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ABSTRACT

Hmmpfam [1] is a widely used bioinformatics software for sequence classi-

fication provided by Sean Eddy’s Lab at the Washington University in St.Louis.

In real situations, this program may need a few months to finish processing large

amounts of sequence data. Thus parallelization of the Hmmpfam is an urgent de-

mand from bioinformatics researchers. HMMer 2.2g provides a parallel hmmpfam

program based on PVM (Parallel Virtual Machine) [2]. However, this PVM ver-

sion does not have good scalability and can not fully take advantage of the current

advanced supercomputing clusters.

Using state-of-the-art multi-threading computing concept, we implement a

new parallel version of hmmpfam on EARTH (Efficient Architecture for Running

Threads), an event-driven fine-grain multithreaded programming execution model,

which supports fine-grain, non-preemptive fibers. In its current implementations,

the EARTH multithreaded execution model is built with off-the-shelf microproces-

sors in a distributed memory environment. The EARTH runtime system (version

2.5) performs fiber scheduling, inter-node communication, inter-fiber synchroniza-

tion, global memory management, dynamic load balancing and SMP node support.

Compared with the original PVM implementation, our implementation based

on EARTH shows notable improvements on absolute speed-up, better scalability

and robust performance. Experiments on the Chiba City supercomputing clusters

at Argonne National Laboratory (ANL) achieve an absolute speedup of 222.8 on 128

dual-CPU nodes for a representative data set, which means that the total execution

time is reduced from 15.9 hours (sequential program) to only 4.3 minutes. Our

xi



implementation also demonstrates performance portability on different platforms,

including uni-processor clusters, single SMP machine, and SMP clusters.
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Chapter 1

INTRODUCTION

Over the past few years, building clustering servers for high performance

computing is gaining more and more acceptance. Assembling large Beowulf clusters

[3] is easier than ever and the performance is increasing dramatically. According

to November 2003’s statistics, there are 208 clusters in the top500 supercomput-

ing machine list [4], while there were 93 clusters among the top500 one year ago.

Cluster-based solutions for new driving applications need to be developed to take

full advantage of the current computing resources. Highly demanded by academic

research and drug discovery market, bioinformatics application will be an important

driving force for the development and deployment of clustering servers and even the

design of next generation computer architecture and programming models.

On the other hand, a large amount of DNA, RNA and protein sequences

are discovered by different sequencing projects at an accelerating rate in the post

genome era. It is very important to find out the structure and function of each

sequence to discover useful information. Sequence database searching and family

classification are common ways to analyze the function of the sequences. The family

classification of sequences is of particular interest to drug discovery research. For

example, if an unknown sequence is identified to belong to a certain protein family,

then its structure and function can be inferred from the information of that family.

Furthermore if this sequence is sampled from certain diseases X and belongs to a

family F, then X can be treated using the combination of existing drugs for F [5].
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Sequence classification is an important computation intensive applications

which can exploit the computing resources of supercomputing clusters. A typical

way to do sequence classification is to use consensus HMM model (Hidden Markov

Model) [6] built from multiple alignment of protein families. HMM is a probabilistic

model used very widely in speech recognition and other areas [7]. In recent years,

HMM has been an important research topic in bioinformatics area. It is applied

systematically to model, align, and analyze entire protein families and secondary

structure of sequences. Unlike conventional pairwise comparisons, a consensus model

can in principle exploit additional information such as the position and identity of

residues that are more or less conserved throughout the family, as well as variable

insertion and deletion probabilities [8].

HMM is used to solve three types of questions: 1) How to build an HMM to

represent a family? 2) Does a sequence belong to a family? For a given sequence,

what is the probability that this sequence has been produced by an HMM model?

3) Assuming a sequence comes from a family represented by an HMM, what can we

say about the structure of the sequence? The problem solved in this thesis falls into

the second category. Usually, for a given unknown sequence, it is necessary to do a

database search against an HMM profile database which contains several thousands

of families.

HMMER [1] is an implementation of profile Hidden Markov Models (profile

HMMs) for sensitive database searches. A wide collection of protein domain models

have been generated by using the HMMER package. These models have largely

comprised the Pfam protein family database [9][10][11], which is widely used for

protein domain detection and function prediction. Hmmpfam, one program in the

HMMER 2.2g package, is a tool for searching a single sequence against an HMM

database. In real situations, this program may take a few months to finish processing

large amounts of sequence data. Thus efficient parallelization of the Hmmpfam is
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essential to bioinformatics research.

HMMER 2.2g provides a parallel hmmpfam program based on PVM (Parallel

Virtual Machine) [2]. However, the PVM version does not have good scalability and

can not fully take advantage of the current advanced supercomputing clusters. So

a cluster-based solution for hmmpfam is an urgent demand, and it should be highly

scalable and robust on hundreds to thousands of computing nodes. To meet such

challenges, we exploit the power of a multithreaded architecture and program exe-

cution model, such as EARTH (Efficient Architecture for Running THreads) model

[12][13], where parallelism can be efficiently exploited on top of a supercomputing

cluster based on off-the-shelf microprocessors.

1.1 Goals and Synopsis

The purpose of this thesis is to present:

i. the first EARTH execution model based parallel implementation of bioin-

formatics sequence classification application;

ii. the first largely scalable robust parallel Hmmpfam implementation tar-

geted to advanced supercomputing clusters, which also achieves good perfor-

mance on SMP machines;

iii. a new efficient master-slave dynamic load balancer is implemented in

EARTH Runtime System. This load balancer is targeted to parallel applica-

tions adopting master-slave model and shows more robust performance than

static load balancer. In our parallel Hmmpfam implementation, tasks are

coarse-grain, which guarantees that the overhead of master-slave load balancer

does not affect the performance.

iv. the first documented analysis of the code portability and performance

portability of EARTH program.
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The rest of this thesis is organized as follows. Chapter 2 provides the back-

ground information necessary to understand the works in later chapters. The cluster-

based multithreaded parallel implementation is described in Chapter 3. Chapter 4

presents the analysis of the code portability and performance portability of the

EARTH programs. Chapter 5 presents and compares several SMP based parallel

implementations of HMMPFAM. The results of the implementation are presented

in Chapter 6, and conclusions in Chapter 7.
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Chapter 2

BACKGROUND

“Bioinformatics is often defined as the application of computational tech-

niques to understand and organize the information associated with biological macro-

molecules” [14]. Biological data are currently being produced world widely at an

accelerating rate, bioinformatics techniques try to manage the huge amount of data,

and extract useful information from those data. In order to aid the analysis of

data, methods and tools are developed; at the same time resources, like large public

databases (e.g., GenBank [15], Protein DataBank [16]), are also built. The meth-

ods, tools and resources are used to analyze the data and interpret the results in

a biologically meaningful way. Certain methods for analyzing biological data (e.g.,

genetic, protein data) have been found to be extremely computationally intensive,

providing motivation for the use of more powerful computers.

On the other hand, high-performance computing focuses on making use of

both hardware and software techniques developed or being developed to build com-

puter systems for performing computation intensive applications. The simultaneous

use of large numbers of processors (e.g. parallel computing) is a general way to

achieve high-performance computing. There are two main streams of building par-

allel computer: one is tightly-coupled shared-memory multiprocessors, the other is

loosely-coupled clusters of PCs. Experience has shown a great deal of software sup-

port is necessary to support the development and tuning of applications on parallel

architectures. The work presented by this thesis mainly demonstrates how to use one
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efficient parallel programming execution model to gain high-scalable-performance for

one widely used bioinformatics tools.

The purpose of this thesis is to present how the high-performance comput-

ing technology is applied to an important bioinformatics application – HMMPFAM

and gains impressive empirical results. The following sections will present the back-

ground knowledges about HMM, HMMPFAM, EARTH, and EARTH Runtime Sys-

tem necessary to understand the work presented in later chapters.

2.1 profile HMMs, HMMER, PFAM and HMMPFAM

Basic concepts of profile HMMs, HMMER, PFAM and HMMPFAM are in-

troduced in this section.

2.1.1 Profile Hidden Markov Models

Hidden Markov Model (HMM) is a probabilistic and statistical model. For

system which is identified as a Markov Process with unknown parameters, the HMM

is used to extract information from the observable state to determine the hidden

parameters or states. The states or parameters extracted by HMM can be further

used to perform analysis on the system observed.

“A HMM makes two primary assumptions. The first assumption is that

the observed data arise from a mixture of K probability distributions. The second

assumption is that there is a discrete time Markov chain with K states, which

generates the observed data by visiting the K distributions in Markov fashion.”

[17] The “hidden” of HMM means the hidden state of the system (i.e., sequence

for this thesis) can not be directly observed, they can only be extracted from the

observable states by using the probability model. HMM has been found to be

very useful in a variety of areas, including sequential modeling problems. In 1994,

Anders Krogh, David Haussler etc. at UC Santa Cruz introduced profile HMMs to

computational biology [18], and it’s soon found that HMM technology is well-suited
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to the “profile” methods for searching a protein sequence database using multiple

sequence alignments, which improve both the sensitivity and selectivity of database

searches.

The sequence profile method [19] [20] is a powerful tool to detect distant re-

lationships between amino acid sequences. The profile methods use position-specific

scores for either nucleic acids or proteins and position specific gap penalties for

providing a generalized description of a protein motif, which then can be used for

sequence alignments and database searches. A sequence profile is derived from a

multiple sequence alignment.

Profile HMMs are statistical models of multiple sequence alignments. “Profile

HMMs turn a multiple sequence alignment into a position-specific scoring system

suitable for searching databases for remotely homologous sequences. Profile HMM

analyses complement standard pairwise comparison methods for large scale sequence

analysis.”[6].

Basicly, profile HMMs are used to solve three types of questions:

1) How to build a HMM to represent a family?

2) Does a sequence belong to a family? For a given sequence, what is the

probability that this sequence has been produced by a HMM model?

3) Assuming a sequence comes from a family represented by a HMM, what

can we say about the structure of the sequence?

The work presented by this thesis falls into the second category.

2.1.2 HMMER

HMMER[1] is a freely distributable implementation of profile HMM software

for protein sequence analysis, developed by Prof. Eddy’s group in Washington

University School of Medicine. The HMMER has several important applications:

7



• Once a multiple sequence alignment has been constructed on a protein

sequence family, which has a number of key residues, the HMMER helps to

find more members of that family in the sequence databases.

• Automated annotation of the domain structure of proteins. After a new

sequence is found, and the analysis of BLAST[21] shows that it may be ho-

mologues to a known domain, HMMER can help to confirm that the new

sequence is really an homologue of that known domain.

• Automated construction and maintenance of large multiple alignment

databases like Pfam [9]. HMMER is able to organize sequences into evolution-

arily related families. After building “seed” alignment of a relatively small

number of representative sequences from a large sequence family, then HM-

MER can be used to search the database for homology, and automatically

produce the high-quality alignment for the rest sequences of the family.

There are currently nine tools supported in HMMER 2 package:1

hmmbuild Build a model from multiple sequences alignment.

hmmalign Align any numbers of sequences to an existing model – an
HMM profile.

hmmcalibrate Takes an HMM and empirically determines parameters
that are used to make searches more sensitive, by calculating more accurate
expectation value scores (E-values).

hmmconvert Convert a model file into different formats.

hmmemit Emit sequences probabilistically from a profile HMM.

hmmfetch Get a single model from an HMM database.

hmmindex Index an HMM database.

hmmsearch Search a sequence database for matches to an HMM.

1 The descriptions of programs in HMMER package are got from The HMMER
User’s Guide
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hmmpfam Search an HMM database for matches to a query sequence.
The parallelization of hmmpfam is the main topic of this thesis.

2.1.3 PFAM

Pfam is a large collection of multiple sequence alignments and hidden Markov

models covering many common protein families. The Pfam database [9] is jointly

developed by several groups in UK, USA, Sweden and France and is available at the

web site of the Washington University in St. Louis (http://pfam.wustl.edu/), Sanger

Institute in UK (http://www.sanger.ac.uk/Software/Pfam/), Karolinska Institutet

in Sweden (http://pfam.cgb.ki.se/Pfam/), and Institute National de la Recherche

Agronomique in France (http://pfam.jouy.inra.fr/).

