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Uintah Background and Acknowledgements    DOE  NSF People

• DOE ASC Strategic Academic Alliance  Program 1998 -2010
• ALCC and Directors Discretionary time awards
• INCITE (4 awards 700M cpu hours in total)
• Argonne , Oak Ridge and NNSA  Facilities
• NNSA PSAAP2 center funding 2014-2020
• Argonne A21 Exascale early science program 
• Sandia Kokkos group and Livermore Hypre Group
• NSF software funding and Peta-Apps 2007- 2015
• NSF XSEDE TACC Blue Waters computer time and facilities
• The 50 or so people  on Uintah and its related projects, since 2003 particularly The Uintah 

“wizards” Steve Parker, Justin Luitjens, Qingyu Meng and Alan Humphrey .
• NNSA PSAAP2 Co PIs Dave Pershing, Phil Smith Valerio Pascucci



Original Dataflow  Sutherland 1966 Swift  Dataflow  System

Linear Algebra DAG 
Dataflow  System

Dataflow Origins and Developments

Vivek Sarkar’s Thesis 1980s



https://www.youtube.com/watch?v=rStVp19tXqk

Asynchronous Many Task Runtime Systems
SC16 Survey by Thomas Sterling 

Darma – Sandia  Labs
Legion – Stanford
Charm++ Illinois 
Uintah  - University  of Utah
STAPL – Texas A & M
OCR  - Rice 
Qthreads – Sandia
LFRIC   - UK met Office
PaRSEC - Tennessee 
StarPU - Barcelona/INRIA
HTGS  - NIST
FleCSI - LANL
HPX   - Indiana / Louisiana                         Many  US activities have some DOE funding

Key features:

Adaptive execution of tasks

Ability to hide communications costs including 
delays 

Ability to address heterogeneity

Task specification may not change as code
ported ,  even though some of runtime does



Scientific Computing Partial Differential Equations 
Dataflows Have a Particular Spatial Structure 

Decomposed onto
Two compute nodes 

Mesh Blocks
With SAME
DataflowsPartial Spatial Domain

Halo Communications 
between mesh blocks

Synchronize-----------------------------------------------
Compute values on core cells
-------------------------------------------------------
Communicate            to update halo values 
--------------------------------------------------------
Compute values on core cells  

Synchronize

Synchronize



ICE is a cell-centered finite volume 
method for Navier Stokes 
equations

MPM is a novel 
method that uses 
particles and nodes  
Cartesian grid used 
as a common frame 
of reference

Uintah ARCHES MPM-ICE-AMR Software

MPM (solids) and ICE (fluids) exchange data several 
times per timestep (not just boundary condition exchange

Arches finite volume combustion code
with a low-Mach number approximation
Particle methods and  LES algorithms



Uintah Asynchronous Many Task (AMT) Approach 2010…

e.g. three compute nodes 12 mesh patches 

Per patch Task Graph Task Graph Task Graph 

In Uintah each mesh patch has its own graph weakly coupled to others
Tasks are typically 50K to 100K flops 



Simulation
Controller

Scheduler

Load
BalancerRuntime System 

ARCHES

PIDX VisIT

MPM ICE

CPUsGPUs 

C++ Compilation  MPI generation

Applications code: about 
800K lines written as tasks in 
Uintah programming model 
form 

Abstract C++ Task 
Graph Form 

Fully automated MPI message 
generation 

Static or Adaptive Execution of 
Tasks 

On specific cores/processors 

Uintah Architecture Overview 



Uintah Programing Model for Stencil  Timestep [Parker 1998]

Unew = Uold
+dt
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PUT  Unew
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Example Stencil 
Task on a patch 

User specifies mesh patches 
halo levels  and connections

Clean separation between physics and CS runtime 
system
Problems specified 15 years ago run on todays 
architectures  with one significant change as we go to 
Exascale we use Kokkos to get nodal performance.



Running Task

Uintah MPI Task Scheduler on a Compute Node 
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MPI Tasks linked to cores. Tasks in MPI DAG execute when ready on that core. 
Uses DAG and Asynchronous MPI execution 
Different DAG execution policies (e.g. most connections first) may not always  
make much difference – the evidence is mixed



NNSA PSAAP2 Existing Simulations of GE  Clean(er)  Coal Boilers
• Large scale turbulent combustion needs mm scale 

grids  10^14 mesh cells 10^15 variables (1000x more 
than now)

• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation 
• LES  closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

60m
• Low Mach number approx. (pressure Poisson solve up to   10^12    

variables. 1M patches 10 B variables
• Radiation via Discrete Ordinates – many hypre solves Mira 

(cpus) or ray tracing Titan (gpus).
• FAST I/O needed PIDX



For fixed mesh calculations Uintah scales for the Boiler 
using MPI Scheduler. 

Discrete Ordinates Radiation
Discrete Ordinates 
Radiation

STENCIL OPS ETC

Linear Solve with

Hypre only 
weak scales 

Standard I/O

PIDX I/O

STENCIL + LINEAR SOLVE

Full physics multi-level GPU-RMCRT 
strong scales on Titan [Thornock, Schmidt Kumar Harman Humphrey]



Improved Accuracy via Scalable Adaptive 
Mesh  Regridding Algorithm

Tiles that contain flags are refined
Simple and easy to parallelize
Levels of patches  independently refined
BVH tree used to find patches 
Very robust and successful. 

