
EXTENDING CODELET MODEL FOR
DATAFLOW SOFTWARE PIPELINING

USING SOFTWARE-HARDWARE CO-DESIGN
e r h t jh tyh y

SIDDHISANKET RASKAR
Research Aide, Argonne National Lab.
PhD Candidate, University of Delaware. 19 July 2019

Milwaukee, Wisconsin.

Siddhisanket Raskar, Thomas Applencourt, Kalyan Kumaran, Guang Gao

• Software Pipelining
• Dataflow Software Pipelining
• Codelet Model

Background & Motivation

Outline

• Defining Class of Codelet Graph
• Challenges

Problem Formulation

2DFM 2019 – COMPSAC 201919 July 2019

• Extension of Codelet PXM
• Extension of CAM
• Optimizations

Solution Methodology

• Implementation of PXM & CAM
• Kernels & Applications

Future Work

• Software Pipelining
• Dataflow Software Pipelining
• Codelet Model

Background & Motivation

Outline

• Defining Class of Codelet Graph
• Challenges

Problem Formulation

3DFM 2019 – COMPSAC 201919 July 2019

• Extension of Codelet PXM
• Extension of CAM
• Optimizations

Solution Methodology

• Implementation of PXM & CAM
• Kernels & Applications

Future Work

L : for (i=0 ; I < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Cycle I1 I2 I3

1 s1

2

3

4 s2

5

6

7 s3

8

9

10 s1

11

12

13 s2

14

15

16 s3

…
.

Schedule with no
Software Pipelining

C++ Code : Simple Loop

Software Pipelining
Basics

Without Software Pipelining

Execution of loop without Software
Pipelining -

• Each iteration takes 9 cycles to
produce result.

• The next iteration starts after the
earlier iteration finishes.

• Loop unrolling techniques can be used.

Assumption
• There is only 1 compute unit

for each instruction in
pipeline.

• Lets assume each instruction
takes 3 cycles

4DFM 2019 – COMPSAC 201919 July 2019

L : for (i=0 ; I < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

s1

s2

s3

Cycle I1 I2 I3

1 s1

2 s1

3 s1

4 s2

5 s2

6 s2

7 s3

8 s3

9 s3

10

11

…
.

Schedule with
Software Pipelining

Dependence Graph

Is the technique used for loop optimization
where iteration of a loop is activated
before its preceding iteration is complete. C++ Code : Simple Loop

Software Pipelining
Basics

With Software Pipelining

• Instructions are reordered as long as
they satisfy the dependencies.

• It’s a static, compile time technique.

• It uses dependence graph to compute
schedule statically.

Assumption
• There is only 1 functional unit

for each task in pipeline.
• Lets assume each instruction

takes 3 cycles

5DFM 2019 – COMPSAC 201919 July 2019

L : for (i=0 ; I < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

s1

s2

s3

Cycle I1 I2 I3

1 s1

2 s1

3 s1

4 s2

5 s2

6 s2

7 s3

8 s3

9 s3

10

11

…
.

Schedule with
Software Pipelining Dependence Graph

C++ Code : Simple Loop

Software Pipelining
Advantages

Advantages

• Throughput of the system is improved
with schedule with software
pipelining.

Assumption
• There is only 1 functional unit for

each task in pipeline.
• Lets assume each instruction takes

3 cycles

Cycle I1 I2 I3

1 s1

2

3

4 s2

5

6

7 s3

8

9

10 s1

11

12

13 s2

14

15

16 s3

…
.

Schedule with no
Software Pipelining

Rau et al.81 (MICRO14)
Modulo Scheduling
Rau et al.94 (MICRO27)
Iterative Modulo Scheduling

6DFM 2019 – COMPSAC 201919 July 2019

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

7DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

8DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

9DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

10DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

11DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

12DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

L : for (i=0 ; i < 3 ; i++)

s1: a[i] = a[i] + 1 ;
s2: b[i] = a[i] + 1 ;
s3: c[i] = b[i] + 1 ;

Only Loop Body

C++ Code : Simple Loop

Dataflow Software Pipelining
Basics

+

+

+

1

1

1

c[i]

a[i]

a[i]

b[i]

Tokens Iteration 1

Tokens Iteration 2

Tokens Iteration 3

Dataflow Software Pipelining

Assumption
• There are 3 PEs.
• Lets assume each instruction

takes 1 cycle.

