

Dataflow: Best of Times or Worst of Times?

DFM'2019: Dataflow Model Workshop 2019

Talk Theme

It was the best of times, it was the worst of times.

Charles Dickens, "A Tale of Two Cities"

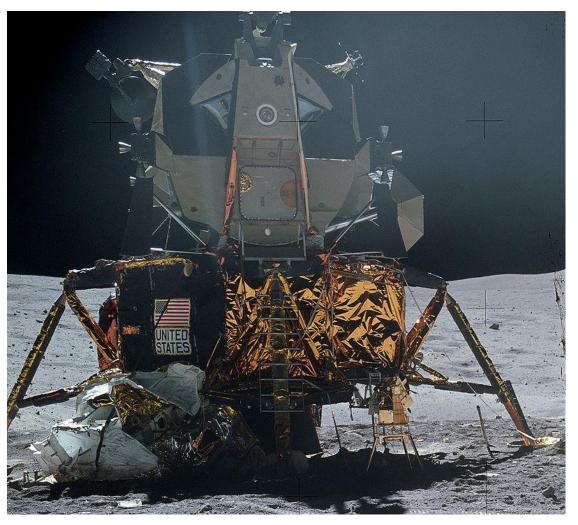
Caveats

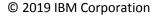
- It has been many years since I have devoted significant research effort to dataflow models
- Views here are of a fan looking from a distance with nostalgia and hope

Aside

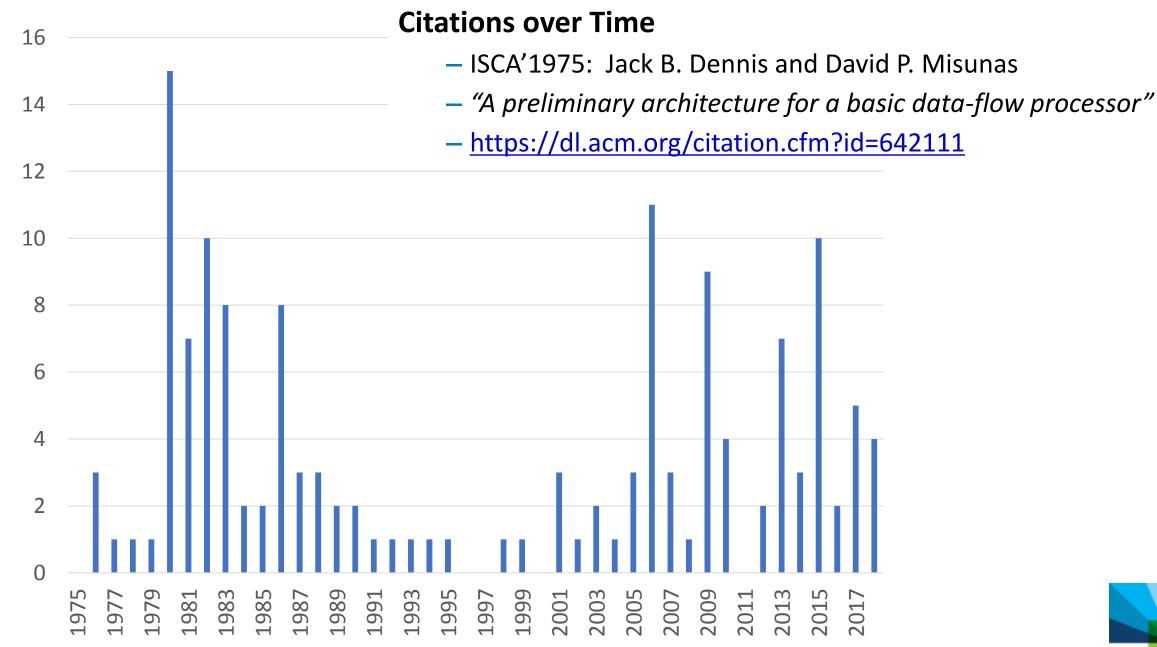
July 19, 2019 50 years less a day from the first moon landing

If we can put a person on the moon, can we make dataflow succeed?

