
An Evaluation of An Asynchronous Task-
Based Dataflow Approach for Uintah

Martin Berzins Alan Humphrey

1. Introduction to dataflow and Uintah
2. AMT Uintah, runtimes and programming models
3. Uintah AMR Algorithms and the need for AMT
4. Scalability Evaluation
5. Conclusions

Uintah Background and Acknowledgements DOE NSF People

• DOE ASC Strategic Academic Alliance Program 1998 -2010
• ALCC and Directors Discretionary time awards
• INCITE (4 awards 700M cpu hours in total)
• Argonne , Oak Ridge and NNSA Facilities
• NNSA PSAAP2 center funding 2014-2020
• Argonne A21 Exascale early science program
• Sandia Kokkos group and Livermore Hypre Group
• NSF software funding and Peta-Apps 2007- 2015
• NSF XSEDE TACC Blue Waters computer time and facilities
• The 50 or so people on Uintah and its related projects, since 2003 particularly The Uintah

“wizards” Steve Parker, Justin Luitjens, Qingyu Meng and Alan Humphrey .
• NNSA PSAAP2 Co PIs Dave Pershing, Phil Smith Valerio Pascucci

Original Dataflow Sutherland 1966 Swift Dataflow System

Linear Algebra DAG
Dataflow System

Dataflow Origins and Developments

Vivek Sarkar’s Thesis 1980s

https://www.youtube.com/watch?v=rStVp19tXqk

Asynchronous Many Task Runtime Systems
SC16 Survey by Thomas Sterling

Darma – Sandia Labs
Legion – Stanford
Charm++ Illinois
Uintah - University of Utah
STAPL – Texas A & M
OCR - Rice
Qthreads – Sandia
LFRIC - UK met Office
PaRSEC - Tennessee
StarPU - Barcelona/INRIA
HTGS - NIST
FleCSI - LANL
HPX - Indiana / Louisiana Many US activities have some DOE funding

Key features:

Adaptive execution of tasks

Ability to hide communications costs including
delays

Ability to address heterogeneity

Task specification may not change as code
ported , even though some of runtime does

Scientific Computing Partial Differential Equations
Dataflows Have a Particular Spatial Structure

Decomposed onto
Two compute nodes

Mesh Blocks
With SAME
DataflowsPartial Spatial Domain

Halo Communications
between mesh blocks

Synchronize---
Compute values on core cells

Communicate to update halo values
--
Compute values on core cells

Synchronize

Synchronize

ICE is a cell-centered finite volume
method for Navier Stokes
equations

MPM is a novel
method that uses
particles and nodes
Cartesian grid used
as a common frame
of reference

Uintah ARCHES MPM-ICE-AMR Software

MPM (solids) and ICE (fluids) exchange data several
times per timestep (not just boundary condition exchange

Arches finite volume combustion code
with a low-Mach number approximation
Particle methods and LES algorithms

Uintah Asynchronous Many Task (AMT) Approach 2010…

e.g. three compute nodes 12 mesh patches

Per patch Task Graph Task Graph Task Graph

In Uintah each mesh patch has its own graph weakly coupled to others
Tasks are typically 50K to 100K flops

Simulation
Controller

Scheduler

Load
BalancerRuntime System

ARCHES

PIDX VisIT

MPM ICE

CPUsGPUs

C++ Compilation MPI generation

Applications code: about
800K lines written as tasks in
Uintah programming model
form

Abstract C++ Task
Graph Form

Fully automated MPI message
generation

Static or Adaptive Execution of
Tasks

On specific cores/processors

Uintah Architecture Overview

Uintah Programing Model for Stencil Timestep [Parker 1998]

Unew = Uold
+dt

*F(Uold,Uhalo)
N

etw
ork

Old Data
Warehouse
on a node GET Uold

Uhalo

Halo
receives
Uhalo

MPI

New Data
Warehouse
on a node

PUT Unew

Halo sends

Example Stencil
Task on a patch

User specifies mesh patches
halo levels and connections

Clean separation between physics and CS runtime
system
Problems specified 15 years ago run on todays
architectures with one significant change as we go to
Exascale we use Kokkos to get nodal performance.

Running Task

Uintah MPI Task Scheduler on a Compute Node

N
etw

ork
Data

Warehous
e

PUT

GET

Running Task

Running Task
completed task

Task Queue Controller

completed task

External Data
Ready

Worker
Threads

Ready task

sends

sends

receive
s

Task
Graph

MPI Tasks linked to cores. Tasks in MPI DAG execute when ready on that core.
Uses DAG and Asynchronous MPI execution
Different DAG execution policies (e.g. most connections first) may not always
make much difference – the evidence is mixed

NNSA PSAAP2 Existing Simulations of GE Clean(er) Coal Boilers
• Large scale turbulent combustion needs mm scale

grids 10^14 mesh cells 10^15 variables (1000x more
than now)

• Structured, high order finite-volume discretization
• Mass, momentum, energy conservation
• LES closure, tabulated chemistry
• PDF mixing models
• DQMOM (many small linear solves)
• Uncertainty quantification

60m
• Low Mach number approx. (pressure Poisson solve up to 10^12

variables. 1M patches 10 B variables
• Radiation via Discrete Ordinates – many hypre solves Mira

(cpus) or ray tracing Titan (gpus).
• FAST I/O needed PIDX

For fixed mesh calculations Uintah scales for the Boiler
using MPI Scheduler.

