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Abstract  
As multimedia applications on mobile devices become 
more computationally demanding, embedded proces-
sors with one level I-cache become more prevalent, typi-
cally with a combined I-cache and SRAM of 32KB ~ 
48KB total size. Code size reduction alone is no longer 
adequate for such applications since program sizes are 
much larger than the SRAM and I-cache combined. For 
such systems, a 3% I-cache miss rate could easily translate 
to more than 50% performance degradation.  As such, code 
layout to minimize I-cache miss is essential to reduce the 
cycles lost. 

In this paper, we propose a new code layout algorithm – 
temporal distribution based software cache partition with 
focus on multimedia code for mobile devices. This algo-
rithm is built on top of Open64’s [14] code reordering 
scheme. By characterizing code according to their temporal 
reference distribution characteristics, we partition the code 
and map them to logically different regions of the cache. 
Both capacity and conflict misses can be significantly re-
duced, and the cache is more effectively used. The algo-
rithm has been implemented as a part of our tool-chain for 
our products.  

We compare our results with previous works and show 
more efficacy in reducing I-cache misses with our approach, 
especially for applications suffering from capacity misses. 

1. Observation and Motivation 
As multi-core and multi-thread are being employed in em-
bedded processors, instruction fetch efficiency is even 
more important to total system performance. Instruction 
cache performance becomes one of the most critical factors 
influencing the entire system design. For example, in our 
video codec processor, a cache miss rate of 3% will cause 
as much as 50% performance degradation for the H.264 
encoder which is the most computationally demanding 
video encoding standard today. 

Traditional code layout algorithms use both basic block 
and procedure as the unit for code positioning. Sometimes, 

new “procedures” are generated by procedure splitting be-
fore further positioning. In this work, we always split pro-
cedure into two or more sections as the unit for layout; 
called “code blocks”. The record of code blocks’ execution 
sequence at runtime is used to analyze the temporal charac-
teristics of them for further code layout; we call the se-
quence “cb-trace”.  

By analyzing the runtime temporal characteristics of the 
code blocks, we observed two kinds of code blocks: code 
blocks which are uniformly distributed along the cb-trace 
and code blocks which exhibit a large skew in their distri-
bution. For example, consider the following temporal se-
quence where each alphabet letter represents one code 
block: 

 
ABCDEF(UV)5ABCDEF(PQ)5ABCDEF(XY)5ABCDEF 

 
In the above sequence, A,B,C,D,E,F have uniform dis-

tribution, while U,V,P,Q,X,Y do not have uniform distribu-
tion. 

Code blocks exhibiting a large skew in the reference dis-
tribution have good temporal locality [13]. They are usu-
ally good candidates for traditional code layout algorithms, 
usually focuses on reducing I-cache conflict misses as they 
can be well placed to reduce this kind of misses very effec-
tively.  Consider the interleaved relationship between the 
pairs U and V, P and Q, X and Y; we need only two cache 
lines to hold the six code blocks, assuming each has the 
size of one cache line. We call them code blocks with good 
temporal locality. 

On the other hand, code blocks exhibiting uniform ref-
erence distribution have little or no exploitable temporal 
locality.  This is due to the following reasons: 
1. They generally interleave pervasively with other code 

blocks and will cause many misses when sharing cache 
lines with other code blocks.  E.g. we need at least six 
cache lines to hold A,B,C,D,E,F to avoid cache misses, 
since they are interleaved with all the other code blocks. 
To avoid cache misses, we practically have to let them 
hold cache lines exclusively. 

2. They often have relatively long reuse distance and 
hence are prone to suffering from capacity miss. Be-
cause the traditional code layout algorithms are more ef-
fective on conflict misses, not much work has been 
done for programs with large capacity.  
 
 



Since this kind of code blocks have temporally regular 
pattern, we call them code blocks with good temporal regu-
larity. 

From the above example, it can be seen that different 
kinds of code blocks need different layout policies. For 
code blocks with good temporal locality, multiple code 
blocks can share same cache lines and still incur no more 
cache misses. For code blocks with good temporal regular-
ity, they had better hold cache lines as much as possible to 
avoid cache misses.  

However, traditional code layout algorithms do not dis-
tinguish the difference between these two kinds of code 
blocks. When the cache capacity is large enough, we can 
do a proper layout using the traditional algorithm. Suppose 
we have more than eight cache lines.  A traditional code 
layout algorithm (e.g. TRG based algorithm) can generate a 
placement to avoid all the conflict misses, as shown by the 
following: 

 
A B C D E F U/P/X V/Q/Y 

 
However, when there is not enough cache capacity, say, 

only six cache lines, different layout methods will generate 
different number of cache misses E.g. M1 will have 24 
misses and M2 have only 18 misses as shown by the fol-
lowing. 

