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Dataflow:  Best of Times or Worst of Times?

DFM’2019:
Dataflow Model Workshop 2019

Erik Altman

Research
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Talk Theme

It was the best of times, it was the worst of times.

Charles Dickens, “A Tale of Two Cities”
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Caveats

▪ It has been many years since I have devoted significant research effort to dataflow models

▪ Views here are of a fan looking from a distance with nostalgia and hope
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Aside

July 19, 2019
50 years less a day from the first moon landing

If we can put a person on the moon, can we 
make dataflow succeed?
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Dataflow Popularity
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Citations over Time

– ISCA’1975:  Jack B. Dennis and David P. Misunas

– “A preliminary architecture for a basic data-flow processor”

– https://dl.acm.org/citation.cfm?id=642111

https://dl.acm.org/citation.cfm?id=642111
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Dataflow Popularity
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Citations over Time

– ISCA’1975:  Jack B. Dennis and David P. Misunas

– “A preliminary architecture for a basic data-flow processor”

– https://dl.acm.org/citation.cfm?id=642111

https://dl.acm.org/citation.cfm?id=642111
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Early Dataflow Success:  Tomasulo / Reorder Buffers

https://www.archive.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture10-ooo-afterlecture.pdf

Onur Mutlu

https://www.archive.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:lectures:onur-740-fall11-lecture10-ooo-afterlecture.pdf
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# of Processors in Top500 Systems
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Why has dataflow not emerged as the dominant paradigm for Top500 workloads?

Max # of Cores

Min # of Cores
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Successful Software Transitions

▪ Spreadsheets: Visicalc → Lotus 123 →Microsoft Excel

▪Word Processors: Wang →Wordperfect →Word

▪Browsers: Netscape / Mozilla → Internet Explorer → Chrome / Safari



10 © 2019 IBM Corporation
AEL!247$dvq-8718

Dataflow Directions

AEL!247$dvq-8718

Language Popularity

C Flavors:   28%  

Fortran #27:  0.5%

Lisp #32:  0.4%

Haskell #45:  0.2%

https://www.tiobe.com/tiobe-index

No major niche 
where dataflow 

dominates!
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Do Programmers Care about Performance?

C

C++

Java

Python

Ruby

Javascript

Lua

Fannkuch Fasta Meteor PiDigits Spectral
Norm

AverageBinary
trees

Mandel
brot

D. Edelsohn, M. Gschwind, J. Moreira, P. Nagpurkar, M. Valluri

C

Lua

Java

Python

Ruby

Java 
script
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The Challenge of Parallelism

“When we start talking about parallelism and ease of 

use of truly parallel computers, we're talking about a 

problem that's as hard as any that computer 

science has faced. 

I would be panicked if I were in industry.”

John Hennessy

Turing Laureate

CS Professor and President Emeritus, Stanford

Author – Best-selling Computer Architecture textbook

Chair – Alphabet / Google
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Popularity is Essential

▪“He who makes the most silicon wins”
–Bob Colwell



14 © 2019 IBM Corporation
AEL!247$dvq-8718

Dataflow Directions

AEL!247$dvq-8718

Killer Apps

▪ Java: JEE and WebSphere-like middleware

▪ C: Operating systems, Realtime, IoT

▪ Python: Deep Learning Frameworks

▪ Fortran: HPC

▪ Lisp: Symbolic AI

▪ PCs: Spreadsheets, Word Processing

▪ Smartphones: Texting, Pictures, Map Guidance, Social Networks, News

▪What is the dataflow killer app?
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Who is the target audience for Dataflow?

▪ All programmers

▪ HPC programmers

▪ DSP programmers

▪ Data scientists

▪ Deep learning algorithm developers

▪ Other domains
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What tasks can dataflow make easier?

▪Exploiting parallelism

▪Maintainability
– Explicit dependences
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Example of Challenge 

The Diary of a Datum:
An Approach to Modeling Runtime Complexity in Framework-Based Applications

• Nick Mitchell, Gary Sevitsky, Harini Srinivasan
• Workshop on Library-Centric Software Design, San Diego, CA, 2005

10,000+ instructions
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Inefficiency and Intractability
What compiler can analyze all these steps and parallelize them – and/or do dead code elimination?
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Some Additional Dataflow Challenges

▪ Explicitly pass all state (cumbersome)

▪ Programmer mental models

▪ Handling overabundance of parallelism at peak

▪ Interoperation with other code

▪ Interaction with non-dataflow I/O

▪ Applicability to random code

▪Memory Footprint

▪Wide separation of parallelism in code 

– Not tractable for compilers or processors

▪ Compiler analysis typically ignorant of semantic function
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High “Oracle Parallelism”

▪Many studies have found large amounts of parallelism, even in integer apps like SPECint:

▪Machine with unbounded resources and an oracle for branch prediction and memory 
disambiguation could execute hundreds or thousands of instructions per cycle.