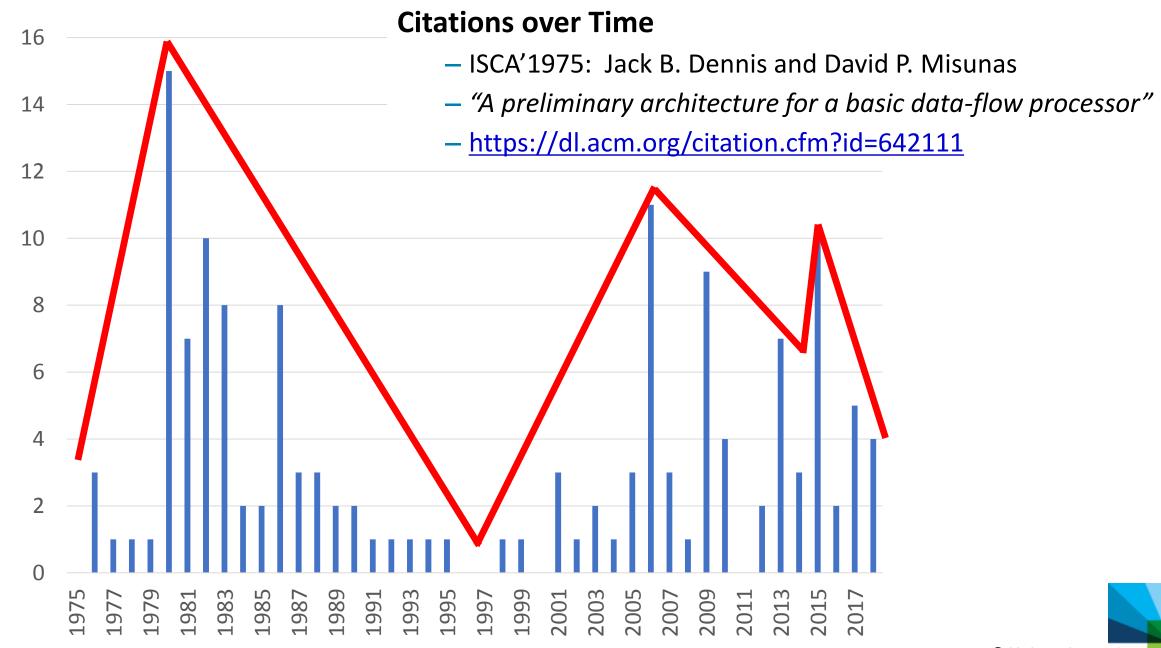




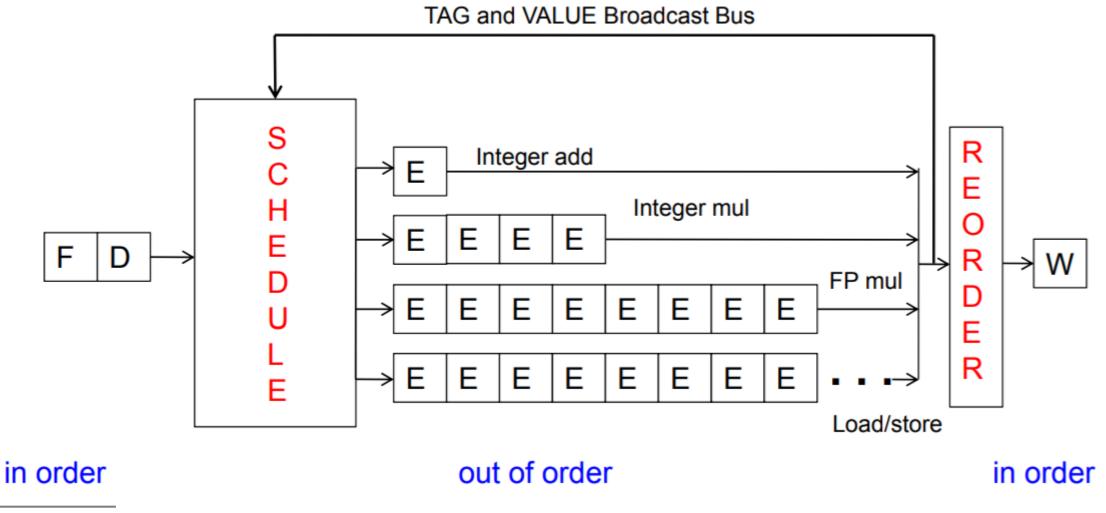
Dataflow Directions Dataflow Popularity



Dataflow Directions Dataflow Popularity



Early Dataflow Success: Tomasulo / Reorder Buffers

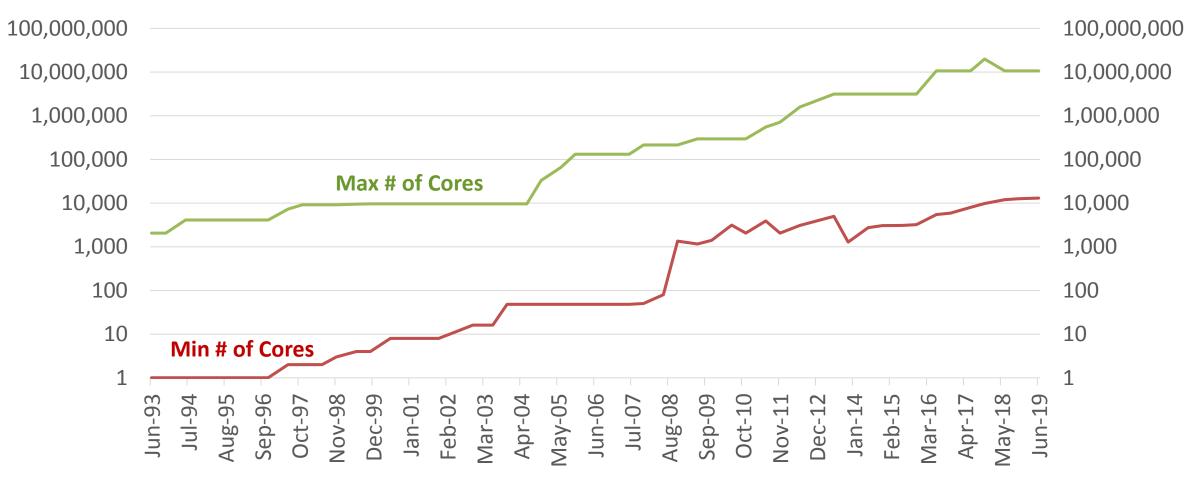


Onur Mutlu

https://www.archive.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture10-ooo-afterlecture.pdf

Dataflow Directions # of Processors in Top500 Systems

of Cores



Why has dataflow not emerged as the dominant paradigm for Top500 workloads?

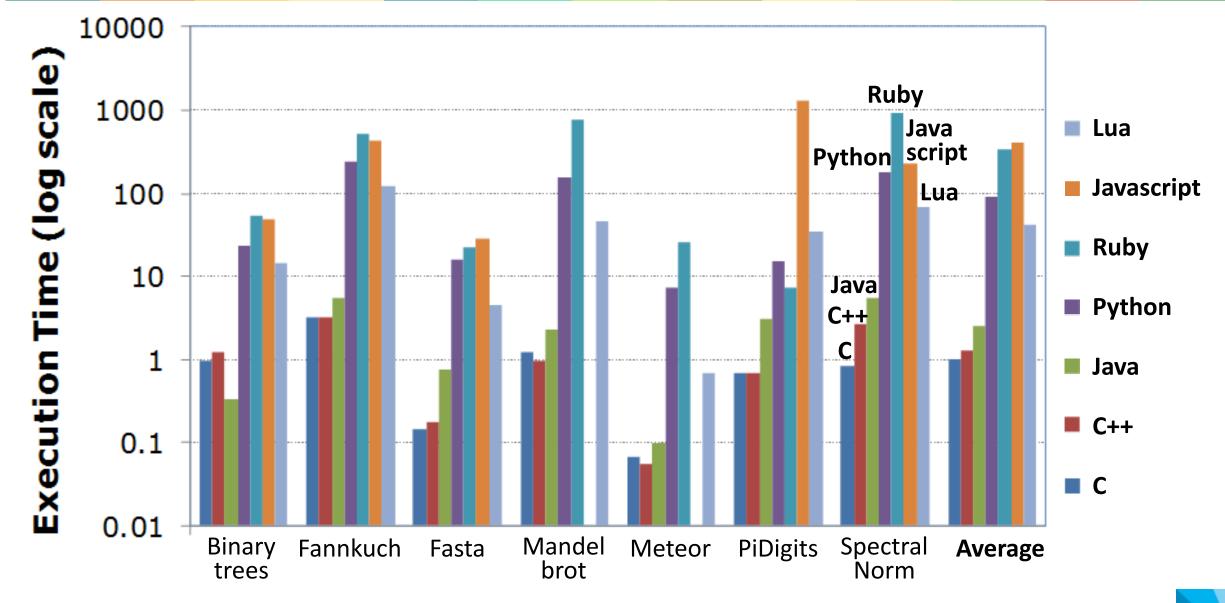
Successful Software Transitions

- Spreadsheets: Visicalc → Lotus 123 → Microsoft Excel
- Word Processors: Wang → Wordperfect → Word
- Browsers: Netscape / Mozilla → Internet Explorer → Chrome / Safari