“Pfam is a database of multiple alignments of protein domains or conserved

protein regions. The alignments represent some evolutionary conserved structure

which has implications for the protein’s function. Profile hidden Markov models

(profile HMMs) built from the Pfam alignments can be very useful for automatically

recognizing that a new protein belongs to an existing protein family, even if the

homology is weak. Unlike standard pairwise alignment methods (e.g. BLAST,

FASTA), Pfam HMMs deal sensibly with multi-domain proteins. Pfam is formed

in two separate ways. Pfam-A are accurate human crafted multiple alignments,

whereas Pfam-B is an automatic clustering of the rest of a non-redundant protein

database derived from the PRODOM database.” [22]

2.1.4 HMMPFAM

Hmmpfam reads a sequence file (we will refer a sequence file as a seqfile in

this thesis) and compares each sequence within it, one at a time, against all the

HMMs in hmm database, looking for significantly similar matches.

There is a output report for each sequence in seqfile. This report consists of

three sections:
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• a ranked list of the best scoring HMMs,

• a list of the best scoring domains in order of their occurrence in the se-

quence,

• alignments for all the best scoring domains.

A sequence score may be higher than a domain score for the same sequence if there

is more than one domain in the sequence; the sequence score takes into account all

the domains. All sequences scoring above the -E and -T cutoffs are shown in the

first list, then every domain found in this list is shown in the second list of domain

hits. If desired, E-value and bit score thresholds may also be applied to the domain

list using the –domE and –domT options.2

Figure 2.1 shows the basic algorithm of HMMPFAM.

Suppose there are n HMMs in the profile database, and there are k sequences

in the sequence file. The hmmpfam program reads one sequence each time, and

matches that query sequence with the HMMs in the database one by one, and

scores the domain according to its occurrence in the sequence, finally outputs a

report for the query sequences as described above. Then hmmpfam program begin

another iteration to work on the next sequence in the sequence file.

In real situations, this program may take a few months to finish processing

large amounts of database and sequence data. Thus efficient parallelization of the

Hmmpfam is an urgent request from bioinformatics research. In this thesis, an

efficient parallel implementation based on EARTH Execution Model is discussed

and presented.

In HMMer 2.2 package, a parallel hmmpfam program based on PVM [2] is

provided. However, this PVM version does not achieve good scalability and can

2 The description of output report of HMMPFAM is got from The HMMER User’s
Guide
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Figure 2.1: HMMPFAM Algorithm

not fully take advantage of the current advanced supercomputing clusters. Detail

analysis will be given in next chapter.

2.2 EARTH Architecture and Execution Model

EARTH (Efficient Architecture for Running THreads)[12][13] is a multi-threaded

architecture and execution model that supports fine-grain, non-preemptive threads.

EARTH was firstly developed in ACAPS (Advanced Compilers, Architectures, and

Parallel Systems) at McGill University, then was under development of CAPSL

(Computer Architecture and Parallel Systems Laboratory) at University of Delaware.

The EARTH model can be summarized and described from two levels: the Program

eXecution Model (PXM) and the Architecture Model. In this section, the back-

ground knowledge of EARTH program execution model, the EARTH architecture

Model and Threaded-C language will be given.
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2.2.1 The EARTH Program Execution Model

The term Program eXecution Model (PXM) refers to the abstractions of “ob-

jects visible to the programmer, the operations which can be performed on these

objects, and the general method for representing and executing computations on

the machine.”[12]

The PXM for EARTH has following important properties which differs EARTH

from a conventional sequential computer:

• There can be multiple program counters, allowing concurrent execution

of instructions from different parts of the program. While, there is only one

single program counter in sequential program.

• Programs are divided into small sequences of instructions in a two-level

hierarchy of threads.

• The execution ordering among threads is determined by data and control

dependences explicitly identified in the program by a data-flow like firing rule.

• Frames holding local context for functions are allocated from a heap

instead of a linear stack.

One of the most important features of EARTH PXM is its thread model. The

EARTH PXM defines a two-level thread hierarchy: threaded procedures and fibers.

In the EARTH model, a fiber is a sequentially executed, non-preemptive, atomically-

scheduled set of instructions. And a fiber is always part of an enclosing threaded

procedure, that means Threaded procedures are collections of fibers sharing the

context of that procedure, including the local variables, input parameters of that

procedure and sync slots. The context is stored in a frame, which is dynamically

allocated from a heap. When a procedure is invoked, an appropriately-sized block

of memory is allocated from the heap.

12



Programs structured using this two-level hierarchy can take advantage of both

local synchronization and communication between fibers within the same thread,

exploiting data locality. In addition, an effective overlapping of communication and

computation is made possible by providing a pool of ready-to-run fibers from which

the processor can fetch new work as soon as the current fiber ends and the necessary

communication is initiated.

The EARTH PXM also defines a set of EARTH operations, which performs:

• Invocation and termination of procedures and fibers.

• Creation and manipulations of sync slots.

• Sending of sync signals to sync slots, either alone or atomically bound

with data.

2.2.2 The EARTH Architecture Model

The EARTH Architecture Model is shown in Figure 2.2. An EARTH node

is composed of an execution unit (EU), which runs the fiber, a synchronization unit

(SU), which schedules the fibers when they are ready and handles the communication

between nodes. There is also a ready queue (RQ) for storing ready fibers and an

event queue (EQ) of EARTH operations generated by fibers running on EU. The

local memory of an EARTH node is shared by the EU and SU. And there is an

interface to the interconnection network.

The EU fetches individual fibers from the ready queue (RQ) and executes

them as if they were normal sequential code. When the EU encounters EARTH

operators, it forwards the operator to the SU by writing the request to event queue

(EQ), where it stays until being read by SU. The SU processes each event it reads

from the EQ. Some events will enable fibers. Enabled fibers are placed in the ready

queue (RQ). Some events may request network communications, SU will interact
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Figure 2.2: EARTH Architecture Model

with the interconnection networks. The SU is the unique and crucial component in

EARTH architecture, it performs following functions:

• EU and network interfacing,

• Event Decoding,

• Sync Slot Management,

• Data Transfers,

• Fiber Scheduling,

• Procedure Invocation and Load Balancing.

2.2.3 The Threaded-C Language

Threaded-C [23][24] is a high level multi-threaded language, which supports

the EARTH virtual machine. It’s a ANSI standard C with extensions corresponding
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to the EARTH Operations defined in EARTH PXM. Threaded-C allow the program-

mer to indicate the parallelism explicitly. Till now, most applications for EARTH

is written by Threaded-C. The latest version of Threaded-C is release 2.0 [24].

1 #include <stdio.h>

2

3 #define REPEATS 1000

4

5 THREADED print_hello(SPTR done);

6

7 THREADED MAIN(int argc, char** argv)

8 {

9 int i;

10 for (i = 0; i < NUM_NODES; ++i)

11 INVOKE(i, print_hello, TO_SPTR(DONE));

12 END_FIBER;

13

14 FIBER DONE <* NUM_NODES*REPEATS *> {

15 printf("Terminate normally.\n");

16 TERMINATE;

17 }

18 }

19

20 THREADED print_hello(SPTR done)

21 {

22 int i;

23 printf("node %d: Hello World!\n", NODE_ID);

24 for (i=0; i<REPEATS; i++)

25 SYNC(done);

26 TERMINATE;

27 }

Figure 2.3: Multi Hello Word

Figure 2.3 gives an example of Threaded-C code and the use of EARTH

operations in a parallel version of famous “Hello World”. The MAIN function invoke

an instance of the print hello function, which prints a message identifying the

location (node number) of each instance. Here is how this code works:

Lines 10-11: This loop is a simple example of a forall loop. In the loop, the MAIN
function invokes an instance of the print hello threaded procedure on each
node.
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Line 20: The print hello procedure takes a reference to a sync slot as argument.
SPTR is a pre-defined Threaded-C data type for a global pointer to a sync
slot.

Lines 24-25: When print hello finishes printing, it sends sync signals to the sync
slot by REPEATS times. An SPTR is needed to refer to a sync slot.

Line 14: Fiber DONE plays the role of a barrier. It won’t run until all nodes have
finished their printing and sent out the REPEATS number of sync signals.

If line 11 in Figure 2.3 is replaced by

TOKEN(print hello, SLOT ADR(DONE));

the system will make its own decisions about where (which node) to run each in-

stances, instead let programmer make the decision.

2.3 Review of EARTH Runtime System 2.5

In the implementations described in this thesis, the EARTH multithreaded

architecture model is emulated with off-the-shelf microprocessors in a distributed

memory environment. The EARTH runtime system (RTS) assumes the respon-

sibility to provide an interface between an explicitly multithreaded program and

a distributed memory hardware platform. The runtime system performs thread

scheduling, context switching between threads, inter-node communication, inter-

thread synchronization, global memory management, and dynamic load balancing.

The first portable EARTH RTS (release 1.0) was implemented and ported

onto IBM SP-2, network of SUN workstations and Beowulf in 1998 [25]. Base on the

RTS 1.0, the portable EARTH Runtime System 2.0 was developed [26]. The RTS 2.0

was written in standard C. Standard POSIX Threads was used for enabling multiple

threads within a physical node, execution modules and network I/O modules were

implemented by different pthreads. Standard Unix TCP/IP sockets was used for

inter-node communication. The major features of RTS 2.0 was the support of SMP

nodes, better overlapping of computation and communication, and its portability.

A simple review of RTS 2.0 will be given in Section 2.3.1.
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The development of RTS 2.5 began from April 2002 by Chuan Shen and

the author of this thesis. The RTS 2.5 differs from RTS 2.0 on the local resource

management, the way that inner node modules interact, network communication

message formats and also improvements on the dynamic load balancer. The details

of RTS 2.5’s technical issues are documented in Chuan Shen’s master thesis [27]. In

this thesis, only a simple review of RTS 2.5 will be given here.

The development of RTS 2.5 is based on RTS 2.0. The network topology and

network I/O models are inherited from the RTS 2.0 without modification. The same

as RTS 2.0, RTS 2.5 still invokes n execution modules (the number of n depends

on how many processors available), two network modules (send module and receive

module) in a physical computing node. But the way that those modules interact and

function is changed, which will be presented in section 2.3.3. Those changes make

the requirements of mutual exclusions are considerably reduced, thus more efficient.

The network messages is reformatted in the RTS 2.5, the new format contains only

necessary information without redundancy and easier to parsed. And bugs and

pitfalls in RTS 2.0 have been fixed, the performance of dynamic load balancer is

improved.

2.3.1 The Layout Design of RTS 2.0

The design of RTS 2.0 is shown in the Figure 2.4. The RTS 2.0 is divided

into three main threads. The thread of the RTS which is responsible for running

Threaded-C application code is Execution Module (EM). The other two threads

which perform all of the networking operations, are named as the Sender Module

(SM) and the Receive Module (RM).

The three modules of the RTS are implemented as separate threads of ex-

ecution by using POSIX threads (pthreads). The modules are created when the

runtime system is launched, and they are terminated when the RTS has finished the

execution of the Threaded-C application.

17



Figure 2.4: Layout of EARTH RTS 2.0

In the design of RTS 2.0, the EM is responsible for running the Threaded-C

code; the SM is purely responsible for sending messages to the network; the RM

receives incoming messages from the network, decodes the messages and perform the

corresponding functionalities. The EM and RM communicates with the SM through

the Send Queue; the Ready Queue stores ready fibers; and the Token Queue stores

tokens.

The Figure 2.4 shows that there are four types of shared resources which can

by accessed by different modules, thus locking mechanism is needed to guarantee

the atomic and correct access. One the main target of RTS 2.5 is to avoid those

locks to reduce management cost, thus to improvement the performance.

2.3.2 Avoid Mutual Exclusions for Queues in RTS

From the layout design of EARTH RTS 2.0, it is noticed that among the

three modules there are four types of shared resources, three of which are queues:

18



Ready Queue, Send Queue and Token Queue. Queue is a first-in first-out data struc-

ture used to sequence multiple messages needed to be handled by one of the three

modules. A queue can be regarded as an abstraction of producer-consumer problem

[28]. Some modules work as producer to inject messages into the queue, while some

other modules dequeue messages from the queue and handle those messages by spe-

cific handler. In case there are multiple writer and reader of a single queue, lock

mechanism is necessary to guarantee the atomic access of the queue, thus to confirm

the correctness of execution. In the implementation of EARTH RTS, the pthread

mutex variable is used to protect access to shared queues. Mutex is an abbreviation

for ”mutual exclusion”.

Experiments and analysis indicates that excessive instances of mutual exclu-

sions is one major cause which prevents RTS 2.0 from achieving good performances

[27]. One of main tasks of developing RTS 2.5 is to avoid those locks to reduce RTS

management cost.

Locks are needed because there are multiple writers and readers for a shared

queue. For example, in Figure 2.4, both the RM and EM talk to SM through the

Send Queue in RTS 2.0.

