DFM’2019 PANEL

Execution and Programming Models: Extreme Scale and Beyond

Erik Altman

The 8th IEEE International Workshop on Data Flow
Models and Extreme-Scale Computing

QUESTION I
PROGRAM EXECUTION MODEL (PXM) VS PROGRAMMING MODEL (PM)

What is the main distinction (as well as relation) between the concepts of PXM vs PM ?
PM is the model in which the programmer thinks

PXM is the model run by the machine

PM defines higher-level abstractions than PXM

QUESTION I
PROGRAM EXECUTION MODEL (PXM) VS PROGRAMMING MODEL (PM)

What is the main distinction (as well as relation) between the concepts of PXM vs PM ?

Two pairs of definitions are commonly used outside dataflow:
1. PM = High-Level Language @ PXM = Assembly Language
2. PM = ISA PXM = Microarchitecture

The (1) — (2) distinction is important mainly for machine families (x86, ARM, IBM Z, etc)
Dataflow has not had the commercial success for intergenerational compatibility to be an issue @

Dataflow: PM = High-Level Language PXM = Microarchitecture

QUESTION I
PROGRAM EXECUTION MODEL (PXM) VS PROGRAMMING MODEL (PM)

What is the main distinction (as well as relation) between the concepts of PXM vs PM ?

Dataflow Example from CAPSL / University of Delaware:
1. What Are Codelets?

A codelet is a (usually short) sequence of machine instructions that executes until completion.

2. The Codelet Firing Rule

A codelet can fire if all of its dependencies are satisfied.

3. The Codelet Abstract Machine Model
Describes the mechanisms on which codelets rely to be allocated, stored, and scheduled.
Is meant to reflect how future extreme-scale systems will look.
We picture a hierarchical machine with compute nodes linked by some kind of interconnect.

PM =(1)+(2)
PXM = (3) o

https://www.capsl.udel.edu/codelets.shtml

https://www.capsl.udel.edu/codelets.shtml

QUESTION 2
SYSTEM-LEVEL APl AND FINE-GRAIN PARALLELISM

There is a heated discussion and debate on the following vision:

“In order to effectively and efficiently exploit the vast parallelism (both at coarse-grain
and fine-grain levels) at extreme-scale — we need to break some traditional abstractions
at both the PXM and PM levels.

This is essential in the design of a systems-level API for future extreme-scale parallel
computing systems.”

What is your opinion ?

QUESTION 2
SYSTEM-LEVEL APl AND FINE-GRAIN PARALLELISM

/

-

To exploit the vast parallelism at extreme-scale — we need to break some
traditional abstractions at both the PXM and PM levels.

What is your opinion ?

~

Ease of programming wins

Weak vs Strong Consistency:

Weak may get better performance, but few people can or want to program to it.

Not sure we need to “break” traditional abstractions as much as devise new ones. Examples:

Map-Reduce / Hadoop / Spark enabled massive parallelism and easy programming.

At the cost of efficiency in some instances.

Ideas in my talk on “Higher-Level Data Types and Algorithms as First-Class Objects”.

QUESTION 2
SYSTEM-LEVEL APl AND FINE-GRAIN PARALLELISM

" To exploit the vast parallelism at extreme-scale — we need to break some h
traditional abstractions at both the PXM and PM levels.
. What is your opinion ?)

Extreme-scale has always had strong focus on efficiency:
Machines are expensive one-offs
- They require maximum utilization to justify their acquisition cost.

Those economics drive different tradeoffs in ease-of-use than the commercial market.

Is it time for a more COTS-based approach with a goal of getting extreme-scale to adopt it?
1990s Examples: RAID
NOW — Network of Workstations 0

QUESTION 3
ON THE PROGRAMMABILITY OF DATAFLOW MODELS

There have been significant concerns that
“The dataflow/codelet community has always claimed their model is more productive;

However more recent work with task parallelism and the recent OCR project tried working
with these types of models, and the scientific application community actually found them
less productive.”

What is your observation/opinion ?

QUESTION 3
ON THE PROGRAMMABILITY OF DATAFLOW MODELS

The scientific application community actually found [OCR / dataflow] less productive.

What is your observation/opinion ?

People are more productive in familiar environments.

Dataflow / OCR is less familiar to most than traditional approaches like MPIl and OpenMP.

May 2019

w o] ~ [¢2] w - w [\S] -

May 2018

~ w e} (4] (2] - w [\S] -

=y = —- = -
(9] (o1} r o w

-
o

Change

«

Programming Language

Java

o]

C++

Python

Visual Basic .NET
C#

JavaScript

saL

PHP

Assembly language
Objective-C
Delphi/Object Pascal
Perl

MATLAB

Ruby

Ratings
16.005%
14.243%
8.095%
7.830%
5.193%
3.984%
2.690%
2.555%
2.489%
1.816%
1.626%
1.406%
1.394%
1.366%

1.343%

Change

-0.38%

+0.24%

+0.43%

+2.64%

+1.07%

-0.42%

-0.23%

+0.57%

-0.83%

+0.82%

+0.69%

+0.39%

+0.48%

+0.44%

+0.16%

Virtually all the most popular languages are old:

Java, C, C++, Python, Visual Basic, C#,
JavaScript, SQL, PHP, Assembly, Objective-C,
Pascal, Perl, MATLAB, Ruby

https://www.tiobe.com/tiobe-index o

https://www.tiobe.com/tiobe-index

QUESTION 3
ON THE PROGRAMMABILITY OF DATAFLOW MODELS

The scientific application community actually found [OCR / dataflow] less productive.

What is your observation/opinion ?

It would also be interesting to see productivity comparisons of students.

Students previously unfamiliar with historical techniques or dataflow / OCR

But other programming paradigms have gained popularity = Ties back to Question 2 Response:
Not sure we need to “break” traditional abstractions as much as devise new ones:
a la Map-Reduce / Hadoop / Spark, RAID, and NOW

Have we been too constrained and low-level in how we expose dataflow for extreme scale?