Language Popularity Dataflow Directions

May 2019	May 2018	Change	Programming Language	Ratings	Change	
1	1		Java	16.0%	-0.38%	
2	2		C	14.2%	+0.24%	
3	3		C++	8.1%	+0.43%	C Flavors: 28%
4	4		Python	7.8%	+2.64%	Fortran #27: 0.5%
5	6	^	Visual Basic .NET	5.2%	+1.07%	
6	5	~	C#	4.0%	-0.42%	Lisp #32: 0.4%
7	8	^	Javascript	2.7%	-0.23%	Haskell #45: 0.2%
8	9	^	SQL	2.6%	+0.57%	
9	7	~	РНР	2.5%	-0.83%	
10	13	^	Assembly Language	1.8%	+0.82%	No major niche
11	15	*	Objective-C	1.6%	·0.69%	where dataflow dominates!
12	12		Delphi/Object Pascal	1.4%	+0.39%	
13	18	*	Perl	1.4%	·0.48%	
14	16	^	MATLAB	1.4%	·0.44%	
15	10	*	Ruby	1.3%	·0.16%	
			https://www.tiobe.com/tiobe-index			© 2019 IBM Corporation

Dataflow Directions Do Programmers Care about Performance?



D. Edelsohn, M. Gschwind, J. Moreira, P. Nagpurkar, M. Valluri

© 2019 IBM Corporation

The Challenge of Parallelism

"When we start talking about **parallelism** and ease of use of truly parallel computers, we're talking about a problem that's **as hard as any that computer science has faced**.

I would be panicked if I were in industry."

John Hennessy

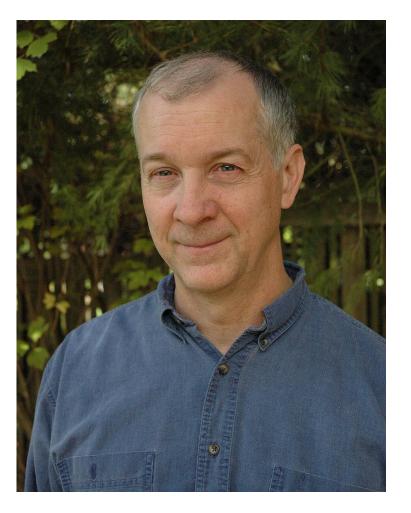
Turing Laureate

CS Professor and President Emeritus, Stanford Author – Best-selling Computer Architecture textbook Chair – Alphabet / Google

Popularity is Essential

"He who makes the most silicon wins"

-Bob Colwell



Killer Apps

- JEE and WebSphere-like middleware
- C: Operating systems, Realtime, IoT
- Python: Deep Learning Frameworks
- **Fortran:** HPC
- Lisp: Symbolic Al
- PCs: Spreadsheets, Word Processing
- Smartphones: Texting, Pictures, Map Guidance, Social Networks, News

What is the dataflow killer app?

Who is the target audience for Dataflow?

- All programmers
- HPC programmers
- DSP programmers
- Data scientists
- Deep learning algorithm developers
- Other domains

What tasks can dataflow make easier?

Exploiting parallelism

Maintainability

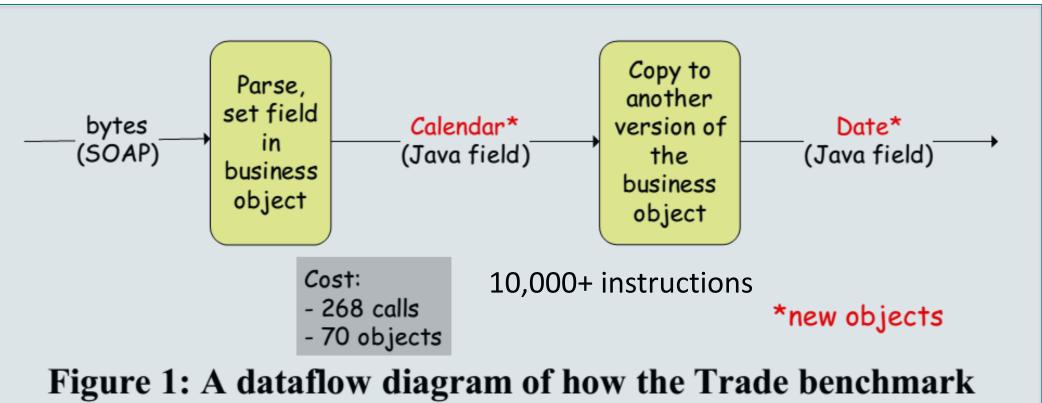
Explicit dependences

.

The Diary of a Datum:

An Approach to Modeling Runtime Complexity in Framework-Based Applications

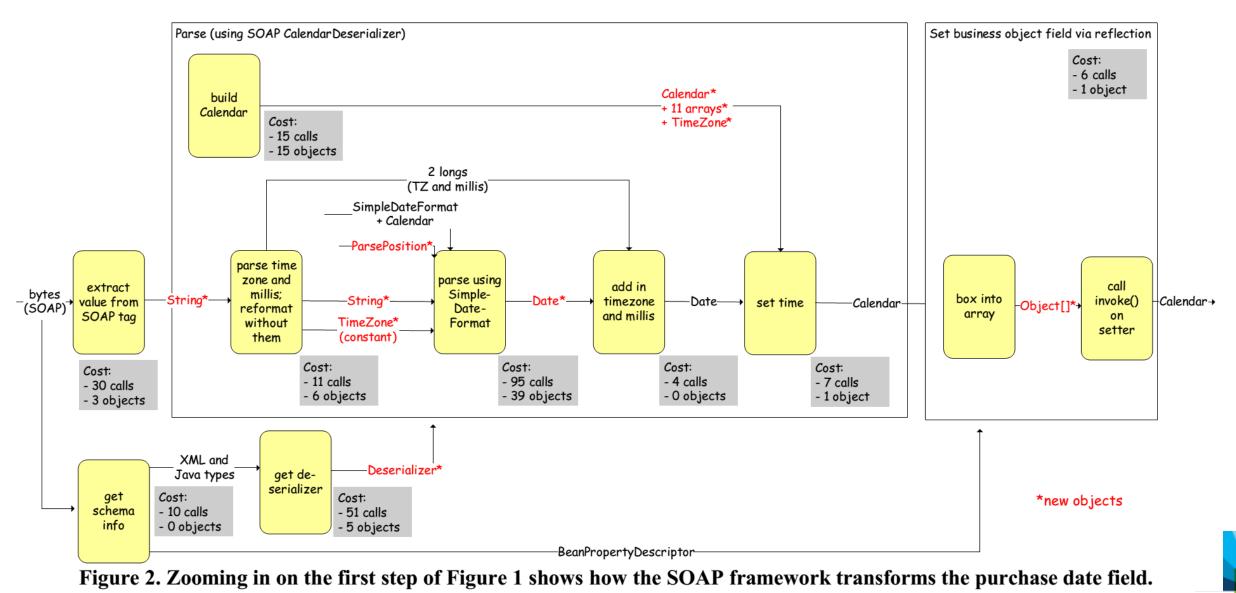
- Nick Mitchell, Gary Sevitsky, Harini Srinivasan
- Workshop on Library-Centric Software Design, San Diego, CA, 2005



transforms a date, from a SOAP message to a Java object.