If multiple modules communicates with one module through a single queue,

to get rid of the locks, an intuitive method is to build multiple queues, which let each

module has its own queue to send messages to the destination module. Consequently,

each queue only has a unique writer and reader. Lamport proposed an algorithm for

concurrent read/write of a fixed-size message buffer without incurring any mutual

exclusions, when there are only one reader and one writer [29]. In EARTH RTS

2.5, the algorithm to perform concurrent read/write of a queue is derived from

Lamport’s.

From above analysis, in order to avoid the locks of Send Queue, separate send

queues can be constructed as the message buffers for RM and EM to communicate
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with SM. When one module, for instance, the SM, behaves as reader for multiple

queues, arbitration policies needed to serialize the reads.

However, when shared resources between two modules are through other

shared data structures, for example the Sync Slots accessed by RM and EM, building

multiple queues may not work in this case. The order of operations update the Sync

Slots is nondeterminate. In RTS 2.5, mutual exclusions are used to serialize those

updates. However, if there is a way to queue those update operations somewhere,

and only allow one thread to perform operations in the queue, the mutual exclusions

can be avoided, meanwhile serialized updates still performed.

In the design of EARTH RTS, all EARTH operations are performed by spe-

cific handlers, so only those specific handlers are possible to access the Sync Slots.

In RTS 2.0, both the RM and EM have the right to call those handlers, thus mutual

exclusions are needed. And when the access of one Sync Slot causes the count of

Sync Slot reduced to zero, the handler will inject a new ready fiber into the Ready

Queue. To avoid those mutual exclusions of Ready Queue, one solution is to only

permit EM to call the handlers, which handles the Sync Slots, and RM’s request for

those handlers on Sync Slots are all queued in the new built Event Queue, which

will only be polled by EM.

2.3.3 New Layout Design of RTS 2.5

The analysis in Section 2.3.2 leads the new design of EARTH Runtime System

2.5 demonstrated by Figure 2.5. The RTS 2.5 still inherits the three basic modules

from RTS 2.0, the major differences are the way that the three Pthreads interact

and function.

Firstly, in RTS 2.5, the Receive Module does not operate on Sync Slots and

access the Ready Queue (RQ) and the Token Queue (TQ) any longer. The Event

Queue (EQ) is built for RM to communicate with the EM, and the Remote Send

Queue (RSQ) is used for RM to communicates with the SM. The RM is the only
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Figure 2.5: Layout of EARTH RTS 2.5

writer of those two queues, meanwhile, the EM is the only reader of EQ, and SM is

the only reader of RSQ. The detail for how those modules work on those queue will

be given in Section 2.3.5.

Secondly, A new module, Token Manage (TM) is introduced to the RTS 2.5

and dedicated to the dynamic load balancing. The TM resides in the same Pthread

as the Send Module (SM), no separate Pthread is created for it. The TM handles

TOKEN and TOKEN request messages from the Send Queue (SQ) and Remote

Send Queue (RSQ), and reacts according to current load balance status, puts in or

gets out TOKENs to or from Token Queue (TQ).

Thirdly, The Token Queue (TQ) is designed as a doubly-ended queue, acces-

sible for both EM and TM. However, the EM only accesses TQ from one end, and

the TM is only allowed to access TQ from the other end, so there is no lock for

enqueue or dequeue operations except for handling the last element in the TQ. If
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Resource
RTS 2.0 RTS 2.5

Reader Writer Lock Reader Writer Lock

Sync Slots EM, RM EM, RM Yes EM EM No
Ready Queue EM, RM EM, RM Yes EM EM No
Event Queue N/A N/A N/A EM RM No
Send Queue SM EM, RM Yes SM EM No

Remote Send Queue N/A N/A N/A TM RM No
Token Queue EM, RM EM, RM Yes EM, TM EM, TM Last Item

Table 2.1: Resource Locking Summary for Running on Uni-Processor (One EM)

RTS is running on SMP computing nodes, more than one EM will be created in a

node, each EM has its own TQ, and the Token Manager is capable of accessing all

the TQs on the same physical node from the other end.

At the last, if there are multiple EMs, each EM has its own Send Queue (SQ),

so that EM is the only writer of its SQ. And the SM will be the only reader of all

SQs. Each EM also has its own Ready Queue (RQ), the EM is the only reader of

its RQ, however, in some case, the EM may access other EM’s RQ.

2.3.4 Locks in RTS 2.0 and RTS 2.5

One major goal of the new design of RTS 2.5 is to addressing the excessive

locking problem in RTS 2.0. In the new design, the Ready Queue can be accessed

only by the EM and is no longer a shared resource. If only one EM is initiated,

then the Sync Slots is only accessed by the EM and is not a shared resource; if

multiple EMs are initiated, then the Sync Slots are still needed to be locked by

EM’s access, but the RM and the SM will not lock them. The Event Queue, Send

Queue and Remote Send Queue are all one-reader and one-writer queues, which is

easily implemented as lock-free. The Token Queue is accessible to EM and TM from

different ends, so locking is needed only for the last elements in the queue. Table

2.1 and Table 2.3 gave the summary of resource locking status of RTS 2.5 compared

with RTS 2.0
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Resource
RTS 2.0 RTS 2.5

Reader Writer Lock Reader Writer Lock

Sync Slots EM, RM EM, RM Yes EMs EMs Yes
Ready Queue EM, RM EM, RM Yes EMs EMs Yes
Event Queue N/A N/A N/A EM RM No
Send Queue SM EM, RM Yes SM EM No

Remote Send Queue N/A N/A N/A TM RM No
Token Queue EM, RM EM, RM Yes EM, TM EM, TM Last Item

Table 2.2: Resource Locking Summary for Running on SMP (Multiple EMs)

2.3.5 EARTH Operations and Messages in RTS 2.5

In RTS 2.5, EARTH operations and messages are handled more intelligent

than in RTS 2.0. Each Modules take its own responsibility to deal with correspond-

ing EARTH operations.

2.3.5.1 EARTH Operations supported in RTS 2.5

The same as RTS 2.0, the RTS 2.5 mainly supports below EARTH Opera-

tions:

2.3.5.2 New Message Formats

In RTS 2.5, all network messages are redefined and reformatted. Message

tags are used to identify the type of the message. The redundant fixed-size mes-

sage header used in RTS 2.0 is discarded, only necessary information is packed in

a message without any redundancy. The network message format defined in RTS

2.5 is summarized in Table 2.4. Those types of messages are not only used for net-

work communication, but also used in the communication between different modules

within one physical node.
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Type EARTH Operation Function

Threaded Functions

INVOKE
Creates a new parallel invocations
of threaded function on the spec-
ified node

TOKEN
Creates a new parallel invocations
of threaded function on a node se-
lected by RTS

Fiber Synchronization

INIT SLOT Initializes sync slot

SYNC

Decreases the sync count of sync
slot by one, If the count reaches
zero the associated fiber is sched-
uled for execution

INCR SLOT
Increases the sync count of sync
slot by the value specified.

SPAWN
Schedules the specified local fiber
for execution

Data Transfer

PUT SYNC

Sends a value to the destination
address and update the specified
sync slot

GET SYNC

Reads a value from the source ad-
dress and copies it to the destina-
tion address. Then updates the
specified sync slot

BLKMOV SYNC

Copies specified length of bytes
of data from the source address
to the destination address and
then signals the specified sync slot
when the data has reached its fi-
nal destination

Table 2.3: EARTH Operations Supported by RTS 2.5
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Message Name Tag Length (Bytes)

SYNC 1 12
SPAWN 2 16

INCR SYNC 3 16
PUT SYNC 4 20 + data size
GET SYNC 5 28

INVOKE 6 16 + arg size
TOKEN 7 16 + arg size

TOKEN REQ 8 8
BLK MOV PUT 9 20 + data size
BLK MOV GET 10 28

Table 2.4: Message Formats Defined in RTS 2.5

2.3.5.3 Receive Module

The Receive Module performs blocking call to select(), when kernel detects

traffic for any of the incoming socket buffers watched by the select(), it wakes up the

RM. Then the RM can get the incoming message with a read(), and handles this

message according its type. After handling the message, the RM puts itself back

to sleep by calling select() until the next incoming message arrives. Below is the

summary of how RM handles different types of message:

1. SYNC, SPAWN, INCR SLOT and INVOKE messages are directly put into

the Event Queue, and will be handled by EM.

2. For PUT SYNC and BLO MOV PUT, the RM copies the data to the local

destination memory address, then check SYNC operation attached. If the

address of sysn slots is local, the RM will put the SYNC message to the Event

Queue, otherwise, the RM will put this SYNC message to the Remote Send

Queue.

3. For GET SYNC, the RM fetches the request data from local memory, then

generates a PUT SYNC message to the Remote Send Queue.
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4. For BLK MOV GET, the RM generates a BLK MOV PUT message into the

Remote Send Queue.

5. For TOKEN, TOKEN REQ, the RM forwards them to the Remote Send

Queue and lets the Token Manager handle them.

2.3.5.4 Execution Module

The Execution Module performs two different kinds of jobs: Firstly, it exe-

cutes the Threaded-C code, and handles all EARTH Operations embedded in the

code by directly executing them or generating corresponding messages to the Send

Queue or Token Queue; Secondly it polls the Event Queue to get and handle the

messages in EQ.

Summary of how the EM handles the EARTH operations embedded in the

Threaded-C code is shown below:

INVOKE If the specified node is self, then put the first fiber of specified
threaded procedure into RQ; otherwise, generating a INVOKE message to
SQ.

TOKEN Generating a TOKEN message into TQ.

SYNC If the sync slot is a local slot, decreases the sync count; If the count
reaches zero, the associated fiber is put into RQ. If the sync slot is a remote
slot, generating a SYNC message into SQ.

INCR SLOT If local, increase the specified sync slot, otherwise a INCR SLOT
message is put into SQ.

SPAWN Put the specified local fiber into RQ.

PUT SYNC If the destination address is local, copies the value to the des-
tination address, then handles the SYNC part. If it’s remote, generating a
PUT SYNC message into SQ.

GET SYNC If the both source address and destination address are local,
does a memory copy, then handles the SYNC part. If the source is remote,
generating a GET SYNC message into SQ.
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BLKMOV SYNC If both the source address and destination address are
local, does a memory copy, then handles the SYNC part. If the source is local,
the destination is remote, generating a BLK MOV PUT message into SQ. If
the source is remote, the destination is local, generating a BLK MOV GET
message into SQ.

After EM executes all ready fibers in Ready Queue and all available TOKENs

in TOKEN QUEUE, it goes to poll the Event Queue, and handles the messages in

EQ as below:

SYNC Decreases the sync count. If the count reaches zero, the associated
fiber is put into RQ.

INCR SLOT Increases the specified sync slot

SPAWN Puts the specified local fiber into RQ.

INVOKE Puts the first fiber of specified threaded procedure into RQ.

After all messages in the EQ have been polled out and handled, the EM will

try to find new ready fibers in RQ or new TOKENs in TQ and execute them.

2.3.5.5 Send Module

The Send Module and the Token Manager are implemented in the same

Pthread. The Send Module polls the SQ of each EM and RSQ, and handles messages

differently according to the message type:

1. For SYNC, INCR SLOT, PUT SYNC, GET SYNC, INVOKE and BLK MOV GET

messages, the SM simply copies them from the SQ or RSQ to the correspond-

ing socket.

2. For BLK MOV PUT, the SM first sends the message head, and the retrieves

the data as message body from local memory and sends it out.

3. For TOKEN, TOKEN REQ messages, the SM passes them to the TM and

let the TM handles those dynamic load balancing related messages.
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2.3.6 Dynamic Load Balancers in RTS 2.5

Dynamic load balancing is always a crucial task since the first version of

EARTH RTS. The RTS 2.5 continues to improve the dynamic load balancer and

extend dynamic load balancing algorithm.

Normally, there are two types of load balancing: static load balancing is

done by the programmer or compiler before runtime, it is applicable for regular

applications; dynamic load balancing algorithm use system state information to

make runtime decision on how to dispatch workloads, it can be used for applications,

whose communication patterns and the granularity of work pieces are impossible to

predicted before runtime.

Different kind of dynamic load balancing algorithms are discussed and stud-

ied by Haiying Cai and Kamala P. Kakulavarapu in their master theses and papers

[30][31][32]. In the RTS 2.0, dual algorithm, which is an receive-initiated load bal-

ancer, is implemented and used by several representative benchmarks. In the RTS

2.5, a new load balancer, called dual-startup is implemented. It addresses the prob-

lem of increasing propagation latency of work loads with the number of computing

nodes increasing. The implementation details and experimental results about this

new load balancer can be found in Chuan Shen’s master thesis [27].

