
DFM’2019 PANEL

Execution and Programming Models:  Extreme Scale and Beyond

Erik Altman



QUESTION 1

PROGRAM EXECUTION MODEL (PXM) VS PROGRAMMING MODEL (PM)

What is the main distinction (as well as relation) between the concepts of PXM vs PM ?

• PM is the model in which the programmer thinks

• PXM is the model run by the machine

• PM defines higher-level abstractions than PXM

2



QUESTION 1

PROGRAM EXECUTION MODEL (PXM) VS PROGRAMMING MODEL (PM)

What is the main distinction (as well as relation) between the concepts of PXM vs PM ?

• Two pairs of definitions are commonly used outside dataflow:

1. PM = High-Level Language PXM = Assembly Language 

2. PM = ISA PXM = Microarchitecture

• The (1) – (2) distinction is important mainly for machine families (x86, ARM, IBM Z, etc)

• Dataflow has not had the commercial success for intergenerational compatibility to be an issue 

• Dataflow: PM = High-Level Language PXM = Microarchitecture

3



QUESTION 1

PROGRAM EXECUTION MODEL (PXM) VS PROGRAMMING MODEL (PM)

What is the main distinction (as well as relation) between the concepts of PXM vs PM ?

Dataflow Example from CAPSL / University of Delaware:

1. What Are Codelets?

• A codelet is a (usually short) sequence of machine instructions that executes until completion.

2. The Codelet Firing Rule

• A codelet can fire if all of its dependencies are satisfied. 

3. The Codelet Abstract Machine Model

• Describes the mechanisms on which codelets rely to be allocated, stored, and scheduled. 

• Is meant to reflect how future extreme-scale systems will look.

• We picture a hierarchical machine with compute nodes linked by some kind of interconnect.

• PM = (1) + (2)

• PXM = (3)
4

https://www.capsl.udel.edu/codelets.shtml

https://www.capsl.udel.edu/codelets.shtml


QUESTION 2

SYSTEM-LEVEL API AND FINE-GRAIN PARALLELISM

• There is a heated discussion and debate on the following vision:  

• “In order to effectively and efficiently exploit the vast parallelism (both at coarse-grain 
and fine-grain levels) at extreme-scale – we need to break some traditional abstractions 
at both the PXM and PM levels. 

• This is essential in the design of a systems-level API for future extreme-scale parallel 
computing systems.”

• What is your opinion ?

5



QUESTION 2

SYSTEM-LEVEL API AND FINE-GRAIN PARALLELISM

To exploit the vast parallelism at extreme-scale – we need to break some 
traditional abstractions at both the PXM and PM levels. 

What is your opinion ?

Ease of programming wins

• Weak vs Strong Consistency:  

• Weak may get better performance, but few people can or want to program to it.

Not sure we need to “break” traditional abstractions as much as devise new ones. Examples:

• Map-Reduce / Hadoop / Spark enabled massive parallelism and easy programming.

• At the cost of efficiency in some instances.

• Ideas in my talk on “Higher-Level Data Types and Algorithms as First-Class Objects”.
6



QUESTION 2

SYSTEM-LEVEL API AND FINE-GRAIN PARALLELISM

To exploit the vast parallelism at extreme-scale – we need to break some 
traditional abstractions at both the PXM and PM levels. 

What is your opinion ?

Extreme-scale has always had strong focus on efficiency:

• Machines are expensive one-offs 

• → They require maximum utilization to justify their acquisition cost.

• Those economics drive different tradeoffs in ease-of-use than the commercial market.

Is it time for a more COTS-based approach with a goal of getting extreme-scale to adopt it?

• 1990s Examples: RAID

NOW – Network of Workstations 7



QUESTION 3

ON THE PROGRAMMABILITY OF DATAFLOW MODELS

• There have been significant concerns that 

• “The dataflow/codelet community has always claimed their model is more productive;

• However more recent work with task parallelism and the recent OCR project tried working 
with these types of models, and the scientific application community actually found them 
less productive.”  

• What is your observation/opinion ?

8



QUESTION 3

ON THE PROGRAMMABILITY OF DATAFLOW MODELS

The scientific application community actually found [OCR / dataflow] less productive.

What is your observation/opinion ?

• People are more productive in familiar environments.

• Dataflow / OCR is less familiar to most than traditional approaches like MPI and OpenMP.

9https://www.tiobe.com/tiobe-index

Virtually all the most popular languages are old:

Java, C, C++, Python, Visual Basic, C#, 
JavaScript, SQL, PHP, Assembly, Objective-C, 
Pascal, Perl, MATLAB, Ruby

https://www.tiobe.com/tiobe-index


QUESTION 3

ON THE PROGRAMMABILITY OF DATAFLOW MODELS

The scientific application community actually found [OCR / dataflow] less productive.

What is your observation/opinion ?

• It would also be interesting to see productivity comparisons of students.

• Students previously unfamiliar with historical techniques or dataflow / OCR

• But other programming paradigms have gained popularity → Ties back to Question 2 Response:

• Not sure we need to “break” traditional abstractions as much as devise new ones:

• a la Map-Reduce / Hadoop / Spark, RAID, and NOW

• Have we been too constrained and low-level in how we expose dataflow for extreme scale?

10


