MULTITHREADED COMPUTER ARCHITECTURE: A SUMMARY OF THE STATE OF THE ART

EDITED BY

Robert A. Iannucci
Exa Corporation
Cambridge, Massachusetts, USA

Guang R. Gao
McGill University
Montreal, Quebec, Canada

Robert H. Halstead, Jr.
Digital Equipment Corporation
Cambridge, Massachusetts, USA

Burton Smith
Tera Computer Company
Seattle, Washington, USA

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht
CONTENTS

PREFACE

PART I: BACKGROUND AND ISSUES

1 MULTITHREADED ARCHITECTURES: PRINCIPLES, PROJECTS, AND ISSUES

Jack B. Dennis and Guang R. Gao

1. Introduction
2. Microprocessor Evolution: Principles and Challenges
3. Multithreaded Program Execution Models
4. HEP: The Heterogeneous Element Processor System
5. A Dataflow Architecture
6. Monsoon
7. Other Multithreaded Architecture Projects
8. Issues in Multithreaded Architecture
9. Conclusions

REFERENCES

PART II: ARCHITECTURAL AND IMPLEMENTATION ISSUES FOR MULTITHREADING (PANEL DISCUSSION)

Robert A. Iannucci

1. Introduction
2. Summary of the Discussion
3. Conclusion
3 ISSUES IN THE DESIGN AND IMPLEMENTATION OF INSTRUCTION PROCESSORS FOR MULTICOMPUTERS (POSITION STATEMENT)

William J. Daily

1 Multicomputers and Multithreading 79
2 Implementation Issues 80
3 Pointers to Related Papers 82
REFERENCES 82

4 PROGRAMMING, COMPILATION, AND RESOURCE-MANAGEMENT ISSUES FOR MULTITHREADING (PANEL DISCUSSION)

Robert H. Halstead, Jr.

1 Introduction 83
2 Summary of the Discussion 84
3 Conclusion 88

5 PROGRAMMING, COMPILATION AND RESOURCE MANAGEMENT ISSUES FOR MULTITHREADING (POSITION STATEMENT)

Rishiwy S. Nikhil

1 Multithreaded Architectures Enable General Purpose Parallel Programming 89
2 Multithreaded Architectures Will Run Multicomputer Software Well (or Better) 90
3 Sources of Parallelism 91
4 Compilation and Resource Management 92
5 Conclusion 94
REFERENCES 94

6 MULTITHREADING: FUNDAMENTAL LIMITS, POTENTIAL GAINS, AND ALTERNATIVES

David E. Culler

1 Introduction 97
2 Multithreading to Tolerate Latency 100
Contents

3 Network Limits on Multithreading
4 Active Messages and Split-C
5 Multithreading to Support Dynamic Parallelism
6 Summary

REFERENCES

PART II: KEY ELEMENTS

7 LOW-COST SUPPORT FOR FINE-GRAIN SYNCHRONIZATION IN MULTIPROCESSORS
 David Kranz, Beng-Hong Lim, Anant Agarwal and Donald Yeung
 1 Introduction
 2 A Low-Cost Approach to Fine-Grain Synchronization
 3 Programming Language Issues
 4 Alewife Implementation
 5 Performance Results
 6 Related Work
 7 Conclusions

REFERENCES

8 ARCHITECTURAL AND IMPLEMENTATION TRADEOFFS IN THE DESIGN OF MULTIPLE-CONTEXT PROCESSORS
 James Laudon, Anoop Gupta and Mark Horowitz
 1 Introduction
 2 Interleaved Multiple-Context Processor Proposal
 3 Evaluation Methodology
 4 Performance Results
 5 Implementation Issues
 6 Conclusions

REFERENCES
9 NAMED STATE AND EFFICIENT CONTEXT SWITCHING
Peter R. Nuth and William J. Dally
1 Introduction 201
2 Multithreaded Processors 203
3 The Named-State Register File 204
4 Register Utilization 207
5 Implementation 208
6 Performance 209
7 Conclusion 211
REFERENCES 211

10 IDEAS FOR THE DESIGN OF MULTITHREADED PIPELINES
Amos R. Omondi 213
1 Introduction 213
2 Architecture 214
3 Implementation 225
4 Conclusion 248
REFERENCES 249

PART III: SYSTEMS

11 INTEGRATED SUPPORT FOR HETEROGENEOUS PARALLELISM
Gail Alverson, Bob Alverson, David Callahan, Brian Koblenz, Allan Porterfield, and Burton Smith 253
1 Introduction 253
2 Related Systems 255
3 Overview of the Tera Architecture 262
4 Very Fine-grained Parallelism 263
5 Fine-grained Parallelism 265
6 Medium-Grained Parallelism 271
7 Coarse-Grain Parallelism 276
8 Summary 279
REFERENCES

12 AN ARCHITECTURE FOR GENERALIZED SYNCHRONIZATION AND FAST SWITCHING
Kattamuri Ekanadham, Steve Gregor, Kei Hiraki, Robert A. Iannucci and Ranganathan Rajkumar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>285</td>
</tr>
<tr>
<td>Architectural Highlights</td>
<td>287</td>
</tr>
<tr>
<td>System Description</td>
<td>289</td>
</tr>
<tr>
<td>Compilation and Resource Management</td>
<td>296</td>
</tr>
<tr>
<td>Hardware Design</td>
<td>299</td>
</tr>
<tr>
<td>Support for Real-Time Systems</td>
<td>307</td>
</tr>
<tr>
<td>Conclusions</td>
<td>313</td>
</tr>
</tbody>
</table>

REFERENCES | 315 |

13 CONCURRENT EXECUTION OF HETEROGENEOUS THREADS IN THE SUPER-ACTOR MACHINE
Herbert H.J. Kim, Guang R. Gao

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>The Super-Actor Execution Model</td>
<td>321</td>
</tr>
<tr>
<td>The Architecture of the Super-Actor Machine</td>
<td>333</td>
</tr>
<tr>
<td>SAXPY Revisited</td>
<td>342</td>
</tr>
<tr>
<td>Conclusion</td>
<td>347</td>
</tr>
</tbody>
</table>

REFERENCES | 348 |

PART IV: ANALYSIS

14 ANALYSIS OF MULTITHREADED MICROPROCESSORS UNDER MULTIPROGRAMMING
David E. Culler, Michiel Gunter, James C. Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>351</td>
</tr>
<tr>
<td>Analytical Model</td>
<td>352</td>
</tr>
<tr>
<td>Method of Analysis</td>
<td>353</td>
</tr>
<tr>
<td>Multithreaded Cache Behavior</td>
<td>357</td>
</tr>
</tbody>
</table>
15 EXPLOITING LOCALITY IN HYBRID DATAFLOW PROGRAMS
Walid A. Najjar, A. P. Wim Böhm, W. Marcus Miller
1 Introduction
2 Nature and Impact of Locality
3 Thread Locality in Dataflow Execution
4 Conclusion
REFERENCES
INDEX