An Introduction to Synchronous Data Flow Model

Dr. Haitao Wei
CAPSL at UDEL
Outline

• Synchronous Data Flow Model
 – Definition
 – Example
• Periodic Schedule and Consistency
• Stream Programming Language
 – Structured SDF
• Apply SDF to Bigdata
Outline

- Synchronous Data Flow Model
 - Definition
 - Example
- Periodic Schedule and Consistency
- Stream Programming Language
 - Structured SDF
- Apply SDF to Bigdata
Synchronous Data Flow Model

- Synchronous Data Flow (SDF) is represented as a graph
 - Node (actor): Computation
 - Edge: First In First Out (FIFO) Queue
- Each edge has two weights: produce rate and consume rate
- Each edge can also have initial data
- Formal: Tuple<N, E, E_{p,c,i}>,
 - N: node
 - E: edge
 - E_{p,c,i}: Produce rate, consume rate and initial data
Synchronous Data Flow Model

SDF with no initial tokens

SDF with initial token and loop
Synchronous Data Flow Model

A firing
Synchronous Data Flow Model

A firing, B firing
Synchronous Data Flow Model

A firing, B firing, C firing
Synchronous Data Flow Model

A firing, B firing, C firing, C firing
Synchronous Data Flow Model

SDF with initial token and loop
Synchronous Data Flow Model

A firing
Synchronous Data Flow Model

A firing, B firing
Synchronous Data Flow Model

A firing, B firing, C firing
Synchronous Data Flow Model

A firing, B firing, C firing, C firing
Synchronous Data Flow Model

• Question: Can any SDF graph find a firing sequences that makes the state of the graph no changed?
 – State of the graph means: the tokens on each edge are clean, no more no less.
 – Which leads to SDF Consistency Problem
Outline

• Synchronous Data Flow Model
 – Definition
 – Example

• Periodic Schedule and Consistency

• Stream Programming Language
 – Structured SDF in StreamIt

• Apply SDF to Bigdata
Periodic Schedule and Consistency

• Firing sequence of a SDF is called a *schedule*

• *A periodic schedule* of an SDF clears all channels and return to its initial status after each node repeats execution a specified finite number of times

• Periodic schedule, permit SDF can process unbounded data with bounded memory

• *A SDF is Consistent* if a periodic schedule exists
Periodic Schedule and Consistency

Periodic Schedule: ABCC
AB2C
Periodic Schedule and Consistency

Can you find the periodic schedule?
Periodic Schedule and Consistency
Periodic Schedule and Consistency

A, B
Periodic Schedule and Consistency

A, B, C
Periodic Schedule and Consistency

A, B, C, A
Periodic Schedule and Consistency

A, B, C, A, B
Periodic Schedule and Consistency

A, B, C, A, B, C

Tokens in channel (A-C) is accumulating which makes the channel unbounded

Inconsistent!
Periodic Schedule and Consistency

Problem: Given a general SDF, how can we know it has periodic schedule or not?
Periodic Schedule and Consistency

Topology Matrix

- Each row presents the edge
- Each column presents a node
- \((i, j)\): the number of data items placed on \(i\) after each invocation of \(j\)
- If \(i\) is an input channel for \(j\), element \((i, j)\) is negative

\[
\begin{pmatrix}
c & -e & 0 \\
d & 0 & -f \\
0 & i & -g
\end{pmatrix}
\]

- \(A\rightarrow B\)
- \(A\rightarrow C\)
- \(B\rightarrow C\)
A necessary condition for the existence of a periodic schedule
• the rank of the topology matrix is \(s - 1 \), where \(s \) is the number of nodes
• Proof: please refer to “Lee’s 87 paper: Synchronous Data Flow”

\[
\begin{pmatrix}
c & -e & 0 \\
d & 0 & -f \\
0 & i & -g
\end{pmatrix}
\]

A \rightarrow B
A \rightarrow C
B \rightarrow C
Periodic Schedule and Consistency

A necessary condition for the existence of a periodic schedule
• the rank of the topology matrix is $s - 1$, where s is the number of nodes
• Proof: please refer to “Lee’s 87 paper: Synchronous Data Flow”

\[
\begin{pmatrix}
1 & -1 & 0 \\
2 & 0 & -1 \\
0 & 1 & -1
\end{pmatrix}
\]

$A \rightarrow B$

$A \rightarrow C$

$B \rightarrow C$

Rank$=3 > 2$
Outline

• Synchronous Data Flow Model
 – Definition
 – Example
• Periodic Schedule and Consistency
• **Stream Programming Language**
 – Structured SDF
• Apply SDF to Bigdata
while (true) {
 int itm = geneDataItem ();
 push(itm);
}

while(inStream.moreData()) {
 int first=peek(0);
 int second=peek(1);
 push ((first+second)/2);
 pop(0);
}

while (inStream .moreData ())
{
 print(pop(0));
}
Average Pairs to Synchronous Dataflow Graph

Extend the SDF to support “peek” semantic
Average Pairs to Synchronous Dataflow Graph
Structured SDF In StreamIt

- Filter
- Pipeline
- Split-Join
- Feedback Loop

Part of JPEG transcoding

Weakness of SDF

• Does not support condition (branch)

• Does not support recursion—because it is a static dataflow model

• But still the model is used widely in many application fields
Some Projects Based on SDF model

• Early Ptolemy Project at UC Berkeley
 – Software Synthesis for Embedded system

• StreamIt at MIT
 – streaming program language and compiler

• InforStream and SPL
 – IBM streaming computing product

• Our work COStream
 – hierarchical data flow programming language and compiler

• OpenStream
 – language and compiler support for streaming in OpenMP
Homework

• Write a Fibonacci number generator using Synchronous Data Flow Model
 – Pseudo code for each node in SDF using “peek, push and pop” statements
 – Push Token: PPT animation to show how the tokens flow in SDF graph
 – Periodic Schedule of the SDF
Reference

[1] Early Ptolemy Project at UC Berkeley
 – http://ptolemy.eecs.berkeley.edu/projects/index.htm

[2] StreamIt at MIT
 – http://groups.csail.mit.edu/cag/streamit/

[3] InforStream and SPL

[4] COStream

 – http://openstream.info/