalua-

tion in various stages of development, such as verifying the initial KSM1 design for

AsapSim2[12] simulation. It can provide VHDL test benches for design debugging

during the creation of FPGA based emulation. In addition, it can be used for the

evaluation of these designs on the FPGA Accelerator platforms. The underlying

framework also ensures portability over various emulation platforms for the ”SEm-

ulator.” With this tool we have also demonstrated that the various interconnection

network designs work as expected.

4.2 Overview

The idea of implementing a generic verification utility has emerged from the

project of improving the LAST Simulator. This simulator is cycle-accurate as it

is entirely emulating the C64 Crossbar Switch design. The original performance of

1 HDL Language created at IBM. The Cyclops64 logic design is created in this
language.

2 Software simulator of the MrsClops Emulation Engine, created by Fei Chen at
CAPSL.

29

the simulator is quite slow on a typical desktop machine3: reaching around 500-

800 cycles/second.While this is sufficient for micro benchmarking, running larger

applications is impossible. Instead, the ”FAST”[18, 13] simulator was developed

for real application development. It is a functionally accurate simulator for the

C64 Architecture, providing a very high simulation speed. On the other hand,

it lacks a timing accurate implementation of the crossbar, thus limiting its use

for benchmarking. To overcome this performance gap, the LAST simulator has

been improved by using an FPGA accelerated version of the crossbar design. A

performance analysis of the LAST simulator has revealed that over 90% of CPU-

time is spent inside the crossbar code; thus proving the effectiveness of the approach.

The first version was implemented on an AlphaData ADM-XRC-II Board[7]

using iterative emulation methodology[3]. As the nature of the application requires

large amounts of communication, the PCI-Bus latency has shown itself as the bottle-

neck for achieving further speedups. Searching for a high-bandwidth and low-latency

connection application platforms using the HyperTransport interface [20] Xtreme-

Data’s XD1000 [9] and DRC Computing’s DS1000 [10] were found. The crossbar

design has been implemented on those platforms with a significant performance in-

crease. Figure 4.1 shows a typical execution run of the verification utility with the

crossbar visualization enabled.

4.3 Crossbar Switch Details and Principals of operation

The Cyclops64 Crossbar Switch is a stateful interconnection network. It

provides a physical element for every possible connection between users, where every

input has a corresponding output[6] [21]. The Cyclops64 Crossbar is a 7-stage

pipelined 96x96 crossbar switch with input/output queues. It is used to provide on-

chip communication between the execution units, SRAM memory banks, I-Caches,

3 Intel P4-3GHz.

30

Figure 4.1: C64 Switch Verification Environment with Visualization

as well as off-chip DRAM memories, I/O devices, host interface and the A-Switch4.

Figure 4.2 shows the basic internal structure of the crossbar switch. The

crossbar switch consist of 96 physically identical ports which are interconnected.

Each port of the crossbar consists of several components: a user interface providing

input and output data ports, a source control unit, a target control unit, a 96x1

multiplexer, data FIFO and extra registers. The data FIFOs and their multiplexers

are combined into the C64 crossbar core.

Packets are routed through the crossbar switch by the source control unit of

the source port and the target control unit of the destination port. Flow control is

handled by the token protocol. Virtual channels are supported for forwarded and

returned traffic (from the standpoint of view of the same port), as well as non-

interruptible block transfers. Arbitration is handled by a segmented LRU algorithm

to reduce the floorspace of the switch.

4 Inter-Chip communication within the 3D-Mesh

31

.

.

.
Port95

Port3

Port1
Port2

Port0

.

.

.
Port95

Port3
Port2
Port1
Port0

.

.

.
Port95

Port3
Port2
Port1
Port0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Payload

Payload

Payload

.

.

.

Outgoing

Packets

Port95

Port3
Port2
Port1
Port0

Port 95

(FifoD7_95)

FifoD7

Port 0

(FifoD7_0)

Mux96

Port95

(Mux96_95)

Mux96

Port 0

(Mux96_0)

Packets

PORT 0

PORT 95

FifoD7

.

.

.

.