Dataflow Directions Inefficiency and Intractability

What compiler can analyze all these steps and parallelize them – and/or do dead code elimination?



^{© 2019} IBM Corporation

- Explicitly pass all state (cumbersome)
- Programmer mental models
- Handling overabundance of parallelism at peak
- Interoperation with other code
- Interaction with non-dataflow I/O
- Applicability to random code
- Memory Footprint
- Wide separation of parallelism in code
 - Not tractable for compilers or processors

Compiler analysis typically ignorant of semantic function

- Many studies have found large amounts of parallelism, even in integer apps like SPECint:
 - 1970, Tjaden and Flynn
 - •1972, Riseman and Foster
 - •1981, Nicolau and Fisher
 - •1991, Wall
 - •1991, Butler et al
 - 1992, Austin and Sohi

- 1992, Lam and Wilson
- 1992, Theobald et al
- 1993, Rauchwerger et al
- 1998, Postiff et al
- 1999, Ebcioglu et al
- Machine with unbounded resources and an oracle for branch prediction and memory disambiguation could execute *hundreds or thousands of instructions per cycle*.

Program Start	Time ——	Program End			
Start	Dynamic Trace of Program Execution	LIIU			
	Dynamic Trace scheduled on unbounded oracle machin				

Natural Structure → Parallelism

• Any long running program, must have the following structure at some level:

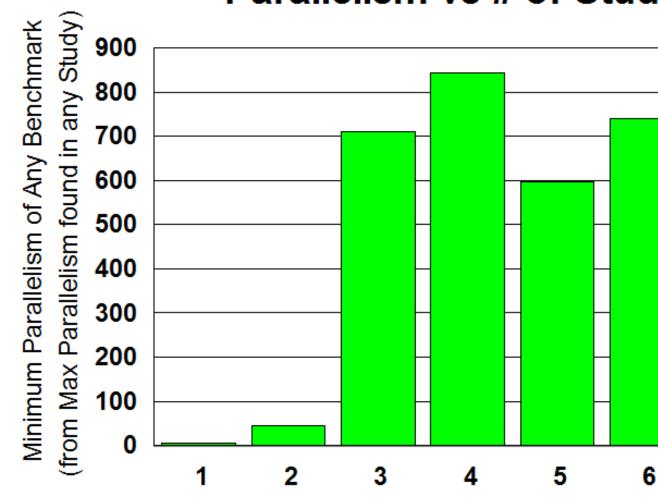
```
while (end_cond_not_met) {
    task_1 ();
    task_2 ();
    ...
    task_n ();
}
```

- 1. Tasks 1-n are often largely independent of each other, or
- 2. Task *q* at iteration *i* is independent of task *q* at iteration *i*+1.

Example

LLVM (mostly) compiles one function at a time.

- Compilation of each function is largely independent.
- A skilled programmer could parallelize *LLVM* to compile functions in parallel.
- Better to perform this parallelization:
 - Automatically or with tools providing guidance.
 - For any program, not just LLVM.



Parallelism vs # of Studies

of Studies

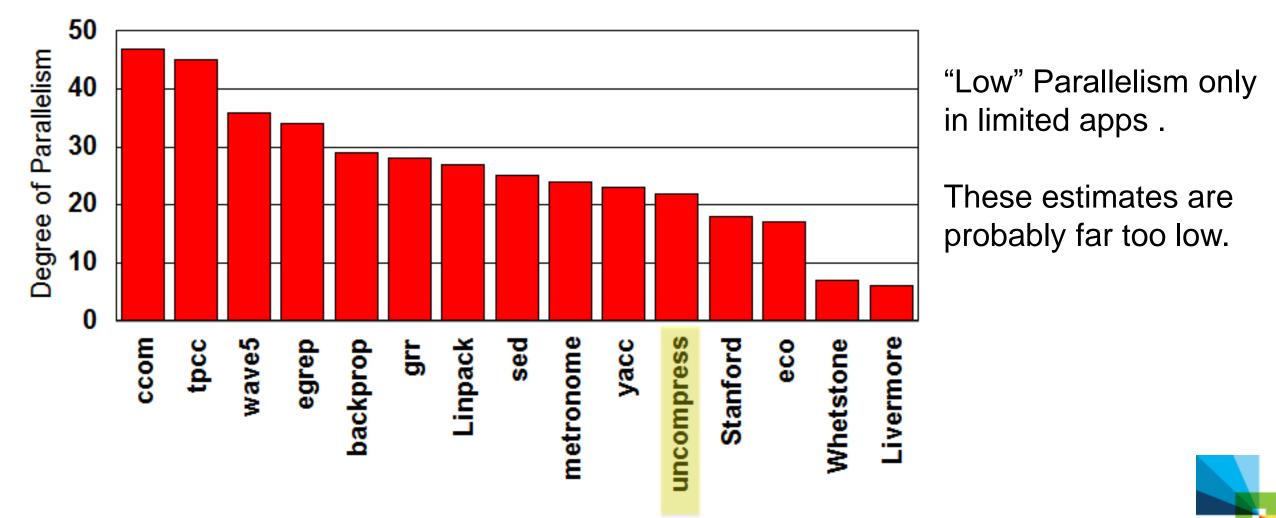
When good techniques from many researchers are applied:

→ Almost all apps appear to have more than 500-way parallelism.

