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Motivation

I Distributed computing frameworks simplify parallel programming
I Growing interest in big data and machine learning for embedded devices
I Safety-critical embedded devices require fault-tolerance and timing analyzability

Most frameworks are not suitable for embedded systems or are tuned to a specific
use-case
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Our approach

I Programming model similar to Apache Spark
I Dataflow execution based on directed acyclic graph (DAG)
I Easy timing analysis of dataflow execution
I Fault tolerance through actor duplication

future work
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Essential Data Collection – RAPID

I Resilient Analyzable Partitioned Immutable Data Structure

I Collection consisting of fixed-size data elements
I Divided into partitions of variable size
I Similar to RDDs in Apache Spark
I Based on arrays rather than sets

3 4 5 9 4 7 5

Partition 0 Partition 1 Partition 2

Figure 1: Integer RAPID with
three partitions
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RAPID Operations

I Create new RAPIDs from existing RAPIDs or standard collections
I RAPID operations build a dataflow graph
I Dataflow execution starts when result is requested

I Functional programming style
I Reduced set of operations compared to Apache Spark
I Suitable for safety-critical embedded systems
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RAPID Operations Overview

Initial Operations
I Parallelize
I Distribute

Finalization Operations
I Collect
I Finalize

Transformations

I Map
I Combine
I Reduce
I Zipmap
I Repartition
I Reorder

I Map_Partitions
I Zipmap_Partitions
I Reorder_Partitions
I Append
I Split
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Example: High-Level Functionalty of Zipmap

I Element-wise function application on tuples
of elements

I Inputs:
I Multiple RAPIDs with the same element

count
I Zipmap function

I May change partitionings if the partition
sizes of inputs do not match

3 4 5 9 4 7 5

8 3 6 7 1 0 1

11 7 11 16 5 7 6

+ + + + + + +

Figure 2: Using Zipmap to add two
integer RAPIDs
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Example: RAPID program in C++

1 rapid_function ( add_function , zipmap_t ,
2 []( int& out , std :: tuple < const int&, const int&> in) {
3 out = std ::get <0 >( in) + std ::get <1 >( in);
4 });

1 std :: vector <int > v1 = {3 ,4 ,5 ,9 ,4 ,7 ,5};
2 std :: vector <int > v2 = {8 ,3 ,6 ,7 ,1 ,0 ,1};
3
4 auto r1 = parallelize (v1 ,3);
5 auto r2 = parallelize (v2 ,3);
6
7 auto r_sum = zipmap ({r1 ,r2}, add_function );
8
9 auto result = finalize ( r_sum );

3 4 5 9 4 7 5

8 3 6 7 1 0 1

11 7 11 16 5 7 6

+ + + + + + +

Listing 1: Element-wise addition of integer vectors using RAPID operations
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Dataflow Execution

I Directed acyclic dataflow graph
I Separation of graph construction and dataflow execution
I Graph construction at system initialization
I Multiple dataflow executions per graph
I Only one graph execution at a time
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Dataflow Graph

I Consists of actor and partition nodes
I Input and output partition nodes (multiple inputs and outputs possible)
I Input nodes can be provided with data for multiple executions

I Constructed from dependencies between RAPID operations
I One-way transformation, retrieval of RAPID program from dataflow graph not

always possible
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Example: RAPID program and Datenflow graph

1 std :: vector <int > v1 =
2 {3 ,4 ,5 ,9 ,4 ,7 ,5};
3 std :: vector <int > v2 =
4 {8 ,3 ,6 ,7 ,1 ,0 ,1};
5
6 auto r1 = parallelize (v1 ,3);
7 auto r2 = parallelize (v2 ,3);
8
9 auto r_sum = zipmap ({r1 ,r2},

10 add_function );
11
12 auto result = finalize ( r_sum );

Listing 2: RAPID program

Collect

Zipmap

Zipmap

Zipmap

Interval

Interval

Interval

Interval

Interval

Interval

Input Partition

Output Partition

Inner Partition

Figure 3: Corresponding dataflow graph
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Implementation

I Implemented in C++14
I Optimized for small code size
I One thread per core
I Construct static schedule with list scheduling algorithm (HEFT)

I Shared dataflow graph and schedule
I Graph structure does not change during dataflow execution
I Threads can check if actor is ready for execution
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Example: Schedule

Collect

Zipmap 3

Zipmap 2

Zipmap 1

Interval 6

Interval 5

Interval 4

Interval 3

Interval 2

Interval 1

Figure 4: Dataflow graph

Time

Thread 4 Interval 4

Thread 3 Interval 3

Thread 2 Interval 2

Thread 1 Interval 1 Interval 5

Interval 6

Zipmap 1

Zipmap 2

Zipmap 3

Collect

Figure 5: Possible schedule with four threads
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Analyzability

I Avoidance of timing anomalies
I Static distribution of actors on threads
I Threads execute actors in a fixed order

I Simple timing analysis of single actors
I Sequential actor execution
I Output of actor only depends on its input

I Avoidance of dynamic memory allocation
I Known partition sizes
I Memory allocation only at graph construction
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Evaluation Setup

I Comparison with OpenMP 4.5
I Small benchmark algorithms

I Matrix multiplication (Cannon’s algorithm / triple-loop algorithm)
I Fast Fourier transform (iterative Cooley-Tukey algorithm)
I Bitonic sort (iterative algorithm)

I Hardware: Intel Core i7-7700, 32GB RAM
I Software: Linux Kernel 4.18, GCC 8.2 (with optimization level O3)
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Execution Times of Matrix Multiplication and
Bitonic Sort
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Figure 6: Execution times of matrix multiplication Figure 7: Execution times of bitonic sort
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Execution Times of Fast Fourier Transform
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Figure 8: Execution times of fast Fourier
transform
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Graph Construction, DAG Scheduling and Dataflow
Execution
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Figure 9: 4000 × 4000 matrix multiplication with
various partitionings

Figure 10: Graph construction and DAG
scheduling in various algorithms
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Conclusion and Future Work

I New programming model suitable for safety-critical embedded systems
I Dataflow execution based on directed acyclic graph
I Performance similar to OpenMP

I Investigate timing analyzability
I Utilize dataflow for fault-tolerance through actor duplication
I Expand programming model to support fault tolerance
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Questions?



Backup Slides

7 Example: Matrix Multiplication



Matrix Multiplication Algorithm

I Cannon’s Algorithm
I Inputs: Two square matrices (arrays)
I Algorithm:

1. Divide input matrices into blocks (Parallelize and Reorder)
2. Block-wise standard matrix multiplication (Zipmap_Partitions)
3. Exchange blocks (Reorder_Partitions)
4. Repeat steps 2 and 3 based on the number of blocks
5. Restore row-wise element order (Reorder)
6. Return result matrix (Finalize)
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Dataflow Graph
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Figure 11: Dataflow graph, four blocks per matrix (Graphviz output)
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