.

.

.

.

Header

Payload

Payload

Control
Header

Target Address

Target AddressSource Control Unit

Port 0 (SrcCtl_0)

Target Control Unit

Port 0 (TarCtl_0)

Source Control Unit
Port 95 (SrcCtl_95)

Target Control Unit
Port 95 (TarCtl_95)

Control

Interface

C64 Crossbar Core

User (TUnitB)
User (TUnitA)
Interface

Incoming

Figure 4.2: A block diagram of C64 Crossbar Switch

Data is being transmitted through the crossbar switch by means of datagram

packets which contain the actual payload and routing tokens such as destination

information, class and various other tags. Figure 4.3 shows a detailed operation of

the crossbar design, representing a logic channel between ports i and j. This logic

channel is composed of the source control unit of the port i and the target control

unit of port j.

The source control unit handles data buffering in the FIFO, sending requests

and forwarding the control header to the target control unit of the destination port

and delivering the payload to the multiplexer.

The target control unit has to arbitrate the winner from all requesting source

control units, send back the confirmation token to the requester and forward the

respective flags to the destination port.

Flow control is achieved by the token protocol which is implemented by a 2-bit

token and a counter inside each port. With each packet being injected into the port,

the counter is decremented. Whenever the packet is delivered, an acknowledgment

token is sent back to the source port and the counter is incremented.

32

Core
SrcCtl_i

TarCtl_j

FifoD7_i

5

7

4

3

2

6

1

92bit 10bit Reg0

Reg2 Reg3 Reg4

Reg7 Reg8

Reg10

Reg12Reg11

Reg6

Reg9

Reg1

Reg5

92bit 3bit
TarCombine_j

2bit 102bit 2bit

TUnitA_jTUnitB_j

Port j

95bit

Control Path
SrcSplit_i

Data Path

Arbiter

Mux96_j

Buffers

Fifo_j

2bit 2bit

Port i
TUnitA_i TUnitB_i

95bit102bit

Fifo_C7

Figure 4.3: A Logic Channel of The C64 Crossbar Switch

4.4 C64 Packet Construction Format

Table 4.1 describes how a general C64 crossbar packet is constructed[22]. It

consists of Data and Tag, as well as other fields. The 27-Bit Tag field contains

addressing information for SRAM memory and can be treated as payload along the

64-Bit Data fields. Of interest is the 7-Bit Tar field that will address 96 possible

destination ports. The BSE bit will be set at the beginning and end of a Block

transfer. Such a series of packets can not be interrupted at the destination by packets

coming from other source ports. The C bit will indicate the Class of the packet.

A memory load request will have the Class set to 0, while the returned result will

have the Class set to 1. The last bit indicates that the data at the port is valid and

should be processed. In this table we omit the 2-bits used for the acknowledgment

tokens. After a packet is delivered to the destination port, it’s data-width is reduced

to 95 bits by having the destination field removed.

33

Position Field Full Name Notes

101 (94 after Tar
stripped)

V Valid 1 for a valid packet

100 (93 after Tar
stripped)

C Class 0 for forward, 1 for reverse

99 (92 after Tar
stripped)

BSE Block Start/End 1 during the first and last
packets of a block transfer

98:92 Tar[6:0] Target Identification of one of 96
targets

91:64 T[27:0] Tag Tag
63:0 D[63:0] Data Data or other info

Table 4.1: C64 Crossbar Packet Format

Position Field Full Name Notes

61 BSE Start BSE Start 1 for start of Block Transfer
60 BSE Stop BSE Stop 1 for end of Block Transfer
59:48 BSE TTL[11:0] BSE TTL Number of Packets until the

end of Block Transfer
47:40 SrcID[7:0] SourceID Source Port, packet’s origin.
39:32 TarID[7:0] TargetID Target Port, packet’s desti-

nation
31:0 Cnt[31:0] Cycle Cnt Timestamp of packet injec-

tion

Table 4.2: Payload Packet Format

34

Table 4.2 describes fields that are necessary to verify the operational char-

acteristics of the C64 crossbar switch. The fields SrcID and TarID store packets

origin and destination ports and the field Cnt contains the emulation clock cycle

number of the packet injection. This represents the packet’s timestamp. With this

information at hand the following characteristics can be assured:

Every packet injected into the crossbar can be identified by those 3 fields(SrcID,

TarID, Cnt) and no two packets will have the same payload within a reasonable em-

ulation time. By including the target information we can verify that the port which

has received the packet was indeed the destination of the packet. Storing the times-

tamps of the most recently received packet from each source port at the destination

port, we can verify the in-order-delivery of packets. The block transfer fields pro-

vide information about block transfers being performed. Knowing the number of

remaining packets ,as stored in the BSE TTL field, permits block transfers lengths

of up to 212
.

4.5 Tests to implement

The verification framework, as mentioned in the earlier section, supports a

number of tests to evaluate the reliability of the C64 Crossbar Switch. The hardware

under testing must perform to specifications in all testing scenarios, which include

regular traffic that would be expected in the operational environment of the C64

Chip, as well as, corner cases that are not likely to occur. Regular traffic scenarios

consist of the following traffic patterns:

• One to One - single source port and single destination port

• One to Many - single source port and many destination ports

• Many to Many Set - many source and destination ports with set port selection

35

• Many to Many Random - many source and destination ports with random

port selection

• Block Transfers - all of the above employing block transfers

Traffic patterns, such as one to many, may represent interleaved memory access

across on-chip local memory. Other patterns, like many to many, would represent

concurrent access by multiple thread units to local memories. Block transfers may

represent loads and stores of data structures and program code into local memory.

Within the above mentioned traffic patterns, there are some that represent corner

cases that would normally not occur. Since these cases are within the specifications

of the C64 Crossbar Switch, they should be accounted for.

• Block Transfer of 2 packets, meaning that the BSE bit will be asserted con-

tinuously

• Block Transfer of 3 packets, meaning that the BSE bit will be asserted with

every second packet

• Block Transfers of more then 7 packets, exceeding the input FIFO’s depth of

7 Packets

One of those cases is the short 2-packet Block transfer. A block transfer is specified

by the BSE-Bit set in the starting and ending packet of the block. The intermediate

packets have the BSE-Bit unset, as any other packet. In case of a 2-packet block

transfer, the BSE bit is always set. In the case of a 3-packet transfer, the state of

BSE Bit will alternate in every packet sent.

4.6 General Implementation

The packet generation and verification tool is designed to perform various

operational and verificational tests on the various design stages of the C64 Crossbar

36

Switch. It is used with various hardware emulation platforms, such as the software

XtremeData’s XD1000, DRC’s DS1000, IBM’s MrsClops FPGA Based Machines

and the software based AsapSim logic emulator.

This tool shares the same hardware abstraction layer interface as the ac-

celerated LAST simulator, meaning that all emulation platforms can also run C64

Architecture based programs.

The Packet generation and verification tool’s functionality consists of the

following tasks:

• C64 Crossbar Packet and Payload generation, processing and analysis

• I/O with Emulated C64 Crossbar Logic

• Graphical Visualization and Analysis

Those tasks are accomplished in the way as described in the Data Flow Diagram

in Figure 4.4. Each of those tasks are tightly coupled in the following manner:

The verification tool is driven by the OpenGL visualizer which executes the entire

application in a cyclic fashion, executing one emulation cycle at a time. For the

execution of every clock cycle a new set of Crossbar input packets is generated.

Such input packets are injected into the Crossbar emulation hardware. Then output

packets are received and analyzed and the visualization is updated according to the

new state of the Crossbar.

Figure 4.5 describes the generation of new packets. New packets can only be

injected into the Crossbar if the input port’s FIFO is not full. Each time a packet

is removed from the input FIFO, a Token is generated by the Crossbar logic at

the respective input port. The number of outstanding Tokens cannot exceed the

depth of the input FIFO, otherwise newly injected packets will be lost. In that case,

packets cannot be injected into this port and we must proceed with the next input

port.

