COMPSAC 2019, Workshop on Data Flow
Models and Extreme-Scale Computing

A Functional Programming Model for Embedded
Dataflow Applications

Christoph Kiihbacher, Christian Mellwig, Florian Haas, Theo Ungerer

Systems and Networking [

Department of Computer Science w k
July 19, 2019 University of Augsburg

Motivation

» Distributed computing frameworks simplify parallel programming
» Growing interest in big data and machine learning for embedded devices

» Safety-critical embedded devices require fault-tolerance and timing analyzability

Most frameworks are not suitable for embedded systems or are tuned to a specific
use-case

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications

1/18

Our approach

» Programming model similar to Apache Spark
» Dataflow execution based on directed acyclic graph (DAG)

» Easy timing analysis of dataflow execution

» Fault tolerance through actor duplication

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 2/18

Our approach

» Programming model similar to Apache Spark
» Dataflow execution based on directed acyclic graph (DAG)

» Easy timing analysis of dataflow execution

N future work
» Fault tolerance through actor duplication }

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 2/18

Overview

Introduction

RAPID Programming Model
Dataflow Execution
Shared-Memory Implementation
Evaluation

I[@ Conclusion and Future Work

Overview

RAPID Programming Model

Essential Data Collection — RAPID INM:

University

» Resilient Analyzable Partitioned Immutable Data Structure

Figure 1: Integer RAPID with
Based on arrays rather than sets three partitions

» Collection consisting of fixed-size data elements cerniten B P | Pemiien 7
» Divided into partitions of variable size (3laf5) (ol4s) (7]5)
» Similar to RDDs in Apache Spark

>

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 3/18

RAPID Operations UN G

University

» Create new RAPIDs from existing RAPIDs or standard collections
» RAPID operations build a dataflow graph

» Dataflow execution starts when result is requested

» Functional programming style
» Reduced set of operations compared to Apache Spark
» Suitable for safety-critical embedded systems

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 4/18

RAPID Operations Overview

Initial Operations

» Parallelize

» Map » Map_Partitions
> Distribute » Combine » Zipmap_ Partitions
» Reduce » Reorder_ Partitions
> Ziomap > Append
» Collect » Repartition » Split
» Finalize » Reorder

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 5/18

» Element-wise function application on tuples
of elements

» Inputs:

» Multiple RAPIDs with the same element

count
» Zipmap function

» May change partitionings if the partition
sizes of inputs do not match

B AR G A
+ o+ + o+ +

(G130 GeTs) (716)]

Figure 2: Using Zipmap to add two
integer RAPIDs

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 6/18

Example: RAPID program in C+-+

1 rapid_function(add_function, zipmap_t,

2 [J(int& out, std::tuple<const int&, const int&> in) {
3 out = std::get<0>(in) + std::get<1>(in);

43

1 std::vector<int> vi1 = {3,4,5,9,4,7,5};

2 std::vector<int> v2 = {8,3,6,7,1,0,1};

3

4 auto rl = parallelize(vl,3);

5 auto r2 = parallelize(v2,3);

6

7 auto r_sum = zipmap({rl,r2},add_function);

¢ (1] 7]11) (16]5) (7]6)
9 auto result = finalize(r_sum);

Listing 1: Element-wise addition of integer vectors using RAPID operations

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 7/18

Overview

Dataflow Execution

Dataflow Execution

Directed acyclic dataflow graph

Separation of graph construction and dataflow execution

>
>
» Graph construction at system initialization
» Multiple dataflow executions per graph

| 4

Only one graph execution at a time

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 8/18

Dataflow Graph UNID G

University

» Consists of actor and partition nodes
» Input and output partition nodes (multiple inputs and outputs possible)
» Input nodes can be provided with data for multiple executions

» Constructed from dependencies between RAPID operations

» One-way transformation, retrieval of RAPID program from dataflow graph not
always possible

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 9/18

© N O AW N

= e
N = O

July 19,

std::vector<int> vl =
{3,4,5,9,4,7,5};

std::vector<int> v2 =
{8,3,6,7,1,0,1};

auto ri
auto r2

parallelize(vl,3);
parallelize (v2,3);

auto r_sum = zipmap({rl,r2},
add_function);

auto result = finalize(r_sum);

Listing 2: RAPID program

Interval

Figure 3: Corresponding dataflow graph

Input Partition
Output Partition
‘ Inner Partition

2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 10/18

Overview

Shared-Memory Implementation

Implementation UND &

» Implemented in C++14

» Optimized for small code size

» One thread per core

» Construct static schedule with list scheduling algorithm (HEFT)