The implementation of another new load balancer, called master-slave load

balancer, is motivated by the real-world application – parallel hmmpfam, which is

the main contribution of this thesis. It will be discussed later in Section 3.4.2.

28



Chapter 3

CLUSTER-BASED SOLUTION ON EARTH

3.1 The Problem of PVM HMMPFAM Implementation in HMMER

As we have introduced, Hmmpfam reads a sequence file and compares each

sequence within it, one at a time, against all the HMMs in hmm database, looking

for significantly similar matches. Figure 2.1 shows the basic algorithm of HMMpfam.

A parallel hmmpfam program based on PVM is included in the HMMER

2.2g. Figure 3.1 shows the task space decomposition of the parallel scheme in the

current PVM implementation. In this scheme, the master-slave model is adopted,

and within one stage, all slave nodes work on the computation for the same sequence.

The master node dynamically assigns one profile from the database to a specific

slave node, and the slave node is responsible for the alignment of the sequence to

this HMM profile. Upon finishing its job, the slave node reports the results to the

master, which will responds by assigning a new job, i.e. a new single profile, to that

slave node. When all the computation of this sequence against the whole profile

database is completed, the master node sorts and ranks the results it collects, and

outputs the top hits. Then the computation on the next sequence begins.

However, the experimental results shows that this implementation does not

achieve good scalability with the number of computing nodes increasing(Fig. 6.1,

Fig. 6.2). The problem is that the granularity of computation is too small relative

to the communication overhead. Moreover, the master node becomes a bottleneck

when the number of the computing nodes increases, since it involves in both com-

munications with slave nodes and computations such as sorting and ranking. The

29



T

I


M

E


n
o
d
e
 
1
 n
o
d
e
 
3
n
o
d
e
 
2
 n
o
d
e
 
4


s
e
q
 
1
,
 
p
r
f
 
1
 s
e
q
 
1
,
 
p
r
f
 
2

s
e
q
 
1
,
 
p
r
f
 
3
 s
e
q
 
1
,
 
p
r
f
 
4


s
e
q
 
1
,
 
p
r
f
 
5

s
e
q
 
1
,
 
p
r
f
 
6


s
e
q
 
1
,
 
p
r
f
 
7

s
e
q
 
1
,
 
p
r
f
 
8


s
e
q
 
1
,
 
p
r
f
 
 
n
-
3
 s
e
q
 
1
,
 
p
r
f
 
n
-
2
 s
e
q
 
1
,
 
p
r
f
 
n
 s
e
q
 
1
,
 
p
r
f
 
n
-
1


o
u
t
p
u
t

f
o
r
 
s
e
q
 
1


s
e
q
 
k
,
 
p
r
f
 
1
 s
e
q
 
k
,
 
p
r
f
 
2
 s
e
q
 
k
,
 
p
r
f
 
3
 s
e
q
 
k
,
 
p
r
f
 
4


s
e
q
 
k
,
 
p
r
f
 
8

s
e
q
 
k
,
 
p
r
f
 
5
 s
e
q
 
k
,
 
p
r
f
 
6


s
e
q
 
k
,
 
p
r
f
 
7


s
e
q
 
k
,
 
p
r
f
 
 
n
-
2
 s
e
q
 
k
,
 
p
r
f
 
n
-
3
 s
e
q
 
k
,
 
p
r
f
 
n
-
1
 s
e
q
 
k
,
 
p
r
f
 
n


o
u
t
p
u
t

f
o
r
 
s
e
q
 
k


Figure 3.1: Parallel Scheme of PVM Version
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implicit barrier at the end of the computation of one sequence also wastes the com-

puting resources of the slave nodes.

3.2 Embarrassingly Parallel Computing Strategy

The basic idea of the hmmpfam algorithm is to read a single sequence from

seqfile each time and to compare it against all the HMMs in the HMM database

file looking for significantly similar sequence matches. To efficiently parallelize this

application, it is important to determine the granularity of computation. In the

original scheme, the alignment of one sequence with one profile is considered a

single job. By profiling a typical benchmark on a Pentium III 500MHz machine, we

find that the average computation time for such a single job is only 0.03 seconds.

Thus the granularity of computation in original parallel scheme is too small relative

to the latency and the overheads.

However, if we consider the computation of one sequence against the whole

database as a single job, then the job itself is sufficiently big. Normally the number

of sequences in a sequence data file is much larger than the number of computing

nodes available in current Beowulf clusters. So the number of single jobs is still large

to keep all nodes busy, thus to achieve ideal parallelism. Moreover, because all the

computation of one single sequence will be performed by one process on one fixed

node, there is no need to send back the result to the master node, and the sorting

and ranking can be executed locally. This means after a job is assigned to one slave

node, there is no more communication needed between the master and this slave,

and there is also no implicit or explicit barriers needed.

Therefore, the hmmpfam algorithm can be immediately divided into com-

pletely independent parts that can be executed simultaneously. It is an ideal embar-

rassingly parallel computation problem, which could be efficiently implemented by

classical master-slave parallel model. By using the embarrassingly parallel program-

ming strategy, the new parallel hmmpfam version can take advantage of the current
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advanced supercomputing clusters to reduce the execution time dramatically with

scalable speedup. The following subsections will illustrate how the cluster-based

solution for parallel hmmpfam is implemented on EARTH.

3.3 A Two Level Master-Slave Parallel Scheme

To exploit the parallelism of hmmpfam algorithm, our multithreaded par-

allel scheme divides the work-load at two different levels. In Fig. 3.2, each circle

represents a THREADED procedure, which is a C function containing local states

(function parameters, local variables, and sync slots) and one or more fibers of the

code. A THREADED procedure is the basic element to be scheduled. Either the

programmer or EARTH RTS can determine where (on which node) the procedure

get executed.
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Figure 3.2: Two Level Parallel Scheme

At the first level, the master process assigns each sequence to one and only one

procedure. Each procedure will complete the computation for its sequence against

the whole HMM database, then collect and handle the alignment results, and output

the top hits to a file on the local disk. The job at this level is large and independent

to other jobs in the same level, so this level exploits the coarse-grain parallelism. The

jobs are distributed either manually by programmer or automatically by RTS. Once a

job is assigned to a slave procedure, there is no synchronization and barrier required,

and no more communication needed between the master and slave processes.
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At the second level, in order to achieve further parallelism, the HMM database

file is divided into a number of partitions. Each procedure in the second level gets

one partition of the database, and performs the corresponding computation, then

returns the result to parent procedure. This level exploits the fine-grain parallelism.

The jobs are distributed at runtime by the dynamic load balancer of RTS.

3.4 Cluster-Based Solution

To provide the cluster-based solutions, currently the first parallel level in

Fig. 3.2 has been succesfully implemented by two different approaches: one pre-

determines job distribution on all computing nodes by a round-robin algorithm; the

other takes advantage of the dynamic load balancing support of EARTH Runtime

system, which is more robust and can also simplify the programmer’s coding work

by making the job distribution completely transparent. Details about those two

implementations are described in following sections.

3.4.1 Static Load Balancing Approach

In the static load balancing implementation, as shown in Fig.3.3, the job dis-

tribution is pre-determined. Programmer takes responsibility to explicitly indicate

the node, on which a specified job will run. To achieve an even work load on all

computing nodes, round-robin algorithm is adopted.

At the initiation stage, master process reads a single sequence from seqfile

each time and generates a new job by invoking a threaded procedure on the specified

node according to the round-robin algorithm. On each computing node, the EARTH

RTS maintains a ready queue, which contains the ready-to-run fibers. The RTS will

automatically put the first fiber of this procedure to the ready-queue of the node

appointed by programmer. As soon as a node gets a new job, it will begin the

computation immediately. After the initiation stage, all jobs have been put into the

destination computing nodes, so the execution unit on each node can successively
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Figure 3.3: Static Load Balancing Scheme

fetch new jobs from the ready queue until all jobs are done. That means in the

computation stage, all nodes become independent and execute jobs sequentially

without frequent context-switch due to the non-preemptive fiber support of EARTH.

If there are very large amount of sequences in the seqfile, which is a very common

case, this approach can achieve evenly balanced work load and good scalability.

3.4.2 Robust Dynamic Load Balancing Approach

One of the most important features of EARTH is the dynamic load balancing

support. Dynamic load balancer uses system state information to make runtime

decision on how to dispatch workloads. The design of dynamic load balancer focuses

on two objectives: 1) keeping all the nodes busy; 2) optimizing load balancing by

minimizing balancer overheads and maximizing benefits due to load balancing.

The target of parallelizing hmmpfam motivates us to design a special load

balancer in EARTH RTS 2.5 – master-slave load balancer, which can be used for all

master-slave parallel applications. This load-balancer is working like a server-client
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Figure 3.4: Dynamic Load Balancing Scheme

model as illustrated in figure 3.4. Once a slave node finishes a job, it sends a request

to the master process. Master responds by sending back a new job to satisfy the

slave’s work requirement thus to keep it busy. The overhead of load balancing is

relatively small since each single job is large enough. With this load balancer, the

job-request and job-assignment are determined by EARTH RTS dynamically.

Compared with the pre-determined job assignments strategy, the dynamic

load balancing approach is robust. For example, with static load balancing, all jobs

have been put into the ready queue of computing nodes at initiation stage, and can

not be moved away after that. If one node is busy with computing tasks from other

users, the remaining jobs in this node can not be re-assigned to other idle nodes.
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While with dynamic load balancing strategy, this situation, in which some nodes

are busy forever and some others are free, is avoided. Since the hmmpfam tool may

run for quite a long time, for instance, several months in real situation, the robust

dynamic work distribution strategy is quite practical. Also in order to run the

parallel hmmpfam on the advanced supercomputing clusters, which are consisted of

hundreds of computing nodes, a robust approach is necessary, since it’s not easy to

guarantee all nodes working properly without any system problem or the intrusions

from other user-level applications during the long running time.

With the dynamic load balancing support of EARTH RTS, the job distribu-

tion is completely transparent to the programmer. The programmer only concerns

about the generation of new jobs, and does not need to determine where the jobs

will be executed. The EARTH RTS takes over the responsibility to distribute jobs

at runtime, which quite simplifies and eases programmers’ coding work and makes

it conceptually straightforward.
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Chapter 4

PORTABILITY OF EARTH PROGRAM

The cluster based solution of parallel hmmpfam is presented in Chapter 3.

When we begin to design the parallel scheme for hmmpfam, the clusters are the

target platform. The experimental results (see Chapter 6)shows that near linear

speedup achieved on the supercomputing clusters. Then two questions immediately

raised:

1) Are the EARTH programs (hmmpfam, in this thesis) portable from
clusters to SMP machines and SMP clusters? And why?

2) Are the EARTH programs “performance portable” from clusters to
SMP machines and SMP clusters? And why?

The first question focus on the portability of the code itself, it wants to

ask “If an EARTH implementation of one application is already available on one

platform1, is this code portable to other platforms without code modifications but

still keep correctness?” We call this problem the “code portability” problem of one

EARTH program.

The second question consider another aspect of the portability of one EARTH

implementation, it tries to ask “If an EARTH implementation of one application

already achieves good performance2 on one platform, can this implementation also

1 In this and next chapter, platforms refer to uni-processor clusters, single SMP
machines and SMP clusters

2 The performance here refers to absolute speedup of the parallel program.
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achieve the same good performance on other platforms?” We name this problem the

“performance portability” problem of one EARTH program.

We claim that the EARTH program can achieve both code portability and

performance portability on various platforms. Following subsections will try to il-

lustrate how these two portability achieved for applications parallelized by EARTH

PXM.

4.1 Code Portability of EARTH Program

The code portability cares whether it is possible for the same code to port to

different platform without any modification. I will try to explain the code portability

of the EARTH program from the point view of EARTH virtual machine. The current

implementation of EARTH (RTS2.5) are based on the EARTH Virtual Machine

(EVM) – EVM-A, defined in Kevin Theobald’s doctoral thesis [12]. The EARTH

Virtual Machines specifies the interface between the programmer/compiler and the

hardware. The goal of EVM is “to defines a common set of operations in sufficient

detail to permit both multiple hardware platforms and multiple high-level languages

to be designed around this set”[12]. The EVM defines the memory model, thread

model, data types and EARTH instructions for implementing EARTH on distribute-

memory computers and SMP computers.

In Kevin Theobald’s doctoral thesis, he defines the first EARTH virtual ma-

chine, which is called EVM-A (stands for an EVM based on Addresses). The design

of the EVM-A is based on the global addresses. Because the most intuitive way to

make it possible for referencing memory locations globally is to extend the concept

of local memory address to the global address.