37

Current State
of XBAR

XBar
Emulation
in FPGA

I/O with FPGA

Input Pattern
Generation

Output
Analysis

OpenGL
Visualization

Statistics
Test Results

Input FIFO State Expected Traffic

State Information

Input/Output Port Data

Figure 4.4: Data Flow Diagram of the Verification Tool

According to the actual test set being performed on the Crossbar, there may

be no need to create a packet at this particular input port at the current cycle.

The packet must be constructed according to the Table 4.1 so that it can

work correctly on the C64 Crossbar switch. Fields that define basic properties of

the packet must be set, such as the destination port, virtual channel selection and

the block transfer tag. The payload of this packet must be constructed according

to the Table 4.2. Fields logically defined within the packet payload specify such

properties as Source and Destination Ports of this specific packet, description about

a possible block transfer and a timestamp specified by the current emulation cycle.

The packet payload contents will obviously carry more useful data in the actual

working environment of the Crossbar switch.

Finally this packet is added to the ”Guest list” at its respective destination,

the number of expected packets from the current input port is increased by one.

Each destination port maintains a Guest list, which records the number of expected

38

Port N

Input FIFO N
Full ?

Create Packet
at port N?

Create Packet:
Destination

BSE
Channel

Create Payload:
Source

Destination
BSE + Cnt

Time

Add to "Guestlist"
at Destination

Port N+1

Port N+1

Port N+1

Yes

No

Figure 4.5: Flow Diagram of Input Pattern Generation

packets from each source port that were addressed to it and the timestamp of the

most recently received packet from every destination. The goal of this list is to

detect lost and duplicate packets. In case of lost packets, the number of expected

packets will not match the number of received packets and in case of duplication,

we will have a mismatch in the timestamp, each newly received packet must have a

timestamp which is larger then the timestamp of the last packet coming from the

same source port.

This newly created packet is stored until being injected into actual emulation

hardware and execution is continued on with the next input port.

The Figure 4.6 describes the I/O Communication details with the actual

emulation of the C64 Crossbar running on dedicated hardware. Prior to the use,

the emulation hardware must be initialized and reset to a defined state. Depending

39

I/O Start

Device
Initialized ?

Encode Input Port
Data into Shared

Memory

Start Emulation

Emulation
Cycle

Complete ?

No

Decode Output
Port Data from

Shared Memory

Load Drivers
Load Bitfile

Reset Device
No

I/O End

Figure 4.6: Flow Diagram of I/O with Emulation Hardware

on the emulation environment, such things as communication driver initialization

and loading of bit files into the FPGA have to be performed. In any case, the

Crossbar must be run for a certain length of time with the reset signals set to flush

the internal FIFOs and arbitration. Typically this reset takes around 25 emulated

cycles.

Communication with the Crossbar running on dedicated hardware usually

works via shared memory. Access to a certain memory address results in data

movement to and from hardware, thus writing data into a certain memory region

will write this data into the input ports of the crossbar switch. The prestored

input packets, as created in the Figure 4.5, must be converted into bit-compatible

data format prior to being written into the hardware. This data usually includes

acknowledgment tokens for received packets.

40

With these steps completed, the emulation of the Crossbar Switch can be

performed for one virtual cycle.

The Processing of the output ports works in a similar fashion as the input

ports. Data is usually read from shared memory and decoded into structures de-

scribing the output packets. They are almost identical to input packets, but they

don’t contain the destination port fieled.

Port N

New Packet
Arrived?

Packet in
Guest List ?

Payload
Correct ?

Decode Packet
Payload

Set ACK for
Received Packet

Port N + 1No

No

No

Port N + 1

Error Handling
Logging

Figure 4.7: Flow Diagram of Output Analysis

Figure 4.7 describes the analysis of the newly received packets. If a packet

is received on an output port of the Crossbar, its payload must be decoded to

reveal the routing information contained inside the payload. Such data contains the

source and destination ports, information about block transfers and a timestamp of

the packet injection.