» Shared dataflow graph and schedule

» Graph structure does not change during dataflow execution
» Threads can check if actor is ready for execution

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 11/18

Example: Schedule

Thread 1 [Interval 1][Interval 5][Zipmap 3]

Interval 1

2, c— Thread 2| (Interval 2 Interval 6 |
‘ Thread 3 [Interval 3][Zipmap 1]
@

Figure 4: Dataflow graph Figure 5: Possible schedule with four threads

Time

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 12/18

Analyzability

» Avoidance of timing anomalies

» Static distribution of actors on threads
» Threads execute actors in a fixed order

» Simple timing analysis of single actors

» Sequential actor execution
» OQutput of actor only depends on its input

» Avoidance of dynamic memory allocation

» Known partition sizes
» Memory allocation only at graph construction

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 13/18

Overview

Evaluation

Evaluation Setup UND

University

» Comparison with OpenMP 4.5
» Small benchmark algorithms

» Matrix multiplication (Cannon's algorithm / triple-loop algorithm)
» Fast Fourier transform (iterative Cooley-Tukey algorithm)
» Bitonic sort (iterative algorithm)

» Hardware: Intel Core i7-7700, 32GB RAM
» Software: Linux Kernel 4.18, GCC 8.2 (with optimization level O3)

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 14/18

Execution Times of Matrix Multiplication and

Bitonic Sort

—l— OpenMP with HT
—@— RAPID with HT
—f+— OpenMP w/o HT
—&— RAPID w/o HT

15 .
w
2 10 |- =
I}
2
(%)
£
g st R
E
0 [—
| | | |
0 2,000 4,000 6,000

Matrix Dimensions

Figure 6: Execution times of matrix multiplication

Time in Seconds

15

10

222 224 226

Input Size

Figure 7: Execution times of bitonic sort

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 15/18

Execution Times of Fast Fourier Transform

—ll— OpenMP with HT
—@— RAPID with HT

§ 10 {| —+— OpenMP w/o HT N
g —&— RAPID w/o HT
v
£
g 50 |
E

oL] \ \ \ L

222 223 22 225 526
Input Size

Figure 8: Execution times of fast Fourier
transform

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 16/18

Graph Construction, DAG Scheduling

Execution
10 -
B
5 El Dataflow Execution
3
v 5 | |:| DAG Scheduling
£
g Graph Construction
S
o
z77]
0 L=
4 16 25 64 100 256 400 625

Number of Blocks

Figure 9: 4000 x 4000 matrix multiplication with ~ Figure 10:
various partitionings

and Dataflow

100%

50% |-

Execution Time

0% |~

bitonic

Algorithm

Graph construction and DAG
scheduling in various algorithms

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications

17/18

Overview

I[@ Conclusion and Future Work

Conclusion and Future Work UNI\ G

University

v

New programming model suitable for safety-critical embedded systems

v

Dataflow execution based on directed acyclic graph
» Performance similar to OpenMP

v

Investigate timing analyzability

v

Utilize dataflow for fault-tolerance through actor duplication

» Expand programming model to support fault tolerance

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 18/18

w k Universitit

Questions?

Backup Slides

Example: Matrix Multiplication

Matrix Multiplication Algorithm INM:

University

» Cannon's Algorithm

» Inputs: Two square matrices (arrays)
» Algorithm:

1. Divide input matrices into blocks (Parallelize and Reorder)
Block-wise standard matrix multiplication (Zipmap_ Partitions)

Exchange blocks (Reorder_ Partitions)

Repeat steps 2 and 3 based on the number of blocks
Restore row-wise element order (Reorder)

Return result matrix (Finalize)

ook~ wDN

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 1/2

Dataflow Graph

reoder_mem reoder_mem

[linterval | [linterval | [‘interval] [interval | [interval | T interval | [interval | [interval |

([zipmap_partitions| zipmap_partitions| Jzipmap_partitions| ([zipmap_partitions|

zipmap_partitions| [zipmap_partitions| [zipmap_partitions| [zipmap_partitions|

reoder_mem

. constant partition w input partition
. ordinary partition

Figure 11: Dataflow graph, four blocks per matrix (Graphviz output)

utput partition

July 19, 2019 C. Kiihbacher, C. Mellwig, F. Haas, T. Ungerer — A Functional Programming Model for Embedded Dataflow Applications 2/2

	Title Frame
	Introduction
	RAPID Programming Model
	Dataflow Execution
	Shared-Memory Implementation
	Evaluation
	Conclusion and Future Work
	Appendix
	Example: Matrix Multiplication