For the distributed memory environment, the memory is not physically shared

by all the computing nodes. The EVM-A lets each node has its own memory space,

which is divided to two parts: replicated address space and non-replicated address

space. The replicated space must be identical on all nodes. A copy of the executable

38



code used by the EARTH program is placed at the same address (base address) in the

replicated space on each physical node. This make it possible that any addresses

(branches, sequential function calls, threaded procedures, fibers and static data

structures) in the executable code to refer to the identical code or data structure

on each node. The stacks, frames, which hold the contexts of instances of threaded

procedures, and the dynamically allocated objects are put in the non-replicated

space. For a remote node being able to access the memory location in the non-

replicated space, the global address is defined as the combination of node id and

the local address on that node. EVM-A requires all global address accesses must

be done through defined EARTH operators, instead of directly using load and store

instructions.

For the SMP machine, the memory space is shared by all processors, and

there is only one copy of executable code in this space. Theoretically, the processor

is able to access any memory location in this space. However the EVM-A requires

the memory accesses to other threaded procedures’ frames and heaps must also be

done through the defined EARTH operators.

So from the point view of memory addresses of EVM-A, the key points of

how to make the code portable on different platforms are how to design the interface

between programmer and RTS, and how to implement those EARTH operators

responsible for inter-node memory accesses in RTS.

Firstly the interface between the programmer and the EARTH RTS, is the

Threaded-C [23][24] language, which is briefly introduced in Section 2.2.3. The

programmer of Threaded-C is not assumed to be aware of the underlying platform

used. From the programmer’s view, a number of nodes are available for running

threaded procedures and fibers. When the code in one threaded procedure tries

to access the memory locations or sync slots in other thread procedures’ frames or

dynamically allocated spaces, the corresponding EARTH operators are called by
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given the global addresses of that memory location. The EARTH operations, which

take the global addresses as parameters, are responsible for these globally memory

accesses.

In the EARTH RTS, a “node id” in Threaded-C, is actually a unique identifier

for a Execution Module (EM). For example, for two nodes – A and B, if node B’s

corresponding EM is performed on the same machine as node A’s EM, we say that

node B is local to node A, otherwise, it is remote to node A.

All the EARTH operators are implemented in the EARTH RTS. When a

global address is passed to RTS. The RTS extracts both the identity of the node

and the local address on that node. The RTS will determine the node is local or

remote. If the node is located on a remote machine, the memory access request

containing the specified memory location will be forwarded to the correct machine,

and handled by the RTS on that machine. If the node is just on the same machine,

the RTS will satisfy the memory access request immediately by direct memory load

or store.

Now, from the point of view of programming based on the EVM-A memory

model, there is no difference for global address accesses on different platforms. The

address space is smoothly extended from a single-CPU machine to a cluster, from

an SMP machine to an SMP cluster, which plays the most important role to make

the EARTH program portable on different platforms.

Based on EVM-A memory model, the EVM-A thread model is defined. The

code for a threaded procedure is stored at the same addresses in the replicate space

of each physical node. So that procedure can be referenced on all the nodes by

the same address. This is also true for individual fibers within a procedure. This

globally uniformed reference to procedures and fibers make it possible to invoke

the procedures on a remote machine. For synchronization with another threaded

procedure, specific EARTH operators are used to increase or decrease the count of
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the sync slots within that procedure. A reference to other procedure’s sync slots

is also global address. The RTS handles the sync slots related request in the same

way for global memory address accesses. The operations on sync slots may cause

new fiber enabled, and RTS will put the enabled fibers into the Ready Queue. The

RQ pairs the address of a fiber’s code with the address of the frame associate with

the instance of that fiber. EM takes the fiber from RQ for performing execution.

Based on the EVM-A thread model, the threaded procedure invocation, inter

procedure synchronization makes no difference on different platforms from the point

of view of coding. A uniformly address of the thread procedure is used by program-

mer to invoke that thread procedure, no matter locally or remotely. The global

addresses of the sync slots are used by the programmer to do the synchronization

among procedures, no matter locally or remotely. The RTS is responsible for the

correctness of all those EARTH operations on different platforms.

EARTH EVM-A is defined based on EARTH Program Execution Model

(PXM). The EARTH PXM is focus on the high-level description of the structure of

EARTH abstract machine, the EARTH thread model and the fundamental EARTH

operations, while the EVM-A specify the details about how the EARTH opera-

tions are encoded and how the memory is shared among the nodes to provide a

general model for multithreaded execution on different platforms. To develop an

EARTH application, the Threaded-C programming is done by using a dataflow-like

event-driven synchronization model defined by EARTH PXM [12][33], which works

smoothly with the EVM-A memory model and thread model. Thus we can draw

the conclusion that the code portability is mainly due to the successfully defined

EARTH EVM-A and the corresponding implementation of EARTH RTS.

4.2 Performance Portability of EARTH Program

Once the code portability is guaranteed, the next issue is whether the per-

formance is portable to different platforms. More clearly, if the EARTH program of
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one application is able to achieve good performance on one platform, can the same

program also achieve the same good performance on different platforms? I try to

answer this question from the implementation of the EARTH EVM – the EARTH

RTS. The current implementation of EARTH RTS – version 2.5, is reviewed in

Section 2.3.

The design of EARTH RTS 2.5 is targeted to achieve portable performance on

different platforms – uni-processor cluster, single SMP machine, and SMP cluster.

The implementation is instructed by the EARTH EVM-A as described in Section

4.1.

Overall, the EARTH RTS 2.5 running on one physical node itself is a mul-

tithreaded parallel program powered by POSIX Thread [34]. There are two types

of modules in the EARTH RTS: Execution Modules (EM), Network I/O Modules

(Receive Module (RM), Send Module (SM)). Each module is implemented by one

POSIX thread. The modern multiprogramming operating system is responsible for

scheduling those modules to utilize CPU resources by time-sharing based policies.

The EM is the module performing real computations. Each EM is corre-

sponded to one conceptual node in Threaded-C program. RTS is responsible for

creating EMs on different machines, which is transparent to the programmer. EMs

are feed by EVM threaded procedures and fibers to keep busy. When running on

SMP nodes, multiple EMs are allowed to be created. Normally the number of EMs

created is equal to the number of processors available. The parallelism of the ap-

plication is exploited by the Threaded-C program. Keeping EMs usefully busy is,

indeed, the feature of event-driven multithreaded EARTH PXM, which has made

the performance robust as long as there is plenty of parallelism. When enough par-

allelism is available, the RTS is responsible to keep the EMs as busy as possible.

In RTS 2.5, the EM will never yield the CPU by itself, it always tries to find new

enabled fibers from its ready queue, and executes them. EM may perform some
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EARTH SU functions, however normally it responses to the new ready fibers fast

enough.

On the other hand, all network operations are completed by RM and SM. All

remote procedure invocations, remote memory accesses, and remote synchroniza-

tions requested by EMs are handled by RM and SM. When no such requests exists,

the RM and EM yield CPU resources by themselves, thus EMs get great chance to

occupy the CPU as much as possible. When network I/O requests happen, the RM

and SM will be waked by the OS, handle them immediately and go to sleep again.

So the computation and communication within one node is well overlapped. To

draw the conclusion, the available parallelism represented by threaded procedures

and fibers keep the EMs as busy as possible, while communication is fast responded

and handled by the network modules.

For a computation intensive application, like Hmmpfam presented in this the-

sis, when good performance achieved on one platform, it is able to port to different

platforms. Since satisfying performance is already shown on one platform, it can

be concluded that the Threaded-C program is well coded, enough parallelism is al-

ways available. Because the amount of communication is relatively small compared

to computation, there is no big difference from running the program on different

platforms. In case of dynamic load balancing, where the work load balancing is

determined dynamically by RTS, instead of the programmer, since the same load

balancing algorithm is used for all platforms, the performance is still able to be

portable when the network latency is small enough.

For a communication intensive application, achieving scalable good perfor-

mance is a big challenge for any parallel program execution model. Normally, a lot

of coding work is involved to get efficient implementation. For EARTH, if we know

an application already achieves good performance on the cluster, we can imagine

that the same performance is portable on the SMP machine. Since EARTH PXM
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is an event-driven fine-grain multithreaded dataflow-like programming model, the

Threaded-C program can be described by a dataflow-like graph [33]. Thus the

EARTH EVM has the same inter-procedure communication pattens for all plat-

forms, the difference is the communication latency. For cluster the communication

is done by network, which has long latencies, while for SMP the communication

is done through directly memory transactions, which has small latencies. And the

EARTH EVM does not use mutual exclusion like synchronizations, while excessive

mutual exclusions always plays as the performance killer of parallel applications for

other parallel APIs, which are targeted to SMP specially. Thus for EARTH the

performance is portable from cluster to SMP machine for communication intensive

application. In the future, by integrating the state-of-the-art high performance net-

working to EARTH RTS, we can expect that the performance is also portable from

SMP machine to clusters.

Up to this point, we can see that one of the great properties of EARTH EVM

is that the same code can be portable to different platforms without any modification

but still keep the same performance.

4.3 Related Works

This section covers some of the work which is relevant to the code portability

and performance portability of EARTH EVM from the perspective of the portability

of other popular parallel APIs, e.g. MPI (Message-Passing Interface) [35][36], PVM

(Parallel Virtual Machine) [2], OpenMP [37], and PThread (POSIX Threads) [34].

MPI has become an industrial standard for developing parallel applications,

especially on clusters. A large amount of applications are parallelized by MPI. MPI

is based on message passing, which is natural for the communication network of cur-

rent clusters. Recently, with the prevalence of the SMP clusters, a lot of work has

been conducted to improve MPI to support SMP clusters, thus to get the portability

for current parallel applications, which are implemented by MPI. Since the version of
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1.1, the MPICH [38] developed by Argonne National Laboratory, uses shared mem-

ory for communication within an SMP node to achieves better support for SMP

nodes within the cluster. Hong Tang and Tao Yang’s work – TMPI [39][40], shows

that using threads to execute MPI program can achieve great performance on SMP

clusters. They design and implement a threaded-based MPI system on SMP clus-

ters, which shows the performance improved substantially over the process-based

MPI. Steve Sistare [41] introduces new algorithms for MPI collective operations,

which can take advantage of the computation capability of SMP node, thus improve

the performance of MPI on SMP clusters. Tokahashi and his colleagues [42] designed

and implemented an MPI library called MPICH-PM/CLUMP for SMP clusters. The

MPICH-PM/CLUMP supports multiple processes on the SMP nodes of the cluster

by realizing zero-copy transfer of messages between SMP nodes and one-copy trans-

fer of messages within an SMP node. On the other direction, some research groups

try to port the MPI program designed for clusters to a single SMP machine, Demaine

[43] implemented a threads-only implementation of MPI, called TOMPI [44], which

aims to efficient development of MPI program meanwhile achieve good performance

on a single workstation, either a uni-processor machine or an SMP machine. By the

use of threads and shared memory, instead of UNIX processes and sockets, TOMPI

makes it possible to port existing MPI program to SMP workstations without mod-

ification. However, it is worth noticing that the same EARTH RTS running on

different platforms to perform the same Threaded-C coded applications seamlessly,

while the TOMPI system can only running on a single workstation.

Another widely used parallel API for clusters is the PVM, which is developed

by Oak Ridge National Laboratory. Various groups make efforts to achieve efficient

PVM implementation on SMP machines. PM-PVM (Portable Multithreaded PVM)

[45] is an implementation of PVM targeted to SMP architectures. PM-PVM maps

PVM tasks onto threads and performs PVM message passing functions through
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shared memory. Consequently, PVM programs get supported on SMP machines by

running on PM-PVM. PM-PVM is portable on different SMP platforms. LPVM

(lightweight-process PVM) [46] was implemented on SMPs by using of lightweight

processes and threads as the basic units to exploit parallelism. The LPVM slightly

changes the PVM API, which requires code modification when porting existing PVM

applications. TPVM [47][48] is an extension to PVM system, but using threads as

basic unit for computing and scheduling. TPVM is implemented by using TREX

thread package, which has been only ported to several architectures, which limits

the portability of TPVM. And TPVM also has its own API extended from PVM

API, which also make it hard to port PVM program to TPVM. Experiments shown

in those papers do not provide enough evidences that PM-PVM, LPVM, TPVM is

portable to uni-processor clusters and SMP clusters.