41

With this information, the packet can be matched against the Guest list

to ensure that the packet has arrived correctly. The source port information is

used to choose the correct guest list at the destination port. Within the guest

list, the destination information must match the destination port where the packet

is received, the timestamp must be larger then the one already recorded and the

overall number of received messages on this port must be smaller or equal as of

messages sent.

Each received packet must be acknowledged by the receiving port, otherwise

the Crossbar will not deliver packets. This mechanism is identical to the input

port token protocol, the C64 Chip will have FIFOs at the output ports, so each

time a packet is removed from the output FIFO, an acknowledgment signal will be

sent. The Crossbar logic compares the number of acknowledgments received with

the number of packets delivered. The difference can not exceed the depth of the

output FIFO.

4.7 Experimental Results

The following tests have been performed on the latest C64 Crossbar Design

(Version 9). Each test has been performed over at least 50,000 cycles, meaning that

new inputs have been generated for this period of time. The tests were running until

completion which means that all packets have been delivered and all BSE Transfers

have completed. The following tests have been run on the following platforms:

• XtremeData XD1000 running the MP V9 version of the crossbar switch in

DIMES mode.

• AsapSim Software Simulator running MP V9 version of the crossbar switch in

DIMES mode.

42

Input Ports Output Ports BSE Length Notes

1 48 1 One to Many without
Blocktransfers

1 96 1 One to Many
48 1 1 Many to One
96 1 1 Many to One
48 48 1 Many to Many
48 96 1 Many to Many
96 48 1 Many to Many
96 96 1 Many to Many
48 48 2 Many to Many with BSE

Bit continuously set
48 96 2 Many to Many with BSE

Bit continuously set
96 48 2 Many to Many with BSE

Bit continuously set
96 96 2 Many to Many with BSE

Bit continuously set
48 48 3 Many to Many with BSE

Bit alternatively set
48 96 3 Many to Many with BSE

Bit alternatively set
96 48 3 Many to Many with BSE

Bit alternatively set
96 96 3 Many to Many with BSE

Bit alternatively set
48 48 32 Many to Many with Block-

transfers exceeding the In-
put FIFO Depth

48 96 32 Many to Many with Block-
transfers exceeding the In-
put FIFO Depth

96 48 32 Many to Many with Block-
transfers exceeding the In-
put FIFO Depth

96 96 32 Many to Many with Block-
transfers exceeding the In-
put FIFO Depth

Table 4.3: Verification Tests performed on Crossbar Design.

43

All tests have finished without packets lost, duplication or misrouting. There-

fore, we have proven that the DIMES mode design works to the specifications as of

Cyclops64 Principles of Operation Manual[22].

4.8 VHDL Testbench Creation

The packet generation and verification tool has proven itself as a great sup-

port during the logic debugging phase. It is specifically useful whenever a new

logic design is released and needs to be reimplemented as a design logic for iterative

emulation. Each of these new designs is usually simulated using the ModelSim[23]

software simulator, before it is synthesized to run on the FPGA accelerator plat-

forms.

The reason therefore is pretty obvious: A synthesis run usually takes hours,

depending on the actual accelerator platform and settings selected. Once the logic is

loaded onto the accelerator, the developer has hardly any debugging capabilities. In

fact he can be considered lucky if the system crashes without corrupting the entire

file system.

Therefore, a gate-level software simulator is a great tool for logic debugging

and validation. However, this approach requires the use of testbenches - they must

be created by the user of the simulator. The manual creation of VHDL testbenches

is a tedious task, in the case of the C64 Crossbar switch, a large amount of input

signals has to be set and reset for each simulation step. In addition, the testbench

requires logic module instantiation and initialization.

A simple testbench can be created by hand, however even in that case the

amount of VHDL code is quite large. This shows a great possibility for automation:

the testbenches can be created on the fly running the verification tool on already

existent crossbar logic and simply recording the traffic that is occuring between the

emulation and the tool into the testbench. This automated approach proves itself

44

especially practical, because it uses feedback from the crossbar logic emulation. It

can detect timing differences, found between the testbench and the simulated logic.

The implementation is quite simple, given the underlying framework. During

device initialization phase, the tool writes instantiation and initialization code into

the testbench. In the I/O stage, the tool writes register input and output port

contents. The testbench is finalized when the execution of the tool is finished.