• Dataflow Software Pipelining is
compile time as well as runtime
technique.

• The naturally available information
about dependencies is used at runtime
for scheduling.

• Tokens from various iterations of the
loop are executed.

13DFM 2019 – COMPSAC 201919 July 2019

G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined data flow code generation,” J. Parallel Distrib. Comput., vol. 6, pp. 39– 61, Feb. 1989.

NodeNode Interconnect

Chip Chip

Interconnect

DRAM DRAM

Node

…

…

i/o

i/o

DRAM

Cluster Cluster

Interconnect

Cluster Cluster

Chip

…

…

CU CU

Interconnect

SU Cluster
memory

Cluster

…

…

CU

Local Memory

Register
Window

Register
Window

…

Local Memory

Register
Window

Register
Window

…

SU

Out-of-cluster Communication

14DFM 2019 – COMPSAC 201919 July 2019

Original Codelet Model
Abstract Machine

Firing Rules

• A codelet becomes enabled once tokens (events)
are present on each of its input arcs.

• An enabled actor can be fired if it has acquired all
its required resource and is scheduled for
execution.

• A codelet actor fires by consuming tokens on its
input arcs, performing the operations within the
codelet, and producing a token (event) on each of
its output arcs.

S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using a ”codelet” program execution model for exascale
machines: Position paper,” in Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era, EXADAPT ’11, (New York, NY, USA), pp. 64–69, ACM, 2011.

Motivation

How should the success of
software pipelining

be exploited under the new
many core architecture area?

Software Pipelining is one of the
most successful technology in the

exploitation of
Instruction Level Parallelism

Nested Loops
• Numerous techniques exist for single loops (innermost loop)

but only few address software pipelining of loop nests.

Multiple Cores
• Traditional software pipelining techniques relied on good

static hardware & scheduling techniques which satisfied
uniprocessor architectures.

• Challenges to extend this for multiple cores
• Variability of instruction timing between cores
• Loop carried dependencies must be realized across

different cores.
• Variable runtime traffic in the on-chip network.

Unsolved Challenges

15DFM 2019 – COMPSAC 201919 July 2019

• Software Pipelining
• Dataflow Software Pipelining
• Codelet Model

Background & Motivation

Outline

• Defining Class of Codelet Graph
• Challenges

Problem Formulation

16DFM 2019 – COMPSAC 201919 July 2019

• Extension of Codelet PXM
• Extension of CAM
• Optimizations

Solution Methodology

• Implementation of PXM & CAM
• Kernels & Applications

Future Work

Problem Formulation
Defining Class of Codelet Graphs

• Dependency analyzable loops
• Dependency restricted to affine

functions.

At Codelet Graph Level

• No Loops.
• Self Loops are allowed.

At Codelet Level

A programming model which will leverage
coarse grain parallelism at Codelet graph level &

fine grain parallelism at Codelet level.

Class of Codelet graphs for which software pipelining
advantages can be clearly demonstrated.

Leverage upon all the work done on the instruction
level parallelism & dataflow software pipelining.

17DFM 2019 – COMPSAC 201919 July 2019

Motivating Example
Producer – Consumer Problem

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Producer – Consumer Codelets

Memory Copy Example

#include<iostream>
using namespace std;

int main()

{
int A[10], B[10];
int i;

for(i=0;i<10;i++)
A[i]=i;

for(i=0;i<10;i++)
B[i]=A[i]+1;

return 1;

}

18DFM 2019 – COMPSAC 201919 July 2019

Motivating Example
Original Codelet Model

• Codelet 1 :
• Loop with N iterations

• Codelet 2 :
• loop with N iteration

• Execution :
• Codelet 1 finishes its execution, sends signal to

Codelet 2.