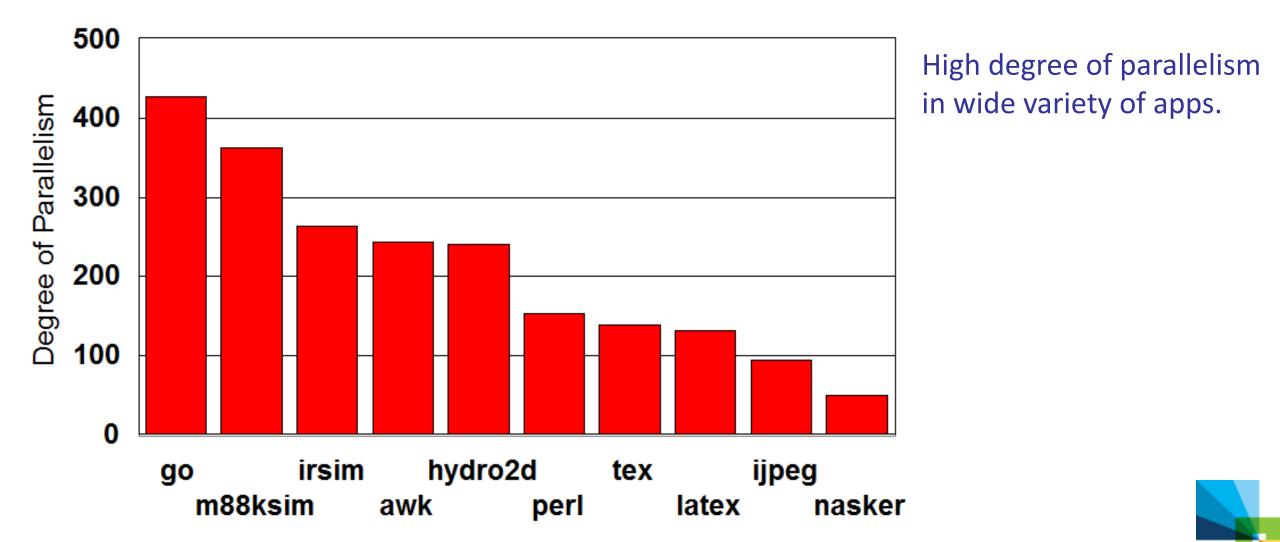
7

Dataflow Directions

5 < Parallelism < 50 (Highest Parallelism in Any Study)

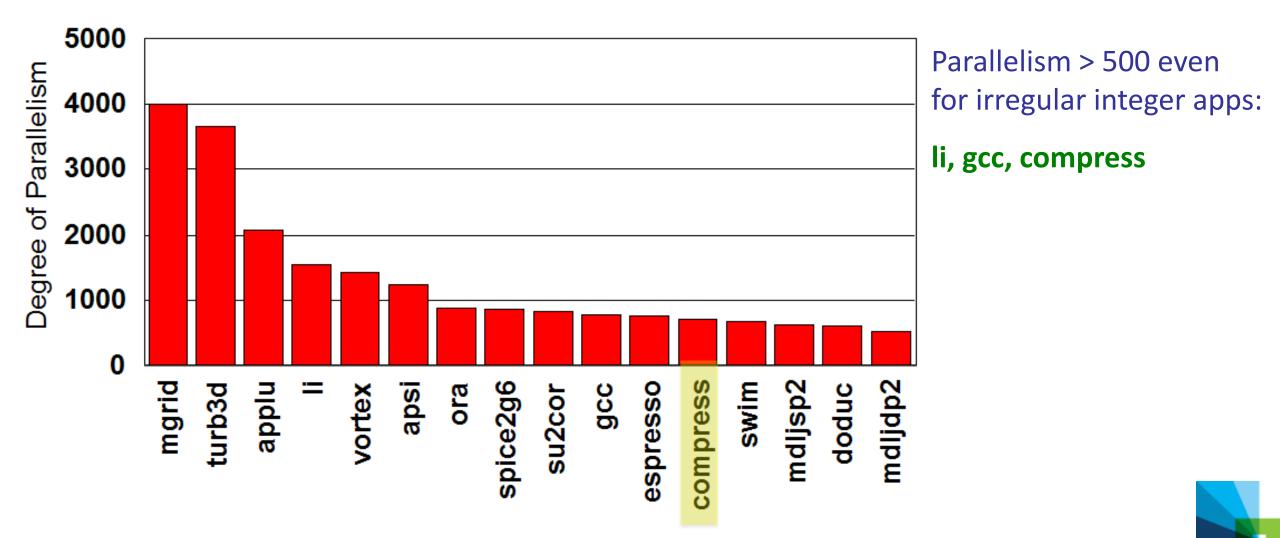


50 < Parallelism < 500 (Highest Parallelism in Any Study)

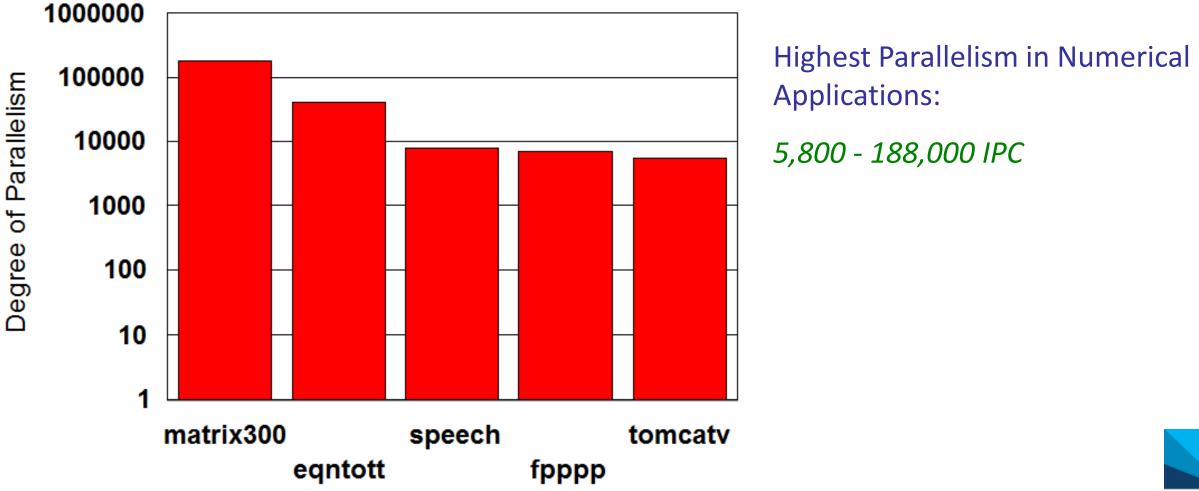


Dataflow Directions

500 < Parallelism < 5000 (Highest Parallelism in any Study)

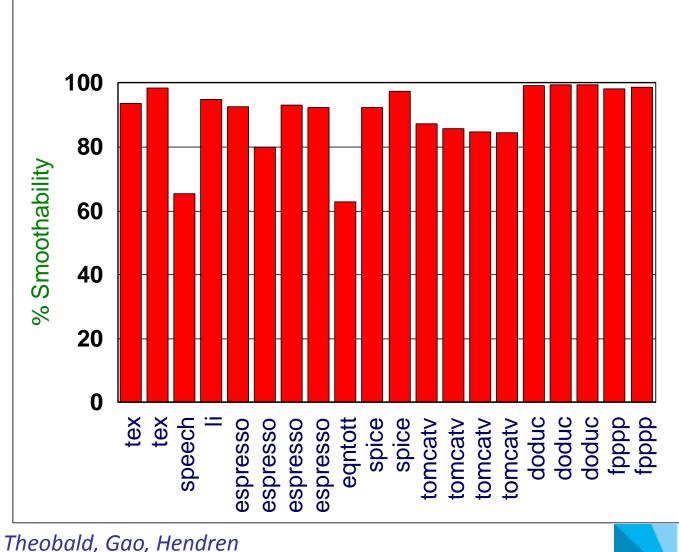


Parallelism > 5000 (Highest Parallelism in any Study)



Oracle Parallelism: Smoothability

- Does high parallelism require unbounded hardware:
 - Can all the parallelism be effectively smoothed out onto finite hardware?
 - And still run in almost as short a time?