OpenMP is the most widely acceptable API for parallelizing applications on

multiprocessors. The compiler directives based OpenMP API is an very friendly

interface for programmer, which makes OpenMP programming is easier than most

of other APIs. Then the question comes that whether it is possible to port the

OpenMP environment to distribute memory systems, thus make OpenMP programs

portable to different platforms. Hu et al. [49][50] present the first OpenMP sys-

tem implementation on a network of SMPs. A translator is implemented to convert

OpenMP directives to the corresponding function calls of the underlying software

distribute memory systems. ParADE [51] is an OpenMP programming environ-

ment for cluster of SMPs on top of the multithreaded software distribute shared

memory system (SW-DSM). To enhance the performance on the SMP clusters,

ParADE runtime system provides explicit message-passing operators to make it a

hybrid-programming environment. To achieve code portability, this level of hybrid-

programming is hided and transparent to OpenMP programmer, which is made
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possible by an OpenMP translator implemented in ParADE runtime system. Mit-

suhisa Sato et al. [52][53][54] demonstrates an implementation of “cluster-enabled”

OpenMP compiler, which translates OpenMP program into a parallel program on

SCASH, which is a page-based software distributed shared memory system. By the

coordination of the compiler and SCASH, the OpenMP program is able to run on

the clusters transparently. It can be seen that all those work are based on some kinds

of SW-DSM. Similar efforts also conducted to implement POSIX Thread or other

thread library on top of both SW-DSM and HW-DSM, for example, THROOM[55]

and CableS[56]. However, the DSM itself may meet difficulties when performed on a

large number of computing nodes. Thus, the scalability of those OpenMP or POSIX

Threads systems on large supercomputing SMP clusters has not been convincingly

demonstrated, which requires further research and development.

Hybrid programming, like OpenMP plus MPI, is regarded as one solution

to achieve code portability and performance portability on multiple platforms. The

idea is that the shared address space within each node is suitable for shared memory

APIs, like OpenMP, Pthread, and meanwhile message passing can be utilized across

the nodes within a cluster. Thus multi-level parallelism is achieved by integrating

shared memory programming and message passing programming. There are many

published reports on performance of hybrid programming and the comparison of

hybrid programming with other programming paradigm. Here we are only able

to name a few of them. Lorna Smith et al. [57][58] presents their approaches and

performance analysis on development of mixed MPI/OpenMP application. Cappello

et al. [59][60] compares the performance of NAS benchmarks implemented by MPI

versus hybrid MPI/OpenMP on different platforms. A comparison of OpenMP, MPI

and hybrid programming on SMP cluster is presented in [61]. And Rabenseifner [62]

discussed the performance problems and chances of hybrid programming. Hybrid

programming can achieve good performance on SMP clusters, however, large amount
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of programming efforts needed to port OpenMP and MPI program to the hybrid

paradigm. And hybrid programming requires programmer to parallelize applications

by multiple level parallelism, which is difficult by itself.

Some newly proposed programming model, like UPC [63][64][65], Co-Array

Fortran [66][67][68], may also be candidate APIs for developing parallel applications

running on different platforms with code and performance portability.
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Chapter 5

PARALLEL SMP SOLUTIONS ON SMP

As newer shared memory machine architectures started to become prevalent

since 1997, it’s also important to investigate how to parallelize the applications on

SMP platform or distribute shared memory system. Two popular APIs – POSIX

Threads [34] and OpenMP [37], for developing parallel application on shared memory

machine, have been used widely.

It’s also an important task to get the hmmpfam working on the SMP ma-

chines. In the HMMer package, the hmmpfam is parallelized for SMP by Pthreads,

however, their implementation appears that can not make Pthreads and PVM work

together at the same time. In case of an SMP cluster, they can only use the PVM

version, and the experiment results show the performance is not good. For compar-

ison, we also developed an OpenMP version of hmmpfam, which is only targeted

to SMP platform. Luckily, our EARTH version can work on all cases – uni-CPU

clusters, SMP clusters, and SMP machines, with the binary compatibility, and still

shows good performance in all cases.

In following sections, details about the parallel implementation of hmmpfam

by Pthreads, OpenMP and EARTH will be given.

5.1 Pthreads HMMPFAM Implementation

In HMMER package, if the hmmpfam program is compiled with the switch

“-DHMMER THREADS” and linked with the Pthreads library, it is targeted to the

SMP machine with multi-threading. The multi-threaded code is implemented by
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Figure 5.1: Hmmpfam Parallel Scheme of Pthreads Version

using POSIX threads APIs [34]. The parallelization scheme of this Pthreads version

is shown in Figure 5.1.

At the beginning of each iteration, the main thread reads a sequence from the

seqfile. Then the main thread creates slave threads, and the number of slave threads

generated is equal to the number of processors available. All slave threads get jobs

from the work pool, which contains all the work load. The sequence alignment

between one HMM profile and the sequence is considered as one unit of job. Each

time, the slave thread gets one job (one hmm profile) from the work pool, and scores

the sequence comparing with this HMM profile, finally stores the output result in

the top hits structures. Then this slave thread tries to get a new job from the

work pool until all HMM profiles in PFAM database has been compared with this

sequence. After all HMMs have been compared with the sequence, all slave threads

terminated, the main thread reports the overall sequence hits, sorted by significance.

At this point the computation for one sequence is completed, the main thread reads

another new sequence from the seqfile and a new iteration begins. The time line of
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the whole execution is the same as the PVM implementation in the HMMer package,

as shown in Figure 3.1.

The same as the PVM implementation, the computation granularity of Pthreads

version, which is the comparison between one sequence and one HMM profile, is still

very small. However, because the number of processors available for common SMP

machines is not very large, normally 2 to 12. So even the granularity of computation

is very small, in this case, it does not hurt performance too much. If we imagine

running this Pthreads version on one SMP supercomputer with more than 32 CPUs,

this will be a big problem.

The main overheads in this Pthreads implementation is the cost of mutex

lock. There are two sources incurring the locks. Firstly, each time a slave thread

tries to get a new job from the work pool, it needs to acquire the lock on HMM

database input, and get the next HMM profile to work on, after get the new profile,

it releases the lock, then other slave threads can get the lock, and then get the new

job. Secondly, once a slave thread completes the computation, it needs to acquire

the lock of the output resource, and then save the output in top hits structures,

after it is done, the lock is released, and other slave threads can get in. It is obvious

that these two kinds of mutex locks serialize the execution somehow. With the

number of processor increases, more slave threads are working at the same time,

this serialization caused by mutual exclusion is expected to be much more severe

and finally it becomes hard to gain performance from multithreading execution.

Another overheads in this Pthreads version is the explicit barrier at the end

of the computation of one sequence against the whole PFAM database. All pro-

cessors need to wait the slowest one to complete its job. Then begin the next

iteration together. And also only the main thread is responsible for sorting the

results returned by slave threads, and reporting the overall sequence hits, sorted by

significance. During this stage, all other processors have to wait without performing
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any computation task.

Even with all those drawbacks, this Pthreads implementation in HMMer

package is able to get ideal speedup for SMP machines with small number of proces-

sors. However, due to the design in HMMER package, the pthread implementation

of hmmpfam only works on SMP machine. When running on the distribute mem-

ory environment, for example, SMP clusters, the PVM implementation should be

chosen to use. So for running on SMP machines and clusters, different version of

code are used. From the aspect of pthread programming, the programmer should be

aware that the memory is shared by all the processors, the shared resources have to

be mutex protected to guarantee the correctness, and meanwhile to avoid excessive

locking (deadlock) and inadequate locking (data races). Later, we will show that

for the EARTH implementations, the same code works on SMPs, clusters and SMP

clusters with compatibility, and the EARTH programmer does not need to worry

about the locks.

5.2 OpenMP HMMPFAM Implementation

OpenMP [37] may be the most popular programming API supports multi-

platform shared-memory parallel programming in C/C++ and Fortran on all archi-

tectures, including Unix platforms and Windows NT platforms. And it currently

gains the support by almost all major SMP machine vendors. For comparison, it

would be valuable to implement an parallel version of hmmpfam by using OpenMP

API.

Beginning from the observation in section 3.2, I implement the OpenMP

version of hmmpfam by the same parallel schemes presented in section 3.3. Still, only

the first level parallelism is exploited in this implementation, that is the comparison

between one sequence and the whole PFAM database considered as the basic unit

of jobs. The parallel region in the OpenMP version of hmmpfam is shown in Figure

5.2:

52



1 #pragma omp parallel private(i) shared(tasks)

2 {

3 #pragma omp for

4 for(i = 0; i< num_seqs; i++)

5 worker(tasks[i]);

6 }

Figure 5.2: OpenMP Hmmpfam Work-Sharing Construct: Parallel for

Line 1: the fundamental OpenMP parallel construct, declares the following
block of code is the parallel region, which will be executed by multiple threads.
When the parallel directive is reached, a team of threads are created. Starting
from the beginning of the parallel region, the code in the block is duplicated
and all threads will execute that same code. And variable i is private for each
slave thread, the task is shared by all threads. The task is an array built to
contain all jobs, it can be considered as a work pool.

Line 3: the OpenMP “for” work-sharing struct, it specifies that the itera-
tions of the loop immediately following it must be executed in parallel.

Line 5: the work function is used to complete the computation between
sequence i and the whole PFAM database.

Figure 5.3: OpenMP Static Scheduler

OpenMP has several different schedulers to control how work is distributed

among threads. The static scheduler divides iterations evenly among the threads,

as shown in Figure 5.3. The scheduler divides the work load in to chuck size parcels,

where chunk is a variable can be set by programmer, with default value 1. For the

static scheduler, if there are N threads, each thread does every Nth chunk of work.
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Figure 5.4: OpenMP Dynamic Scheduler

As shown in Figure 5.4, the dynamic scheduler also divides work load into

chunk sized parcels. When a thread finishes one chunk, it grabs the next avail-

able chunk. The dynamic scheduler has more overhead, but potentially better load

balancing is expected.

The guided scheduler works similarly as the dynamic scheduling, the differ-

ence is the chunk size varies dynamically. During running, the chunk sizes depends

on the number of unassigned iterations and the chunk size is exponentially reduced

towards to the specified value of chunk with each dispatched piece of the iteration

space. The guided scheduler achieves good load balancing with relatively low over-

head, by ensuring that no single thread will be stuck with a large number of leftovers,

while the others are idle.

In our implementations, all three schedulers are tried and compared. And for

all three schedulers, we set the chunk size as 1. The result will be shown in section

6.8.
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5.3 EARTH HMMPFAM Implementation on SMP

Nowadays SMP clusters are becoming more and more popular due to the

following reasons [69][70][71] :

1. the rapidly increasing commodity availability of multiprocessor nodes;

2. mature SMP operating systems;

3. low-latency and high-bandwidth interconnects;

4. superior price-performance ratio.

From the analysis of Chapter 4, we know that the performance is portable

from the uni-processor cluster to the SMP machine and SMP clusters. Thus the

cluster based solution of Hmmpfam based on EARTH PXM are also the solution

for SMP machine and SMP cluster.

With the design of EARTH RTS 2.5, the layout of which is shown in Figure

2.5, multiprocessor node support is available for application coded by Threaded-C.

To run fibers on all of the processors in an SMP computing node, it is only necessary

to have multiple copies of the Execution Modules (EMs) running concurrently. When

multiple EMs are active, each has its respective Ready Queue (RQ), Token Queue

(TQ), Event Queue (EQ), and Send Queue (SQ). The RQ is managed by the EM

itself. The Receive Module put messages to the EQ of the corresponding EM. EM

put the message it generates to its own SQ, and then Send Module will poll this

queue. The dynamic load balancing within an SMP node, is done by the Token

Manager, as shown in Figure 5.5. The token manager is responsible for balancing

the load among EMs.

As stated in Chapter 4 The advantage of Threaded-C is that the programmer

does not need to be aware where the application is executed, the concept of node in

Threaded-C is actually referring to the Execution Module (EM), which is a virtual
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Figure 5.5: Load Balancing for SMP Node in RTS 2.5

node performing computation, instead of a physical node. When the RTS starts, the

configuration of the underlying platforms is collected. RTS controls the communica-

tion among different physical nodes, and the memory copy among EMs in the same

physical node, which is transparent to the Threaded-C programmer. Therefore, the

Threaded-C coded applications are portable on clusters and SMP machines. Thus

our hmmpfam implementation based on EARTH execution model, without any code

changes, can be compiled and then executed with good performance on all platforms

with the EARTH RTS support: large clusters, SMP machines, and SMP clusters,

and achieves near linear performance on each platform.