Dynamic Trace of Program Execution

Time Program 
End

Program 
Start

Dynamic Trace scheduled on unbounded oracle machine.

•1992, Lam and Wilson

•1992, Theobald et al

•1993, Rauchwerger et al

•1998, Postiff et al

•1999, Ebcioglu et al

•1970, Tjaden and Flynn

•1972, Riseman and Foster

•1981, Nicolau and Fisher

•1991, Wall

•1991, Butler et al

•1992, Austin and Sohi
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Natural Structure → Parallelism

• Any long running program, must have the following structure at some level:

while (end_cond_not_met) {
task_1 ();
task_2 ();
…
task_n ();

}

1. Tasks 1-n are often largely independent of each other, or

2. Task q at iteration i is independent of task q at iteration i+1.
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Example

LLVM (mostly) compiles one function at a time.

– Compilation of each function is largely independent.

– A skilled programmer could parallelize LLVM to compile functions in parallel.

– Better to perform this parallelization:

• Automatically or with tools providing guidance.

• For any program, not just LLVM.
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When good techniques from many 
researchers are applied: 

→ Almost all apps appear to have 
more than 500-way parallelism.
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“Low” Parallelism only 

in limited apps .

These estimates are 

probably far too low.
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High degree of parallelism 
in wide variety of apps.
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Parallelism > 500 even 
for irregular integer apps:

li, gcc, compress
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Highest Parallelism in Numerical 
Applications:

5,800 - 188,000 IPC
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Oracle Parallelism:  Smoothability

▪ Does high parallelism require 
unbounded hardware:

– Can all the parallelism be effectively 
smoothed out onto finite hardware?

– And still run in almost as short a time?
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Some Efforts to Exploit Coarser-Grain Parallelism

▪Wisconsin: MultiScalar

▪UIUC, CMU, Stanford: Speculative Multithreading

▪UPC:   Kilo Processors

▪Cornell:  Cherry

▪Princeton:  DSWP, Commutativity

▪<Many>: Transactional Memory

+ Many Others
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Exploiting Coarse-Grained Single-Thread Parallelism

Q: Why have we not already exploited this task level parallelism in a single thread?

A: It is widely separated – independent compute often millions of instructions apart.
– Too hard for a compiler:

• To generate threads from arbitrary code.

• To determine all memory aliases.

• To know full call graph:

– Indirect method calls

– Dynamically linked libraries

– Too big for the largest instruction window / reorder buffer.

– Too hard to predict branches:

• 90% chance of reaching of following correct path for a million ins 
➔ 99.9999+% individual branch prediction accuracy.
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Memory Parallel Regions

N InstructionsN Instructions

Store LoadLoadStoreLoadStore

Find regions of N instructions that are independent of stores 
performed in the previous N-instruction region.

➔ Execute Blue and Red Regions in Parallel
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Covering Execution with Memory Parallel Regions

For a given N, how much of execution is covered by 
independent region pairs?

Start Program Execution End Program Execution
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Dependences in 4K vs 64K

Start Program Execution End Program Execution

LoadStore

4K 4K

64K 64K

LoadStore
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4K 64K 2M
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Exploiting Memory Parallel Regions

1. Find long running functions.

2. Determine subset of those functions where code at the return point is independent 
of the results produced by the function.

Combination of hardware 
capabilities and software 
tools may be most effective.

foo1 ()

foo2 ()

foo3 ()

foo1 rtn

foo2 rtn

foo3 rtn
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Some Additional Dataflow Challenges

▪ Explicitly pass all state (cumbersome)

▪ Programmer mental models

▪ Handling overabundance of parallelism at peak

▪ Interoperation with other code

▪ Interaction with non-dataflow I/O

▪ Applicability to random code

▪Memory Footprint

▪Wide separation of parallelism in code 

– Not tractable for compilers or processors

▪ Compiler analysis typically ignorant of semantic function
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DSLs – Domain Specific Languages

Example – PLDI’2018:
Spatial: 
A Language and Compiler for Application Accelerators
• D Koeplinger, M Feldman, R Prabhakar, Y Zhang,           