45

Chapter 5

RELATED WORK

At the time of creation of this document, work is being performed at CAPSL

and ETInternational on the verification of the IBM Cyclops64 Chip. Emulation

of this architecture is performed with the AsapSim Software Simulator and the

MrsClops Emulation Engine[8].

Currently, the entire Cyclops64 Chip can be emulated by the MrsClops Emu-

lation Engine. At 120,000 virtual cycles/second, the performance is equivalent with

the functionally accurate ”FAST” simulator. However this emulation is latency ac-

curate like the ”LAST” simulator and the ”SEmulator”. The emulation speed of

MrsClops, running the Cyclops64 Chip, surpasses all other latency accurate simula-

tors. This is true due to the enormous amount of available resources for emulation of

all chip sub modules, also for being self-contained and highly optimized. In fact, the

C64 emulation on MrsClops uses the same iterative emulation logic for the crossbar

switch as the ”SEmulator” does.

46

Chapter 6

FUTURE WORK

A large quantity of valuable experience and knowledge has been gained from

work on the FPGA-based Accelerator platforms. This experience can be employed

towards other uses of those plaforms, such as: financial applications, bioinformat-

ics, algorithm development and implementation, image processing and finally other

types of logic emulation.

6.1 Existent Design Improvements

So far, the C64 Crossbar design has been implemented on various FPGA-

based coprocessing platforms successfully. However, accelerator vendors are con-

stantly releasing new and improved versions of their devices, software and hardware

libraries. Those improvements usually reflect increased performance, but certainly

require more work then a simple resynthesis of the design to benefit. New software

drivers are sometimes not compatible with the old designs, so work always needs to

be done to keep up with the pace.

6.2 Algorithm Development

Algorithm Development in the field of Reconfigurable Computing has long

been dominated by complicated Custom logic designs for specific applications, such

as those used for logic emulation in this document. With the recent advances of

products which can generate code for FPGA accelerator platforms automatically,

47

such as ImpulseC[24] and Mitrion[25], FPGA-based Acceleration became much more

accessible to end users.

Those products can take existent applications and algorithms, written in

higher programming languages such as C, and accelerate them by the means of

calculating performance-intensive program parts in hardware. This work certainly

does require user input to choose the correct application of the tool, however the

user is often not required to have in-depth knowledge of logic design. The tool can

even completely generate and synthesize logic designs and software counterparts for

certain platforms automatically.

It must be noted however, that the resources of the FPGAs are usually lim-

ited. Even the largest chips will have problems with a large amount of floating point

arithmetic operations. It even goes so far, that alot of mathematical functions may

not be available to the user automatically.

Despite those limitations, algorithm development can greatly benefit from

FPGA-acceleration due to the massively parallel and pipelined data manipulation

capabilities. This is specifically useful for streaming data processing, improving the

performance by multiple levels of magnitude versus a software implementation.

6.3 MiniMrsClops

The Cylcops64 Architecture is currently under emulation by the MrsClops

Emulation Engine[8]. This machine consists of 30 FPGAs, Altera Stratix 2S90, and

20GByte of Memory. This machine is currently capable of emulating an entire C64

Chip at around 120,000 cycles/second.

In contrast, the XtremeData XD1000[9] is equipped with one Altera Statix

2S180 FPGA and 4 GBytes of memory. Considering that MrsClops is using only 20

FPGA Chips for data processing and the chips are smaller by a factor of 2, we do

have a very high performance platform for logic emulation with XD1000. It would

be perfectly suitable for building an efficient emulation platform of smaller scale.

48

We should also note, that we could use the existing stack code generators such as

AsapSCG to emulate any kind of logic on this platform.

49

Appendix A

SEMULATOR AND VERIFICATION UTILITY

A.1 SEmulator

The SEmulator is an extension to the latency accurate simulator LAST.

Therefore, the use is identical. We should consult the C64 Toolchain Manual for

further instructions on how to use the simulator.