• Output :
• It will take time required for N + N iterations.
• We also need to store output of Codelet 1

somewhere and then load it for Codelet 2.

19DFM 2019 – COMPSAC 201919 July 2019

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Producer-Consumer Codelets

Motivating Example
Extended Codelet Model with Dataflow Software Pipelining

• Codelet 1 :
• Loop with N iterations

• Codelet 2 :
• loop with N iteration

• Execution :
• With Dataflow Software Pipelining,

we can start execution of Codelet 2 while Codelet 1
execution is still not finished.

• Output :
• We can start iteration 1 of Codelet 2 after iteration 1 of

Codelet 1 finishes.
• The first output will be produced at unit time 3.
• Output will be produced at each iteration after that.

20DFM 2019 – COMPSAC 201919 July 2019

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Producer-Consumer Codelets

Challenges
Dataflow Software Pipelining for Codelet Model

• Dataflow Software Pipelining behavior described above is not
possible with Original Codelet Model.

• Firing rules will not allow Consumer Codelet to fire before
Producer Codelet finishes its execution.

• Such a behavior will be very useful for Streaming applications.

• Solution Methodology
• Extension to kinds of events
• Extension to firing rules.

Extended Codelet
Program Execution Model

21DFM 2019 – COMPSAC 201919 July 2019

Challenge 1

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Producer-Consumer Codelets

Challenges
Dataflow Software Pipelining for Codelet Model

• Software implementation of these extension to
support Dataflow Software Pipelining in Codelet
Program Execution Model will incur some
additional cost.

• Hardware-Software Co-Design to efficiently
support extension to Codelet Program Execution
Model.

Extended Codelet
Abstract Machine Model

22DFM 2019 – COMPSAC 201919 July 2019

Challenge 2

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

Producer – Consumer Codelets

Without FIFO Buffers With FIFO Buffers

• Software Pipelining
• Dataflow Software Pipelining
• Codelet Model

Background & Motivation

Outline

• Defining Class of Codelet Graph
• Challenges

Problem Formulation

23DFM 2019 – COMPSAC 201919 July 2019

• Extension of Codelet PXM
• Extension of CAM
• Optimizations

Solution Methodology

• Implementation of PXM & CAM
• Kernels & Applications

Future Work

Solution Methodology
Step 1: Extending Codelet Program Execution Model.

Extending Firing Rules
• Under certain cases, We will allow next Codelet to begin its

execution before the current Codelet has finished its
execution.

• Producer-consumer behavior
• forall loop

• Codelet level API to support FIFO operations.

• Decided by compiler or explicitly indicated by programmer.
Producer-Consumer Codelets

24DFM 2019 – COMPSAC 201919 July 2019

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Solution Methodology
Step 2 : Extending Codelet Abstract Machine

• Ongoing work on Sequential Codelet
Model (SCM) for parallel code execution.
[Monsalve et. al 2019]

• Focus on Codelet Level Core
• FIFO buffers can be envisioned in the

Local Codelet Level Core Memory
(LCCM)

• Dataflow Software Pipelining at
Threaded Procedure (TP) level.

DRAM

CUCUCU
Write Back

Synchronize

LCCM

SU

Memory
Interface

Codelet Level Core

25DFM 2019 – COMPSAC 201919 July 2019

[Monsalve et. al 201] “Sequential Codelet Model for Parallel Execution” , Jose M Monsalve Diaz, and Guang R Gao , CAPSL Technical Memo 132, June 2019.