S Hadjis, R Fiszel, T Zhao, L Nardi, A Pedram, 
C Kozyrakis, K Olukotun

Good, but compiler still does not know 
that this code implements merge_sort

• Global optimizations easy to miss
• No opportunity to substitute another 

type of sort
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Higher-Level Data Types and Algorithms as First-Class Objects
▪ Example:  Repeated Insertion to a List, with sort immediately after each insertion

– List-insert / Sort

– List-insert / Sort

– List-insert / Sort

▪ But knowing the semantics of List, Insert, and Sort allows optimization

– List-insert

– List-insert

– List-insert

– Sort

▪Many higher-level constructs could be represented to compiler:

– Lists, trees, graphs, heaps, stacks, etc

– Dates and times

– Images

– …
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But What if Rewriting Large Amounts of Code is not an Option?
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The Stack:  Benefit, Bane, and Exploit

• To address complexity we created runtime stack
– Layer below provides abstraction to layer above

• Widely successful
– Hides most details of each layer
– Enables componentization

• Ability to change components at layer → Incentive for improvement

• Limitations
– More layers accrue over time (e.g. JVM, App server, hypervisor)

• 1 level of indirection➔ Brilliance
• N levels ➔ ???

– Thin interfaces between layers promote 
• Lack of synergy
• Duplicate functionality

– AppServer, JVM, OS, Virtualization, HW have thread abstraction

Operating System

Tools

Cloud

Languages / 
Programming Models

Libraries

Language Runtime

Virtualization

Language Runtime

Compilers

Applications

Application Server/ 
Middleware
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The Stack:  Where to Focus?

Here

Operating System

Tools

Cloud

Languages / 
Programming Models

Libraries

Language Runtime

Virtualization

Language Runtime

Compilers

Applications

Application Server/ 
Middleware
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Cloud == Dataflow?

Result – Dataflow:

▪ Scaleout Model with seamless scale-up and scale-down as degree of parallelism varies

▪ Arbitrary number of independent program counters

▪ Varying use of processors as parallelism varies

▪ Isolated Data

Web Front-End

Individual User

Web Front-End

Individual User Individual User

Database

Single Enterprise in Cloud handling many individual users.
• Separate, Isolated VMs
• Processes / Containers

CASE 1:

Only point of sequential code 
– isolated and minimized
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Cloud == Dataflow?

User 1 User 2 User 3

User N

Broad Set of Enterprises in Cloud

• Lots of program counters
• Lots of processors
• No global state across users
• Run as data / input becomes available

CASE 2:

…

Each user can be dataflow within themselves
• As in previous slide

Result – Dataflow:

User = Broad set of services and tasks 
controlled by one entity
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▪ Amazon Lambda

▪ Google Cloud Platform – Functions

▪Microsoft Azure

▪ IBM Cloud Functions

▪ Openwhisk

▪ Kubeless

▪ …

Cloud == Dataflow?

CASE 3: Serverless Computing as Dataflow

Code
• with functions as nodes in a 

compute graph

Serverless Compute Manager

Compute Resources

• Run as data / input becomes available
• Lots of program counters
• Lots of processors
• No global state across users

Result – Dataflow:



47 © 2019 IBM Corporation
AEL!247$dvq-8718

Dataflow Directions

AEL!247$dvq-8718

Is cloud an unappreciated commercial 
success for dataflow and extreme scale?
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Lessons:  Dataflow and Cloud

▪ There has long been debate about the proper granularity to express dataflow ops

▪ Cloud shows one case where coarse-grain allows a massive dataflow approach to 
succeed commercially and attract a vast set of users

– As programmers

– As users of the end-result

▪What lessons from cloud can be applied elsewhere in dataflow?

– Need easy-to-use frameworks

– Need massive independent parallel threads on which to run

– Need massive hardware processing resources

– Need coordination by centralized mechanisms to be too complex to implement
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Dataflow and Security

▪ Good

– No pointers

– No buffer over-run issues

▪ Bad

– Side channels like Spectre and Meltdown seem open

▪ Indifferent

– Phishing and Spear-phishing

– Dumpster diving

or
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Conclusions

▪Worst of Times

– No commercial takeoff of traditional dataflow despite unprecedented compute resources, 
new computing paradigms, more programmers than ever, more languages than ever

▪ Best of Times

– Major tenets of dataflow have been embraced commercially in cloud at extreme scale

– They are succeeding

▪ Next Steps

– What do we learn from those successes?

– How do we amplify them?

– What other fields are ripe?