./last hello_world.bin

Load @ address: 0000000000000000, length: 0000000000008ec0

...

Initialize @ address: 000000000000ae90, length: 0000000000000000

Cyclops says... Hello world!

SEMULATOR used for: 11.004125 seconds at a rate of 1164.654164 cycles/second

With the option ”-c”, the emulation hardware is employed for the acceleration of

the simulator.

./last -c hello_world.bin

crossbar reset done!

FPGA Initialized after: 0.874599 seconds

Load @ address: 0000000000000000, length: 0000000000008ec0

...

Initialize @ address: 000000000000ae90, length: 0000000000000000

Cyclops says... Hello world!

Crossbar used for: 1.163554 seconds at a rate of 9905.857399 cycles/second

SEMULATOR used for: 2.121563 seconds at a rate of 5432.787054 cycles/second

50

A.2 Verification Utility

The Verification Utility is designed to provide functional verification of the

Cyclops64 Crossbar Switch. This task is accomplished by creating traffic on the

crossbar switch and verifying the outputs.

The execution of this utility consists of three phases:

• Phase 1: The program is creating new packets and block transfers according

to the rules specified in the input.

• Phase 2: The program is finishing existing block transfers, no new transfers

are created.

• Phase 3: The program is receiving remaining packets.

The programs can create new packets according to the rules specified in the

program parameters.

./stress_test "Length" "BSE Length" "Input Ports" "Output Ports"

./stress_test 100 5 10 10

The first parameter specifies how long the program will be creating new transfers.

The second parameters specifies the length of the block transfers. The third param-

eter specifies the number of input ports. The last parameter specifies the number

of output ports.

51

Appendix B

LOADING OF BITFILES ONTO FPGA ACCELERATOR

PLATFORMS

This section will introduce the loading of Bit files onto the XD1000 and

DS1000 Accelerator Platforms: Upon being powered on, a regular FPGA chip does

not contain a logic design in a predictable state. In the case of an FPGA Copro-

cessing platform, the FPGA is directly connected to the HyperTransport link and

therefore must contain a valid logic design. Otherwise, the system can not initialize

the HT link upon boot up.

The task of loading the image into the FPGA is performed by additional

components. The image is either stored within a FLASH memory chip, or can be

loaded via the JTAG interface from an additional machine.

This task is accomplished with the software ”Quartus Programmer” for Al-

tera FPGA or ”iMPACT” for Xilinx chips.

During the process of loading the FPGA, we will have unknown signal states

on the pins, also those pins connected to the HyperTransport link. To avoid an

unknown bus state, which will certainly result in a system lockup, we need to halt

the machine prior to loading the image onto the FPGA.

$sudo halt

B.1 XtremeData: Altera FPGA

After we have verified that the platform is halted, we do not turn off the

main power, but proceed to the next step.

52

Figure B.1: Altera Programmer: Main Screen

With the program started as shown in Figure B.1, we must make sure that

the correct programming interface is selected: Hardware Setup.

Figure B.2: Altera Programmer: Device Selection

We must select the USB-Blaster programming interface in Hardware Setup,

as shown on Figure B.2.

With ”Add File...” we must select a bit-file that will be programmed onto the

FPGA and also select the ”Program/Configure” checkbox. By pressing the ”Start”

53

Figure B.3: Altera Programmer: Programming Complete

button we can program the FPGA as shown on Figure B.3

The FPGA Accelerator will reboot and start beeping. It must be manually

reset until the machine starts a regular booting procedure.

B.2 DRC: Xilinx FPGA

The loading of bit-files onto the DRC platform is essentially identical to the

XtremeData. The machine must be halted as well, but not turned off. The software

”iMPACT” from the Xilinx package is used for this task. Upon startup of the

Figure B.4: Xilinx iMPACT: Startup

program, a new project will be created as seen in Figure B.4.

54

Figure B.5: Xilinx iMPACT: Boundary Scan

The software will perform a Boundary Scan of the JTAG chain, it will detect

all devices connected to the programmer. Figure B.5 shows this screen. We must

perform this scan to continue.