Due to the reasons stated above, The Threaded C language is a perfect

candidate for SMP clusters[72] programming language because it can fit to different

platforms seamlessly.
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So our hmmpfam implementation based on EARTH execution model illus-

trated in section 3.4 not only a cluster based solution, also an SMP based solution,

more over it is an SMP cluster solution. The same code, without any changes, it is

portable on all platform supported by the RTS: large clusters, SMP machines, and

SMP clusters, and gains ideal performance on each platform.

The performance result of the Threaded-C implementation of Hmmpfam on

both SMP machine and SMP clusters will be shown in the experimental result

chapter.
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Chapter 6

EXPERIMENTS AND RESULTS

6.1 Synopsis

The experiments described in this thesis are carried out by using the EARTH

Runtime System 2.5 and three different beowulf clusters, two of which are advanced

supercomputing clusters in Argonne National Laboratory, and one SUN SMP ma-

chine.

This chapter is organized as follows. Section 6.2 provides summary of main

observations from experiments. The experimental strategy, platforms and data sets

are described in Section 6.3. The EARTH implementation of Hmmpfam is com-

pared with the PVM version in Section 6.4. The scalability results on two super-

computing clusters are presented in Section 6.5 with the performance analysis in

Section 6.6. The robustness of the dynamic load balancing approach is discussed

and demonstrated in Section 6.7. Section 6.8 compares SMP implementations by

different APIs on one SMP machine. Section 6.9 demonstrates that the EARTH

version of Hmmpfam can achieve both code portability and performance portability

on different platforms. Finally, the conclusions are presented in Section 6.10.

6.2 Summary of Main Observations

The main observations from the experiments design in this chapter are:

Comparison with PVM version. Our cluster based solution of hmmp-
fam based on EARTH PXM achieves better scalable performance than the
original PVM implementation in HMMer 2.2 package. When running on 18
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dual-CPU computing nodes, the EARTH version is 40% faster than the PVM
version as shown in Section 6.4.

Scalability. Our cluster based solution achieves scalable nearly linear
speedup on two large supercomputing clusters, for a representative data set, it
reaches an absolute speedup of 222.8 on 128 dual-CPU nodes, which is shown
in Section 6.5.

Robustness. The new master-slave dynamic load balancer of EARTH
RTS 2.5 helps the hmmpfam implementation achieve more robust performance
than the static load balancer. Experiments in Section 6.7 shows the dynamic
load balancing approach is much less sensitive to disturbance. When run-
ning on 18 dual-CPU nodes with disturbance to 4 CPUs, the performance
degradation ratio of dynamic load balancing approach is less than 10

SMP solution. The cluster based solution of hmmpfam is also an SMP
based solution. It achieves an absolute speedup of 8.20 by running on 10
processors of an SMP machines. Details are given in Section 6.8.

Performance Portability. The EARTH implementation of hmmpfam
is code and performance portable to different platforms. Almost the same
speedup is achieved on different platforms. For example, when running on
144 CPUs, the parallel hmmpfam based on EARTH on PXM can achieve the
absolute speedup of 121.0 on a uni-processor cluster. When ported to a SMP
cluster, it still achieves speedup of 127.1. More results are shown in Section
6.9.

6.3 Experimental Strategy, Platforms and Data Sets

6.3.1 Experimental Strategy and Framework

As most of other literatures in the area of parallel computing, the abso-

lute speedup is used to compare the performance of parallel hmmpfam on different

platform. It also used to demonstrate the scalability result on large supercomput-

ing result. Normally, the less difference between the speedup curve and the linear

speedup, the better performance is demonstrated.

To highlight the scalability of our approach, the experiments were conducted

on two large clusters, one of which ranks 129 in the 22nd TOP500 supercomputer

list [4].
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To give more insight on the reasons why the EARTH implementation of

hmmpfam can achieve very scalable performance, some simple mathematical anal-

ysis will be given under some ideal assumptions. When more real conditions added

in, discussions are also given.

To compare the robustness of the dynamic load balancing approach with the

static load balancing approach, a new term called performance degradation ration

under disturbance is defined, the smaller this ration, the better robustness presented.

To demonstrate that the cluster-based solution of hmmpfam based on EARTH

PXM is also an SMP solution, SMP implementations by different popular APIs are

conducted on the same SMP machine. The comparison is also done by showing the

speedup curves on the same figure, which is easily understood.

To argue that the EARTH hmmpfam is performance portable to different

platform, the speedups on various platforms are shown in the same figure. If they

are all very close in the figure, it means the performance is portable from one

platform to others.

6.3.2 Computational Platforms

The comparison of PVM hmmpfam version and EARTH version is tested

on COMET cluster at CAPSL, University of Delaware. COMET consists of 18

nodes, each containing two 1.4 GHz AMD Athlon processors – total of 36 processors

– and 512MB of DDR SDRAM memory. The interconnection network for the nodes

is a switched 100Mbps ethernet.

Other experiments are conducted on two large clusters. The Chiba City

cluster [73] is a scalability test-bed for the High Performance Computing and Com-

puter Science communities at Argonne National Laboratory. The cluster is com-

prised of 256 computational servers, each with two 500MHz Pentium III processors

and 512MB RAM memory. The interconnects for high performance communication

are both a fast ethernet and a 64-bit Myrinet.
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The JAZZ [74] is a teraflop-class computing cluster, provided by Laboratory

Computing Resource Center at Argonne National Laboratory. The JAZZ cluster

consists of 350 computing nodes, each with a 2.4 GHz Pentium Xeon processor;

and 175 nodes with 2 GB of RAM, 175 nodes with 1 GB of RAM. All nodes are

interconnected by fast ethernet and Myrinet 2000. JAZZ is ranked 129 in 22nd

TOP500 Supercomputing List [4].

The comparisons of different hmmpfam SMP approaches are performed on

dbi-rna1 at Delaware Biotechnology Institute. dbi-rna1 is a Sun Sunfire 4800

Server with 12 SPARC 750MHz CPUs, and 24 gigabyte memory. This is a famous

SMP machine shipped by SUN.

6.3.3 The Data Sets Used in Experiments

For comparison of the PVM version and the EARTH version of parallel

hmmpfam, we use a HMM database containing 585 profile families, and a sequence

file with 250 sequences. This benchmark is referred as data set-1 in following sec-

tions.

For testing both the static and dynamic load balancing version of EARTH

hmmpfam, we use a HMM database containing 50 profile families, and a sequence

file containing 38192 sequences. This benchmark is referred as data set-2 in following

sections.

For comparison of the Pthreads, OpenMP and EARTH version of parallel

hmmpfam on SMP machine, we use a HMM database containing 50 profile families,

and a sequence file containing 2276 sequences. This benchmark is referred as data

set-3 in following sections.

6.4 Comparison With the PVM Implementation

First test is conducted to compare the scalability of the PVM version and

the EARTH version on COMET Environment using test data set-1. Figure 6.1
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Figure 6.1: The Comparison of PVM Version and EARTH Version on COMET
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Figure 6.2: The Comparison of PVM Version and EARTH Version on COMET
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Figure 6.3: Static Load Balancing on Chiba City

shows the absolute speed up curve when both PVM version and EARTH version

are configured to use only 1 CPU per node in COMET, while figure 6.2 shows the

results for dual CPUs per node configuration. From the figures, it is easily seen

that our new version has much better scalability, especially in dual-CPU per node

configuration. For example, with 16 nodes and 2 CPUs per node configuration,

the absolute speedup of the PVM version is 18.50 while the speedup of our version

is 30.91, which means 40% reduction of execution time. This is due to the fact

that our implementation increases the computation granularity and avoids most

communication cost and internal barrier.

6.5 Scalability on Supercomputing Clusters

The Section 6.4 already shows that the EARTH implementation of hmmp-

fam is more performance scalable. Now we are concern about whether the speedup

of this parallel hmmpfam can keep linearly increasing with the increase of num-

ber of processors. To demonstrate the scalability of this hmmpfam version based
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Figure 6.4: Static Load Balancing on Chiba City

on EARTH PXM, the experiments should be done on some large supercomputing

clusters, especially on the cluster, which has a high position on the TOP500 [4]

supercomputer list. If running on a large number of processors, the speedup is still

very close to the linear speedup curve, we can then claim that our approach can

achieve scalable performance on current advanced supercomputing platforms.

Thus the second test and the third test are conducted to show the perfor-

mance of our EARTH version hmmpfam on large clusters – Chiba City cluster and

Jazz cluster, using test data set-2. The results of both static load balancing and

dynamic load balancing schemes are shown in figure 6.3 to figure 6.6, where figure

6.3 and figure 6.4 show the results for static load balancing on 1 CPU per node

and 2 CPUs per node configuration, figure 6.5 and figure 6.6 are the results for dy-

namic load balancing. The two methods do not have much difference in the absolute

speedup. This may due to the fact that subtasks are relatively similar in size, which

means static load balancing can also achieve good performance. Both of them show
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Figure 6.5: Dynamic Load Balancing on Chiba City

near linear speedup, which demonstrates that in our new parallel scheme, the serial

part only occupies a very small percentage of the total execution. As long as the

test data set is big enough, the speedup is expected to keep near linear up to 128

nodes on Chiba City Cluster. The test results on Jazz cluster is shown in figure 6.7.

The speed up curve shows our implementation can still get near linear speed up on

240 nodes, which are with modern INTEL XEON CPUs.

After achieving the scalable performance as just shown, it is worth discussions

on the reasons why the performance can be scalable by the new parallel scheme.

What is advantages of the new scheme? How the new parallel scheme overcomes the

disadvantage of the old scheme used by the PVM implementation? Those questions

are going to be visited in the next section.

6.6 Performance Analysis for The Cluster Based Solution

In this subsection, a simple analysis and comparison of the proposed new ap-

proach and the PVM approach is presented. To simplify the problem, the following
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Figure 6.6: Dynamic Load Balancing on Chiba City
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Figure 6.7: Dynamic Load Balancing on JAZZ
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assumptions are made:

1. The number of processors is p ;

2. n profiles exist in profile DB and k sequences;

3. The computation of one sequence v.s. one profile takes same amount time, let

us denote it as T0;

4. Denote the communication cost for one round trip communication as Tc;

5. The master node can always respond the requests from slaves concurrently

and immediately, and the bandwidth is always sufficient.

For the original PVM approach, the basic task unit is computation of one

seq v.s one profile, totally there are k ∗ n such tasks. Each needs T0 computation

time and Tc communication time. Thus, the total work load is:

WL = k ∗ n ∗ (T0 + Tc) (6.1)

and the total wall time is

Ttotal = k ∗ n ∗ (T0 + Tc) ∗ (1/p) (6.2)

For our new approach, one basic task unit is computation of one seq v.s whole

database including n profiles. Totally there are k such tasks. Each task needs n∗T0

Computation time and Tc Communication time since only one communication is

necessary for one task. Thus, the total work load is

WL = k ∗ (n ∗ T0 + Tc) (6.3)

and the total wall time is

Ttotal = k ∗ (n ∗ T0 + Tc) ∗ (1/p) (6.4)
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From the above analysis, it can be easily seen that the workload saved by

our approach is:

WLsave = k ∗ (n − 1) ∗ Tc (6.5)

The wall time saved is

Tsave = k ∗ (n − 1) ∗ Tc ∗ (1/p) (6.6)

From the formula 6.6, it can be seen that the larger number of k and n means the

larger improvement of our approach. In most cases, the k and n are very big, thus

our approach will have significant improvement, and also achieves good scalability

as previous sections shows.

Besides the reasons analyzed in the preceding formulas, there are several

other factors that contribute to the better performance of out approach. Firstly,

when the number of the slave nodes are very large, a lot of requests from the slaves

to the master may happen at the same time. Since the master node has to handle

the requests one by one and the communication bandwidth of the master node is

limited, the assumption 5 may not be valid anymore. That is, the master node

can not respond the requests from slaves concurrently and immediately anymore.

As mentioned in Section 3.1, the PVM approach regards the computation of one

sequence against one profile as a task, and the computation time for this task is

very short, so the slave nodes send request to the master very frequently. Our

approach regards one sequence against whole database as one task unit and has

larger computation time for each task unit, the requests occurs less frequently. Thus,

for the PVM approach, the chance of many requests blocked at the master node is

much higher than our approach. Secondly, since the computation of ranking and

sorting are performed at master node for the PVM approach, during this stage, all

the slaves are idle, while in our approach, the ranking and sorting are distributed to

the slaves, thus slaves will have less idle time waiting for response from the master
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node. When ported to large supercomputing clusters, those reasons stated above

also stands for the scalability of our approach. As long as there are enough jobs to

keep the processors usefully busy, the near linear speedup are expected to be kept.