(i) Fast space filling curves [Luitjens Thesis 2011]*
(ii) Tiled regular refinement  
(iii) Data assimilation based workload prediction 
and rebalancing.
(iv) Works with Fluid-structure interaction [Qingyu
Meng Thesis 2014]*
and Raytracing radiation [Humphrey Thesis 2019]*

(ii) DYNAMICALLY CHANGES DAG AT DISCRETE TIMES

2D illustration
Refinement 
flags and 
patches

3D Example 

*  Available from http://www.sci.utah.edu/publications

1:8

1:8

1:8

http://www.sci.utah.edu/publications


Fluid Structure Interaction – Some Mesh Patches are Fluids 
and some are Particles. At the interface we need both DAGs

Particles                Particles and Fluid        Fluid Fluid



Deflagration wave moves at 
~400m/s  not  all explosive 
consumed. Detonation  wave 
moves 8500m/s all explosive 
consumed.

NSF funded modeling  of  Spanish Fork 
Accident 8/10/05
Speeding truck with 8000 explosive boosters 
each with 2.5-5.5 lbs of explosive overturned 
and caught fire
Experimental evidence for   a transition from 
deflagration to detonation?

Static  MPI Scheduler 
doesn’t scale



Nodal Shared 
Memory Model 

Unified 
Heterogeneous 

Scheduler & 
Runtime 

[2012]  
Fully Asynchronous 
Since 2012
[Meng and Berzins 
Concurrency 2014]



One compute core 8 mesh patches consider 
bottom 4  inner 2 only need internal information 

External halo 
information

External halo 
information

Start immediately
Wait for external 
halo information

Wait for external 
halo information

Internal halo 
information

Execute tasks 
from whichever 
patch has its tasks 
ready  as this  
avoids  delays –
prioritize tasks 
with external 
communications 

Over decomposition



Complex fluid-structure interaction problem
with adaptive mesh refinement, following a 
moving structure consisting of particles . 
Work varies greatly at each point in the 
mesh e.g.

Benchmark Problem 



DOETitan

DOE Titan 

NSF KRAKEN 

NSF KRAKEN 

Small core counts 

Kraken wins out with Static Approach

Larger core counts 

Titan perhaps wins out with dynamic approach

Nodes are either 12x2.6GHz Kraken
Or                         16x2.2 Ghz Titan



MPM AMR ICE Strong Scaling 
[Qingyu Meng 2014]

Resolution B 
29 Billion particles
4 Billion mesh cells
1.2 Million mesh 
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray 
XE6/XK7 700K+ 
cores

The fluid –structure interaction part of  the problem  gives very unequal workloads per patch  and cannot 
Be predicted in advance . 



Spanish Fork 
Accident

500K mesh patches
1.3 Billion mesh cells
7.8 Billion particles



Initial Results

• Fast AMR for fluid or fluid/structure interaction
• Unified Scheduler implements full asynchrony
• Care is needed with shared memory approach on a 

node 
• No obvious penalty < 100k cores applied to fluids
• Fluid-structure less clear but good scalability
• Since then many changes to runtime system
• Can new runtime work better with fluid-structure 

interaction problems?



Unified Scheduler Improvements DFM’19 Results

• Improve how threads make an MPI Request -removed code with many locks. 
Replaced with one instruction        e.g. halos

• Many of the operations on Uintah::DependencyBatch must be atomic, but do NOT 
need to be sequentially consistent. Relaxed memory ordering, in automated MPI 
engine

• Removed 3-4 usages of std::mutex around std::atomics dealing with external-
and internal-ready task queues. All on critical path from all threads on a shared-
memory node 

• Removed or simplified overly coarse-grained critical sections some of which were 
in the code critical path, e.g., processing of MPI receives, which for 
MPI_THREAD_MULTIPLE, encounters locks within the MPI library – was a 
significant serialization point for code that sees heavy thread traffic



Scheduler Improvements on Titan [Humphrey 2019]
AMR+ICE
Benchmark

Res A Res A Res B Res B

Scheduler
Cores

MPI Unified MPI Unified 

32K 17 14
64K 13 7 71.5 65
128K 10 5 36.7 31
256K 8 3.6 26 17.6

UNIFIED SCHEDULER 
FASTER AND SCALES 
BETTER

Full  Boiler Calculation
With Radiation Raytracing



Static DAG execution with asynchronous communications works for  
I. Standard (even if complex) stencil codes 
II. Models that have modest memory needs and don’t need large shared data
III. Models with predictable workloads 
Dynamic DAG Execution makes possible to: 
(i) Solve problems with large shared memory or memory that is too big for one 

MPI process 
(ii) Solve problems with adaptive unpredictable workloads . AMR, multiple 

physics etc
(iii) Care is needed to manage shared memory on a node and thread MPI 

interactions 

Summary
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