Discrete Ordinates Radiation
Discrete Ordinates
Radiation

STENCIL OPS ETC

Linear Solve with

Hypre only
weak scales

Standard I/O

PIDX I/O

STENCIL + LINEAR SOLVE

Full physics multi-level GPU-RMCRT
strong scales on Titan [Thornock, Schmidt Kumar Harman Humphrey]

Improved Accuracy via Scalable Adaptive
Mesh Regridding Algorithm

Tiles that contain flags are refined
Simple and easy to parallelize
Levels of patches independently refined
BVH tree used to find patches
Very robust and successful.

(i) Fast space filling curves [Luitjens Thesis 2011]*
(ii) Tiled regular refinement
(iii) Data assimilation based workload prediction
and rebalancing.
(iv) Works with Fluid-structure interaction [Qingyu
Meng Thesis 2014]*
and Raytracing radiation [Humphrey Thesis 2019]*

(ii) DYNAMICALLY CHANGES DAG AT DISCRETE TIMES

2D illustration
Refinement
flags and
patches

3D Example

* Available from http://www.sci.utah.edu/publications

1:8

1:8

1:8

http://www.sci.utah.edu/publications

Fluid Structure Interaction – Some Mesh Patches are Fluids
and some are Particles. At the interface we need both DAGs

Particles Particles and Fluid Fluid Fluid

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of Spanish Fork
Accident 8/10/05
Speeding truck with 8000 explosive boosters
each with 2.5-5.5 lbs of explosive overturned
and caught fire
Experimental evidence for a transition from
deflagration to detonation?

Static MPI Scheduler
doesn’t scale

Nodal Shared
Memory Model

Unified
Heterogeneous

Scheduler &
Runtime

[2012]
Fully Asynchronous
Since 2012
[Meng and Berzins
Concurrency 2014]

One compute core 8 mesh patches consider
bottom 4 inner 2 only need internal information

External halo
information

External halo
information

Start immediately
Wait for external
halo information

Wait for external
halo information

Internal halo
information

Execute tasks
from whichever
patch has its tasks
ready as this
avoids delays –
prioritize tasks
with external
communications

Over decomposition

Complex fluid-structure interaction problem
with adaptive mesh refinement, following a
moving structure consisting of particles .
Work varies greatly at each point in the
mesh e.g.

Benchmark Problem

DOETitan

DOE Titan

NSF KRAKEN

NSF KRAKEN

Small core counts

Kraken wins out with Static Approach

Larger core counts

Titan perhaps wins out with dynamic approach

Nodes are either 12x2.6GHz Kraken
Or 16x2.2 Ghz Titan

MPM AMR ICE Strong Scaling
[Qingyu Meng 2014]

Resolution B
29 Billion particles
4 Billion mesh cells
1.2 Million mesh
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray
XE6/XK7 700K+
cores

The fluid –structure interaction part of the problem gives very unequal workloads per patch and cannot
Be predicted in advance .

Spanish Fork
Accident

500K mesh patches
1.3 Billion mesh cells
7.8 Billion particles

Initial Results

• Fast AMR for fluid or fluid/structure interaction
• Unified Scheduler implements full asynchrony
• Care is needed with shared memory approach on a

node
• No obvious penalty < 100k cores applied to fluids
• Fluid-structure less clear but good scalability
• Since then many changes to runtime system
• Can new runtime work better with fluid-structure

interaction problems?

Unified Scheduler Improvements DFM’19 Results

• Improve how threads make an MPI Request -removed code with many locks.
Replaced with one instruction e.g. halos

• Many of the operations on Uintah::DependencyBatch must be atomic, but do NOT
need to be sequentially consistent. Relaxed memory ordering, in automated MPI
engine

• Removed 3-4 usages of std::mutex around std::atomics dealing with external-
and internal-ready task queues. All on critical path from all threads on a shared-
memory node

• Removed or simplified overly coarse-grained critical sections some of which were
in the code critical path, e.g., processing of MPI receives, which for
MPI_THREAD_MULTIPLE, encounters locks within the MPI library – was a
significant serialization point for code that sees heavy thread traffic

Scheduler Improvements on Titan [Humphrey 2019]
AMR+ICE
Benchmark

Res A Res A Res B Res B

Scheduler
Cores

MPI Unified MPI Unified

32K 17 14
64K 13 7 71.5 65
128K 10 5 36.7 31
256K 8 3.6 26 17.6

UNIFIED SCHEDULER
FASTER AND SCALES
BETTER

Full Boiler Calculation
With Radiation Raytracing

Static DAG execution with asynchronous communications works for
I. Standard (even if complex) stencil codes
II. Models that have modest memory needs and don’t need large shared data
III. Models with predictable workloads
Dynamic DAG Execution makes possible to:
(i) Solve problems with large shared memory or memory that is too big for one

MPI process
(ii) Solve problems with adaptive unpredictable workloads . AMR, multiple

physics etc
(iii) Care is needed to manage shared memory on a node and thread MPI

interactions

Summary

	An Evaluation of An Asynchronous Task-Based Dataflow Approach for Uintah
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Uintah Programing Model for Stencil Timestep [Parker 1998]
	Uintah MPI Task Scheduler on a Compute Node
	NNSA PSAAP2 Existing Simulations of GE Clean(er) Coal Boilers
	For fixed mesh calculations Uintah scales for the Boiler using MPI Scheduler.
	Improved Accuracy via Scalable Adaptive Mesh Regridding Algorithm
	Slide Number 14
	Slide Number 15
	Nodal Shared Memory Model ��� Unified Heterogeneous Scheduler & Runtime � [2012]
	Slide Number 17
	Slide Number 18
	Slide Number 19
	MPM AMR ICE Strong Scaling [Qingyu Meng 2014]
	Slide Number 21
	Initial Results
	Unified Scheduler Improvements�
	Scheduler Improvements on Titan [Humphrey 2019]
	Summary