Some Efforts to Exploit Coarser-Grain Parallelism

- Wisconsin:
- UIUC, CMU, Stanford:
- UPC:
- Cornell:
- Princeton:

- MultiScalar
- Speculative Multithreading
 - **Kilo Processors**
 - Cherry
 - **DSWP, Commutativity**

And the second secon

Transactional Memory

Exploiting Coarse-Grained Single-Thread Parallelism

- **Q:** Why have we not already exploited this task level parallelism in a single thread?
- A: It is widely separated independent compute often millions of instructions apart.
 - Too hard for a compiler:
 - To generate threads from arbitrary code.
 - To determine all memory aliases.
 - To know full call graph:
 - Indirect method calls
 - Dynamically linked libraries
 - Too big for the largest *instruction window / reorder buffer*.
 - Too hard to predict branches:
 - **90%** chance of reaching of following correct path for a million ins
 - → 99.9999+% individual branch prediction accuracy.

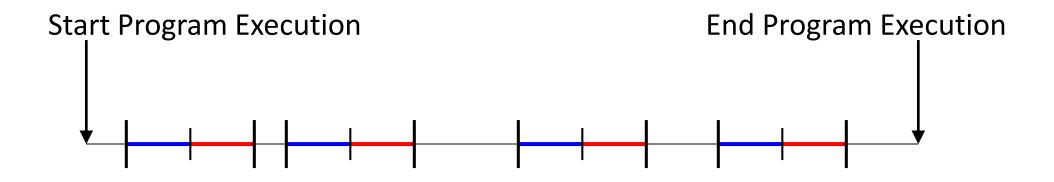
Memory Parallel Regions



Find regions of N instructions that are independent of stores performed in the previous N-instruction region.

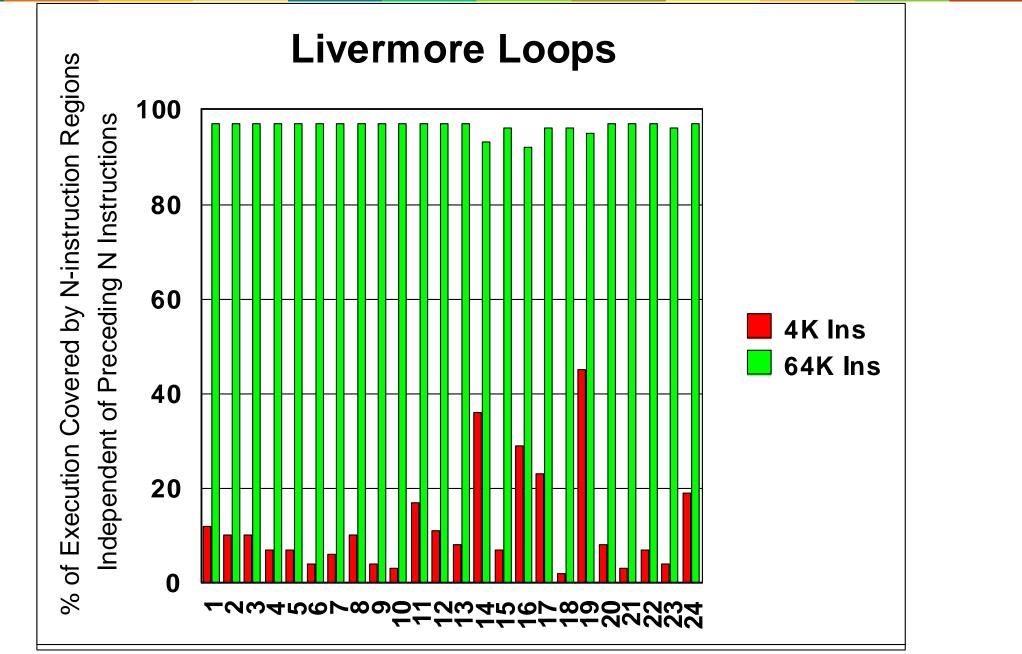
→ Execute Blue and Red Regions in Parallel

Covering Execution with Memory Parallel Regions

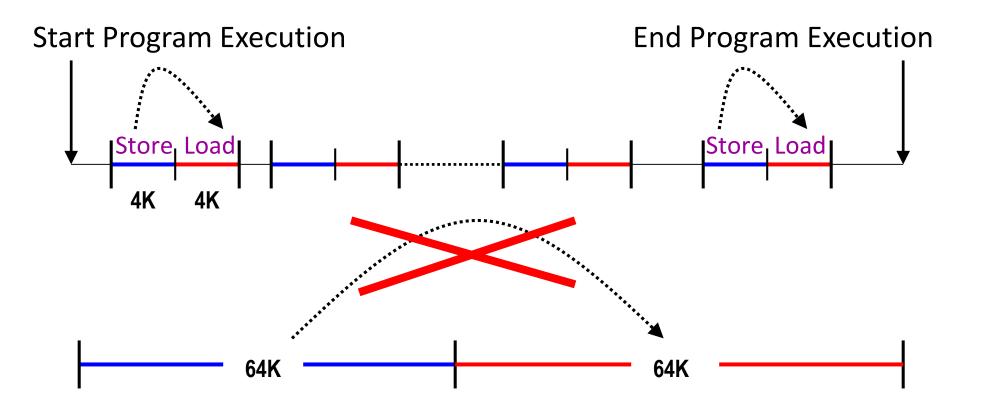


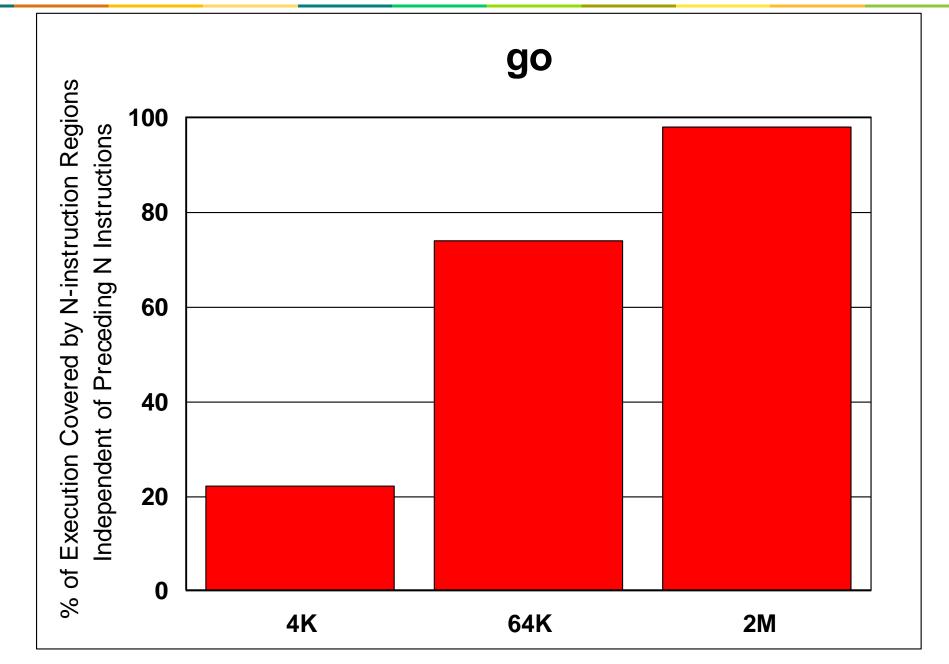
For a given N, how much of execution is covered by independent region pairs?