As shown on Figure B.6, we have to select the device that we want to program,

Xilinx ”xc4vlx60”, right click it and select the appropriate bitfile. The programming

software is now ready to load the bitfile. We just have to right click the device again,

choose ”Program Device” and the FPGA platform will automatically reboot after

it is programmed.

55

Figure B.6: Xilinx iMPACT: Device Selection and Programming

56

BIBLIOGRAPHY

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the
obvious,” ACM SIGARCH Computer Architecture News, pp. 20–24, March
1995.

[2] C. A and M. S. R, “The power of functional scaling: beyond the power con-
sumption challenge and the scaling roadmap,” Circuits and Devices Magazine,
pp. 27–35, February 2005.

[3] H. Sakane, L. Yakay, V. Karna, C. Leung, and G. R. Gao, “Dimes: An iter-
ative emulation platform for multiprocessor-system-on-chip designs,” in IEEE
International Conference on Field-Programmable Technology (FPT’03), Tokyo,
Japan, Dec. 2003.

[4] H. Sakane, L. Yakay, and V. Karna, “DIMES/P hardware technical manual,”
University of Delaware, CAPSL Tech. Note 12, 2003.

[5] M. Denneau, private communication, 2002.

[6] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gao, “A study
of the on-chip interconnection network for the ibm cyclops64 multi-core archi-
tecture,” in 20th International Parallel and Distributed Processing Symposium
(IPDPS2006), 2006.

[7] http://www.alpha-data.com/, “Alpha data: Fpga based solutions for high end
applications.”

[8] International Business Machines Corporation and ET International, “Mrsclops
emulation engine.”

[9] http://www.xtremedatainc.com/, “Xtremedata inc.: Computing redefined.”

[10] http://www.drccomputer.com/, “Drc computer: Acceleration technologies for
high-performance computing.”

[11] Fei Chen, “Latency accurate simulation testbench, 2005.”

[12] ——, “Asapsim,2006.”

57

[13] Juan del Cuvillo, Weirong Zhu and Ziang Hu and Guang R. Gao, “FAST: A
Functionally Accurate Simulation Toolset for the Cyclops-64 Cellular Architec-
ture,” in Workshop on Modeling, Benchmarking and Simulation (MoBS’05) of
ISCA’05, Madison, Wisconsin, June 2005.

[14] Juan del Cuvillo, Weirong Zhu, Ziang Hu and Guang R. Gao, “Towards a
Software Infrastructure for Cyclops-64 Cellular Architecture,” in HPCS 2006,
Labroda, Canada, June 2005.

[15] W. J. Dally and B. Towels, Principles and Practices of Interconnection Net-
works. Morgan Kaufmann, 2004.

[16] M. K. Chen, X.-F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju, “Shangri-la:
Achieving high performance from compiled network applications while enabling
ease of programming,” in Proceedings of ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation (PLDI05), Chicago, Illinoi,
June 2005.

[17] Y. P. Zhang, “A study of architecture and performance of ibm cyclops64 inter-
connection network,” Master’s thesis, Univ. of Delaware, Newark, DE, Summer
2005.

[18] J. D. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A functionally accurate
simulation toolset for the cyclops64 cellular architecture,” in Procedings of the
32nd Annual International Symposium on Computer Architecture (ISCA’05),
Madison, Wisconsin, June 4 2005.

[19] http://www.altera.com/literature/manual/mnl avalon spec.pdf, “Memory-
mapped interface specification, 2007.”

[20] http://www.hypertransport.org/, “Hypertransport consortium.”

[21] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gao, “Perfor-
mance analysis of interconnection network of cyclops-64 chip architecture,” in
CAPSL Technical Memo 60, 2005.

[22] I. B. M. Corporation, 64-Bit Cyclops Principles of Operation. IBM Internal
Documentation, 2004.

[23] http://www.model.com, “Modelsim - simulation and debug environment for
complex asic and fpga designs.”

[24] http://www.impulsec.com, “C programming tools for fpga platforms.”

[25] http://www.mitrion.com/, “The mitrion platform by mitrionics.”

58