To conclude, from the simple theoretical analysis, with big k and n, our

approach will achieve better scalability; in the real case, our approach may perform

even better.

6.7 Robustness Experimental Results

One of the advantages of the dynamic load balancing approach is its robust-

ness. The experiments are conducted to show that the program with dynamic load

balancing is less affected by the disturbance. The Blastall [75] program is used as

the disturbance source since this program is another commonly used computation

intensive bioinformatics software.

The execution time for both static and dynamic approach with and without

disturbance is measured. Let T denote the execution time without disturbance, and

T ′ denote the execution time with disturbance. Define the performance degradation

ratio under disturbance (PDRD) as:

PDRD = (
T ′ − T

T
) × 100% (6.7)

The PDRD is computed and plotted for both static and dynamic approaches. A

smaller PDRD indicates the performance is less influenced by the introduction of

disturbance, thus implies the higher implementation robustness.

For robustness experiment, the data set-1 is used on COMET cluster. Figure

6.8 shows the result when only one Blastall program is running on 1 CPU to disturb

the execution of hmmpfam, and the Fig. 6.9 shows the result when two CPUs of

one node are both disturbed. Figure 6.10 and Fig. 6.11 show the result when 2

computing nodes are disturbed. From the figures, it is apparent that the dynamic
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Figure 6.8: Performance Degradation Ratio under Disturbance to 1 CPU

load balancing program is less affected by the disturbance and thus has higher

robustness.

6.8 Experiment Results on SMP Platform

The fourth test is conducted to compare the performance of the POSIX

Threads version in HMMER package, the OpenMP version, and the EARTH version

on the SMP machine – dbi-rna1 by using test data set-3. Figure 6.12 shows the

absolute speedup curves of the OpenMP implementations. Three different schedulers

– static, dynamic, and guided, are compared. From the figure, the version with

dynamic scheduler shows the best performance among all three, and the performance

of static scheduler is worse than the other two schedulers.

Figure 6.13 shows the SMP based hmmpfam implementations with different

APIs – POSIX Threads, OpenMP and EARTH. For the OpenMP implementa-

tion, we choose the version with dynamic scheduler for comparison since dynamic

OpenMP version is the best performed one in all three OpenMP implementations.
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Figure 6.9: Performance Degradation Ratio under Disturbance to 2 CPUs on 1
node
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Figure 6.10: Performance Degradation Ratio under Disturbance to 2 CPUs on 2
node
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Figure 6.11: Performance Degradation Ratio under Disturbance to 4 CPUs on 2
node
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Figure 6.12: Absolute Speedup of OpenMP HMMPFAM Implementations with
Different Scheduler
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Figure 6.13: Absolute Speedup of SMP based HMMPFAM Implementations with
Different APIs

It is obvious that the EARTH and OpenMP version beats the Pthreads version in

HMMER package. The EARTH version and OpenMP version gains similar per-

formance, and the EARTH version is a little better. However, the OpenMP can

be only used in SMP machine, not applicable to distribute memory environment

like clusters, meanwhile, the EARTH version can achieve good performance both on

supercomputing clusters and SMP machines.

6.9 Performance Portability of Hmmpfam Based on EARTH PXM

The analysis in Chapter 4 concludes that the EARTH program is both code

portable and performance portable to different platforms. Previous sections in this

chapter already shows that the same code without modification is able to be executed

on uni-processor cluster, SMP cluster and SMP machines. Thus the code portability

is already proved for Hmmpfam coded by Threaded-C.
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Figure 6.14: Performance Portability of HMMPFAM on EARTH for Different
Platforms

For proving the performance portability of Hmmpfam on EARTH, the exper-

imental data collected from previous experiments is reorganized. In order to present

an easy view of the results, the speedup curves from different platforms is put into

the same figure, as shown by Figure 6.14.

The platforms presented in this figure includes uni-processor cluster (JAZZ),

SMP clusters (Chiba City and Comet), and SMP machine (Sun Fire). However,

almost the same speedup curves for different platforms shown on this figure, which

demonstrates that the performance of Hmmpfam based on EARTH PXM is portable

to those platforms supported by EARTH RTS 2.5

Figure 6.15 compares the performance of hmmpfam on uni-processor clusters

(JAZZ) and SMP cluster (Chiba City) with large number of CPUs. In Chiba City

cluster, each machine contributes two CPUs to the computation, for example, the

number of 128 CPUs means 64 dual-CPU machines. This figure shows similar

absolute speed curve achieves on these two different platforms.
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Figure 6.15: Performance Portability of HMMPFAM on EARTH from Uni-
processor Cluster to SMP Cluster

6.10 Conclusions Drawn from Experiments

Compared with the original PVM version of hmmpfam, Section 6.4 shows

that our hmmpfam implementation based on EARTH achieves better scalable per-

formance. And our cluster based solution for hmmpfam also presents near linear

speedup on two large supercomputing clusters as shown in Section 6.5. The discus-

sions for reasons why our cluster based solution of hmmpfam on EARTH can achieve

good scalable performance on supercomputing clusters are presented in Section 6.6.

Experiments illustrated in Section 6.7 proves that with the help of newly imple-

mented master-slave dynamic load balancer of EARTH RTS 2.5, the dynamic load

balancing approach of parallel hmmpfam performs more robust than the static load

balancing approach. Section 6.8 demonstrates SMP based solution of hmmpfam

by using different parallel APIs. The EARTH implementation shows as good per-

formance as the OpenMP implementation, and beats the Pthread implementation
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in HMMER package. Finally, in section 6.9, previous experimental data is reorga-

nized to demonstrate that the performance of hmmpfam implementation based on

EARTH is code portable and performance portable to different platforms.
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Chapter 7

CONCLUSIONS

We implemented a new cluster-based solution of HMM database searching

tool on EARTH (Efficient Architecture for Running Threads) and demonstrated sig-

nificant performance improvement over the original parallel version based on PVM.

Our solution provides near linear scalability on supercomputing clusters. On a

cluster of 128 dual-CPU nodes, the execution time of a representative testbench is

reduced from 15.9 hours to 4.3 minutes. Comparison between the static and dy-

namic load balancing approach shows the latter is an more robust and practical

solution for large time consuming applications running on clusters.

Without the modification of the code, on the SMP machine, the same EARTH

hmmpfam can also achieves the same and even better performance compared with

the OpenMP implementation, which is one the most popular APIs for parallalizing

applications on SMP machine. Experimental results shows that the EARTH version

of hmmpfam performs much better than the Pthreads version in HMMER packages

on SMP machines. This approves that the parallel hmmpfam based on EARTH

PXM can achieves good performance not only on supercomputing clusters, but also

on SMP servers, and SMP clusters. An important advantage of EARTH is that

the programmer does not need to know the platform details but still achieve ideal

performance on all supported platforms. From the implementation of Hmmpfam, we

shows that the application based on EARTH is both code portable and performance

portable to different platforms.
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This new implementation could allow researchers to analyze biological se-

quences at a much higher speed and also make it possible for scientists to analyze

problems that were previously considered too large and too time consuming. We

presented and evaluated two different parallel schemes which are targeted to ad-

vanced supercomputing clusters. One is based on the round-robin algorithm; the

other is based on the dynamic load balancing mechanism. The parallelization im-

plementation in this paper motivated the addition of robust dynamic load balancing

support into EARTH model, which proves that applications could be the driving

force for design of architecture and programming model.

Sequence family classification and HMM database searching is very important

to the biological research community. With the help of supercomputing resources

and cluster-based solution for applications, researchers can now save research time

and get new discoveries more quickly than ever. Many other bioinformatics applica-

tions are very time consuming and in essence embarrassingly parallel, which makes

them very suitable applications for cluster computing. Porting of hmmpfam to

EARTH model provides very promising results, thus further research includes the

porting of other bioinformatics applications such as multiple sequence alignment,

phylogenetic tree generation to EARTH platform.
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[55] H. Löf, Z. Radovic, and E. Hagersten, “THROOM — running POSIX multi-
threaded binaries on a cluster,” Department of Information Technology, Upp-
sala University, Tech. Rep. 2003-026, Apr. 2003.

83



[56] P. Jamieson and A. Bilas, “CableS: Thread control and memory system
extensions for shared virtual memory clusters,” Lecture Notes in Computer
Science, vol. 2104, 2001. [Online]. Available: http://link.springer-
ny.com/link/service/series/0558/bibs/2104/21040170.htm;
http://link.springer-ny.com/link/service/series/0558/papers/2104/21040170.pdf

[57] L. Smith and P. Kent, “Development and performance of a mixed OpenMP/
MPI quantum Monte Carlo code,” Concurrency: Practice and Experience,
vol. 12, no. 12, pp. 1121–1129, Oct. 2000.

[58] L. Smith and M. Bull, “Development of mixed mode MPI / openMP applica-
tions,” Scientific Programming, vol. 9, no. 2-3, pp. 83–98, 2001, ePCC.

[59] F. Cappello and D. Etiemble, “MPI versus MPI+openMP on IBM SP for the
NAS benchmarks,” in Proceedings of Supercomputing’2000 (CD-ROM). Dallas,
TX: IEEE and ACM SIGARCH, Nov. 2000, lRI.

[60] F. Cappello, O. Richard, and D. Etiemble, “Performance of the NAS bench-
marks on a cluster of SMP PCs using a parallelization of the MPI programs
with OpenMP,” Lecture Notes in Computer Science, vol. 1662, 1999.

[61] G. Jost, H. Jin, D. an Mey, and F. F. Hatay, “Comparing the OpenMP, MPI,
and hybrid programming paradigms on an SMP cluster,” in the Fifth European
Workshop on OpenMP (EWOMP03), Aachen, Germany, Sepetember 2003.

[62] R. Rebenseifner, “Hybrid parallel programming: Performance problems and
chances,” in the 45th Cray User Group Conference, Ohio, May 12-16 2003.

[63] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. War-
ren, “Introduction to upc and language specification,” CCS-TR-99-157, May
13 1999.

[64] T. El-Ghazawi and S. Chauvin, “UPC benchmarking issues,” in Proceedings of
2001 International Conference on Parallel Processing (30th ICPP’01). Valen-
cia, Spain: Universidad Politecnia de Valencia, Sept. 2001.

[65] T. El-Ghazawi and F. Cantonnet, “UPC performance and potential: A NPB
experimental study,” in SC’2002 Conference CD. Baltimore, MD: IEEE/ACM
SIGARCH, Nov. 2002, pap316.

[66] R. W. Numrich and J. Reid, “Co-Array Fortran for parallel programming,”
ACM SIGPLAN FORTRAN Forum, vol. 17, no. 2, pp. 1–31, Aug. 1998.

84



[67] P. Ba la and T. W. Clark, “Pfortran and Co-Array Fortran as tools for paral-
lelization of a large-scale scientific application,” Lecture Notes in Computer
Science, vol. 1900, 2001. [Online]. Available: http://link.springer-
ny.com/link/service/series/0558/bibs/1900/19000511.htm;
http://link.springer-ny.com/link/service/series/0558/papers/1900/19000511.pdf

[68] J. Reid, “Co-array Fortran for full and sparse matrices,” Lecture Notes in
Computer Science, vol. 2367, 2002. [Online]. Available: http://link.springer-
ny.com/link/service/series/0558/bibs/2367/23670061.htm;
http://link.springer-ny.com/link/service/series/0558/papers/2367/23670061.pdf

[69] Y. Sun and D. Bader, “Broadcast on clusters of SMPs with optimal concur-
rency,” University of New Mexico, Albuquerque, NM, Tech. Rep. AHPCC Tech-
nical Report 2000-013, June 2000.

[70] R. Samanta, A. Bilas, L. Iftode, and J. P. Singh, “Home-based SVM protocols
for SMP clusters: Design and performance,” in Proc. Of IEEE 4th International
Symposium on High-Performance Computer Architecture (HPCA98), 1998.

[71] W. E. Johnston, “High-speed, wide area, data intensive computing: a ten
year retrospective,” in Proceedings of IEEE International Symposium on High-
performance Distributed Computing, pp.280-291, 1998, pp. 280–291.

[72] C. Li, “EARTH-SMP: Multithreading support on an SMP cluster,” Master’s
thesis, Univ. of Delaware, Newark, DE, Apr. 1999.

[73] The Argonne Scalable Cluster. [Online]. Available: http://www-
unix.mcs.anl.gov/chiba/

[74] The Argonne JAZZ Cluster, Laboratory Computing Resource Center (LCRC).
[Online]. Available: http://www.lcrc.anl.gov/jazz/

[75] NCBI blast. [Online]. Available: http://www.ncbi.nlm.nih.gov/BLAST/

85