Dataflow Directions

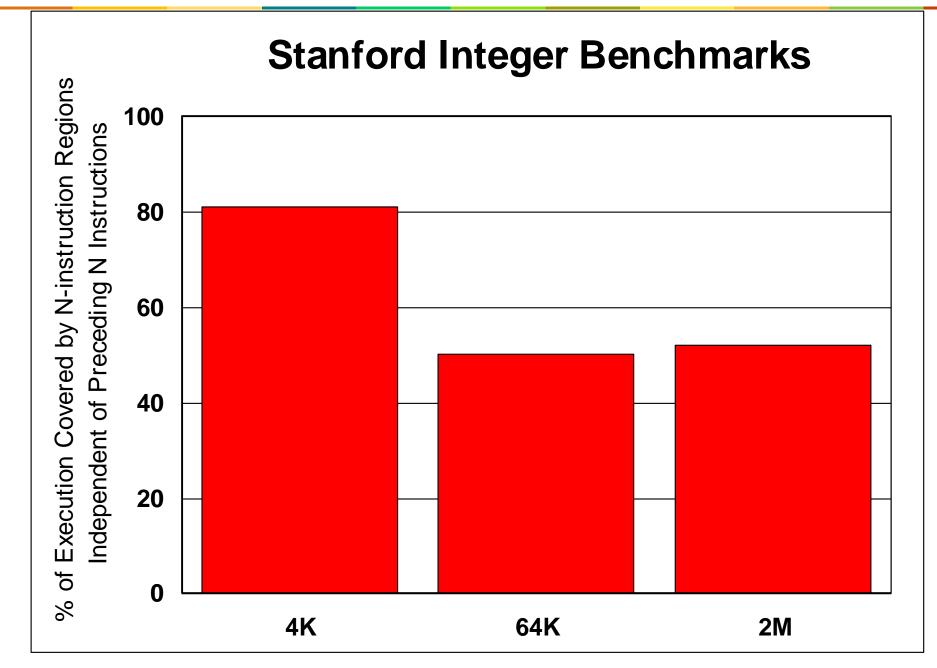


Dependences in 4K vs 64K



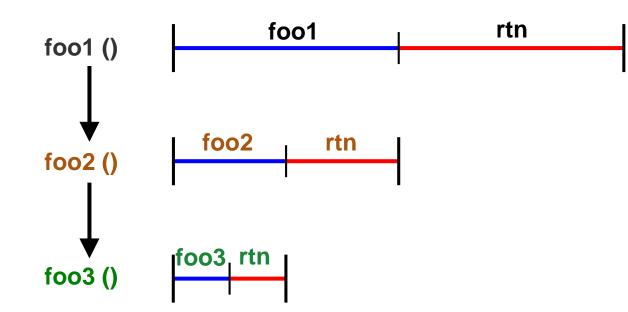


Dataflow Directions



Exploiting Memory Parallel Regions

- 1. Find long running functions.
- **2.** <u>Determine</u> subset of those functions where code at the return point is independent of the results produced by the function.



Combination of hardware capabilities and software tools may be most effective.

- Explicitly pass all state (cumbersome)
- Programmer mental models
- Handling overabundance of parallelism at peak
- Interoperation with other code
- Interaction with non-dataflow I/O
- Applicability to random code
- Memory Footprint
- Wide separation of parallelism in code
 - Not tractable for compilers or processors

Compiler analysis typically ignorant of semantic function

DSLs – Domain Specific Languages

 $\mathbf{2}$

3

4

5

6

8 9

10

11

12

13

 $\frac{14}{15}$

16

 $\frac{17}{18}$

19

20

 $\frac{21}{22}$

23

24

 $\frac{25}{26}$

27

28

29

30

31 32 33

 $\frac{34}{35}$

36

37

Example – PLDI'2018:

Spatial:

A Language and Compiler for Application Accelerators

D Koeplinger, M Feldman, R Prabhakar, Y Zhang,
 S Hadjis, R Fiszel, T Zhao, L Nardi, A Pedram,
 C Kozyrakis, K Olukotun

Good, but compiler still does not know that this code implements **merge_sort**

- Global optimizations easy to miss
- No opportunity to substitute another type of sort

```
def Merge_Sort(offchip: DRAM[Int], offset: Int) {
  val N = 1024 // Static size of chunk to sort
 Accel {
    val data = SRAM[Int](N)
    data load offchip(offset::N+offset)
    FSM(1) \{m = > m < N\} \{m = >
      Foreach(0 until N by 2*m) { i =>
        val lower = FIFO[Int] (N/2).reset()
        val upper = FIFO[Int] (N/2).reset()
        val from = i
                   = \min(i + 2 \star m - 1, N) + 1
        val end
        // Split data into lower and upper FIFOs
        Foreach(from until i + m) { x =>
          lower.eng(data(x))
        Foreach(i + m until end) { y =>
          upper.eng(data(y))
        // Merge of the two FIFOs back into data
        Foreach(from until end) { k =>
          val low = lower.peek() // Garbage if empty
          val high = upper.peek() // Garbage if empty
          data(k) =
            if
                                     upper.deq()
                     (lower.empty) {
            else if (upper.empty) {
                                     lower.deq()
            else if (low < high)</pre>
                                      lower.deq()
            else
                                      upper.deq()
    \{ m => 2 \star m / \star Next state logic \star / \}
    offchip(offset::offset+N) store data
```

Higher-Level Data Types and Algorithms as First-Class Objects

- Example: Repeated Insertion to a List, with sort immediately after each insertion
 - List-insert / Sort
 - List-insert / Sort
 - List-insert / Sort
- But knowing the semantics of List, Insert, and Sort allows optimization
 - List-insert
 - List-insert
 - List-insert
 - Sort
- Many higher-level constructs could be represented to compiler:
 - Lists, trees, graphs, heaps, stacks, etc
 - Dates and times
 - Images

But What if Rewriting Large Amounts of Code is not an Option?