Solution Methodology
Step 2 : Extending Codelet Abstract Machine

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

DRAM

CUCUCU
Write Back

Synchronize

LCCM

SU

Memory
Interface

Codelet Level Core

26DFM 2019 – COMPSAC 201919 July 2019

• Ongoing work on Sequential Codelet
Model (SCM) for parallel code execution.
[Monsalve et. al 2019]

• Focus on Codelet Level Core
• FIFO buffers can be envisioned in the

Local Codelet Level Core Memory
(LCCM)

• Dataflow Software Pipelining at
Threaded Procedure (TP) level.

Solution Methodology
Step 3: Optimizations

• A circular buffer or a ring buffer is
efficient data structure for implementation
of FIFO buffer.

• elements are NOT shifted when one is
consumed.

• Only head & tail pointers are updated
every time data is added/ removed.

Producer
Codelet

Consumer
Codelet

L1 : For (1 to N)
A[i] = i

L2 : For (1 to N)
B[i] = A[i] + 1

C1

C2

FIFO
Buffer

Ring
Buffer

Head
Pointer

Tail
Pointer

1 2

3

4

P

C

5

27DFM 2019 – COMPSAC 201919 July 2019

C1

C2

C3

P

C1 C2 C3

FIFO Ring Buffers
Chain of Codelets

Tree of Codelets

• Chain of Codelets.
• C1 is the only producer codelet.
• C2 producer as well as consumer Codelet.
• C3 is consumer Codelet.

• Tree of Codelets.
• P is the only producer codelet.
• C1, C2 & C3 are consumer codelets.
• They consume the same data tokens produced by codelet P.

All Codelet graphs are not simplistic like Single producer – Single Consumer

Do you duplicate tokens & allocated separate FIFO buffer for
each arc?

Or
You can find mechanism to share FIFO buffers?

28DFM 2019 – COMPSAC 201919 July 2019

Single Producer – Multiple Consumer

FIFO Ring Buffer

• Ring Buffer will be allocated
in the LCCM (Scratchpad)

• The tail and head pointers
will be maintained in the
specific registers Ring

Buffer

Head
Pointer

Tail
Pointer

1 2

3

4

P

C

5

DRAM

CUCUCU
Write Back

Synchronize

Scratchpad

SU

Memory
Interface

Codelet Level Core

T H

29DFM 2019 – COMPSAC 201919 July 2019

Multiple-Head FIFO Ring Buffers

• Share FIFO Ring Buffer with all
consumers of same producer

• Each Codelet will maintain
head pointers in registers in
their respective CUs.

• There will be only 1 tail
pointer for 1 producer.

DRAM

CUCUCU
Write Back

SynchronizeSU

Memory
Interface

Codelet Level Core

Scratchpad

Ring
Buffer

hPtr1

Tail
Pointer

1 2

3

4

P

5

C1 C2 C3

hPtr2 hPtr3

T h1 h2 h3

30DFM 2019 – COMPSAC 201919 July 2019

• Software Pipelining
• Dataflow Software Pipelining
• Codelet Model

Background & Motivation

Outline

• Defining Class of Codelet Graph
• Challenges

Problem Formulation

31DFM 2019 – COMPSAC 201919 July 2019

• Extension of Codelet PXM
• Extension of CAM
• Optimizations

Solution Methodology

• Implementation of PXM & CAM
• Kernels & Applications

Future Work

Future Work

• Codelet Level Instruction Set Architecture
(ISA) to leverage FIFO buffers.

• Extension to DARTS to support Dataflow
Software Pipelining.

32DFM 2019 – COMPSAC 201919 July 2019

Kernels & Applications

Implementation : Software

• Cannons algorithm for Matrix Multiplication.

Implementation : Hardware-Software

• FPGA Implementation
• DEMAC cluster [Roa et al. 2018]

[Roa et al. 2018] Diego Roa, Jose Monsalve, Ryan Kabrick, Xu Tan, and Guang Gao (2018). Landing Codelets PXM on DARTS, DEMAC - Towards a Hardware/Software, Codesign/Evaluation Platform. University of
Delaware booth, Supercomputing 2018, November 2018, Dallas, Texas.

THANK YOU.