Dataflow Directions The Stack: Benefit, Bane, and Exploit

- To address complexity we created runtime stack
 - Layer below provides abstraction to layer above

Applications

Languages / Programming Models

Libraries

Application Server/ Middleware

Tools Compilers

Language Runtime

Operating System

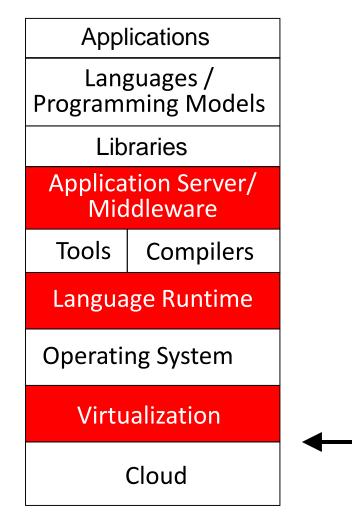
Virtualization

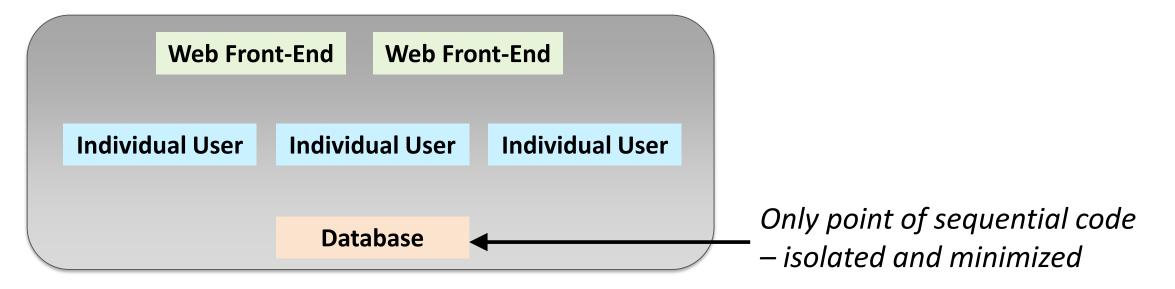
Cloud

• Widely successful

- Hides most details of each layer
- Enables componentization
 - Ability to change components at layer \rightarrow Incentive for improvement
- Limitations
 - More layers accrue over time (e.g. JVM, App server, hypervisor)
 - 1 level of indirection → Brilliance
 - N levels → ???
 - Thin interfaces between layers promote
 - Lack of synergy
 - Duplicate functionality
 - AppServer, JVM, OS, Virtualization, HW have thread abstraction

Here



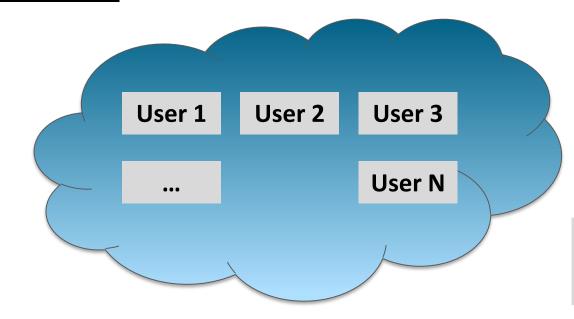


- Separate, Isolated VMs
- Processes / Containers

Result – Dataflow:

- Scaleout Model with seamless scale-up and scale-down as degree of parallelism varies
- Arbitrary number of independent program counters
- Varying use of processors as parallelism varies
- Isolated Data

Dataflow Directions Cloud == Dataflow?



Each user can be dataflow within themselves

• As in previous slide

User = Broad set of services and tasks controlled by one entity

Result – Dataflow:

- Lots of program counters
- Lots of processors
- No global state across users
- Run as data / input becomes available

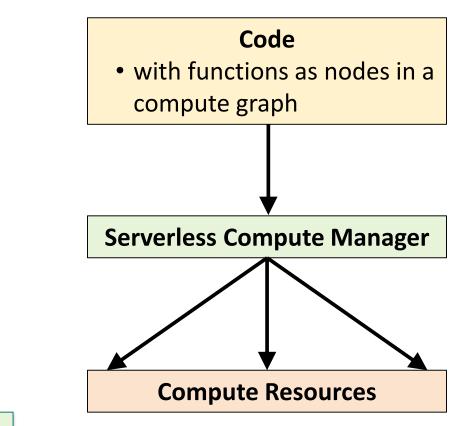
Dataflow Directions Cloud == Dataflow?

CASE 3: Serverless Computing as Dataflow

- Amazon Lambda
- Google Cloud Platform Functions
- Microsoft Azure
- IBM Cloud Functions
- Openwhisk
- Kubeless

Result – Dataflow:

- Run as data / input becomes available
- Lots of program counters
- Lots of processors
- No global state across users



...

Is cloud an unappreciated commercial success for dataflow and extreme scale?

Lessons: Dataflow and Cloud

- There has long been debate about the proper granularity to express dataflow ops
- Cloud shows one case where coarse-grain allows a massive dataflow approach to succeed commercially and attract a vast set of users
 - As programmers
 - As users of the end-result
- What lessons from cloud can be applied elsewhere in dataflow?
 - Need easy-to-use frameworks
 - Need massive independent parallel threads on which to run
 - Need massive hardware processing resources
 - Need coordination by centralized mechanisms to be too complex to implement

Dataflow and Security

Good

No pointers

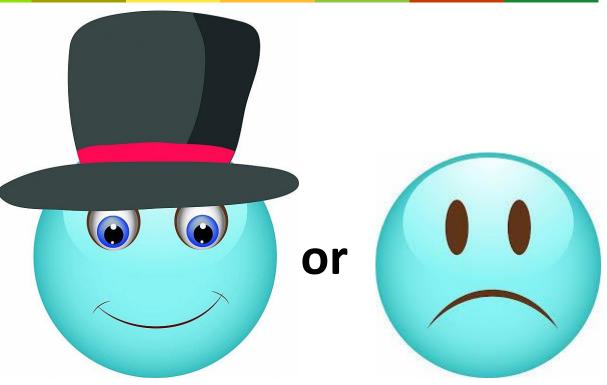
No buffer over-run issues

Bad

- Side channels like Spectre and Meltdown seem open

Indifferent

- Phishing and Spear-phishing
- Dumpster diving



Conclusions

Worst of Times

 No commercial takeoff of traditional dataflow despite unprecedented compute resources, new computing paradigms, more programmers than ever, more languages than ever

Best of Times

- Major tenets of dataflow have been embraced commercially in cloud at extreme scale
- They are succeeding

Next Steps

- What do we learn from those successes?
- How do we amplify them?
- What other fields are ripe?