 
M1:  

A/E B/F C D U/P/X V/Q/Y 
 
M2: 

A B C D U/P/X/E V/Q/Y/F 
 
The key point here is to prevent code blocks with good 

temporal regularity from sharing cache lines among them-
selves as much as possible (since it incurs cache line 
thrashing too easily), and to let them hold cache lines ex-
clusively or share cache lines only with code blocks with 
good temporal locality if needed.  

For example, when A and E share the same cache line, A 
and E will suffer from cache misses each time they are ref-
erenced.  However, when E shares a cache line with U, P 
and X, only references to E incur more cache misses due to 
the good temporal locality of U, P and X.  

Based on the above observation, we devised a temporal 
distribution based software cache partition algorithm to do 
code layout. Firstly, we characterize the code blocks by 
temporal distribution and classify them according to good 
temporal locality and good temporal regularity, respectively. 
Secondly, we partition the cache into two regions to hold 
these two types of code blocks. 

2. Solutions and Methodology 
Like traditional code layout algorithms, our partition based 
algorithm is also heuristic based. Since the code placement 
policy depends heavily on the program characteristics, it is 
important to design an adaptive algorithm. Since our proc-
essor is targeted for multimedia, we focus our design and 
evaluation on multimedia applications only.  

Our layout process includes five steps: 1) code block 
formation, including basic-block level (bb-level) reorder 
and procedure splitting optimization, 2) execution and cb-
trace generation, 3) cb-trace analysis and temporal distribu-

tion calculation, 4) iterative partition of cache and code 
blocks, and 5) layout and placement generation. The fol-
lowing is the summary of our solutions: 
1. Characterize the temporal distribution of a cb-trace, in 

terms of temporal regularity and locality. We use statis-
tical analysis of positions in cb-traces to do this.  

2. Since we want code blocks with good temporal regular-
ity to hold cache lines exclusively, we only select the 
ones whose cache misses are critical for total perform-
ance. Good candidates of these code blocks should have 
the following characteristics: 

a) They should be hot code blocks and directly affect 
application performance. 

b) They should be “dense” code blocks, that is, code 
blocks with few branches. We use instruction den-
sity (dynamic instruction count of the code block 
divided by its size) to evaluate the denseness. This 
is beneficial to improve spatial usage of cache 
lines. 

3. Because different code sections inside one procedure 
may exhibit different characteristics, hotness, and den-
sity, the various parts of a program procedure may be 
completely different from each other, we do bb-level 
reorder and procedure splitting before code layout. This 
improves the uniformity of the hotness and density of 
code blocks generated. Then, we generate distinct 
placement for these split code blocks. The algorithm 
and implementation of bb-level reorder and procedure 
splitting are based on Open64 and will be discussed in 
detail in section 3.1. 

4. To make the partition applicable to different program 
characteristics, we developed an iterative cache parti-
tion algorithm, which makes the algorithm more flexi-
ble and easy to use. 

5. Finally, the TRG algorithm (which will be explained in 
detail in section 3.2) is used to further place code blocks 
inside each partitioned cache region. 
 
The rest of the paper is organized as the following. Sec-

tion 3 reviews the related work. Section 4 gives the equa-
tions to calculate temporal distribution of code blocks and 
classify the code blocks. Section 5 describes the iterative 
partition and layout algorithm. Section 6 and 7 evaluate the 
code layout algorithm by some typical multimedia embed-
ded applications, including four video and one audio pro-
gram. We conclude in Section 8. 

3. Related Work 
Much work has been done on code layout algorithms to 
reduce cache misses. McFarling[2] repositioned programs 
so that a direct-mapped cache behaves like a full-
associative cache. Since it is implemented by reordering 
basic blocks in object files, portability, debuggability, and 
certification are issues concerning this approach. Rami-
rez[4] used maximization of the sequentiality of instruc-
tions. However, when capacity misses dominate, neither 
full-associative nor maximized instruction sequence can 
help.  

Pettis and Hansen[3] presented a profile-guided algo-
rithm based on “closest is best” which can be applied on 
both the bb-level and procedure level. Hashemi[1] kept 
track of the cache lines (colors) occupied by each mapped 
procedure and used it to guide procedure mapping. Instead 
of using the weighted call graph, Gloy[5] developed the 



temporal relationship graph (TRG) by gathering temporal 
profile information representing the interleaving of proce-
dures in a program trace. Although these methods differ 
from our approach since they focus only on conflict misses 
while ours deal with both capacity and conflict misses, we 
still benefit from these traditional technologies, especially 
bb-level reorder, procedure-splitting, and TRG. We will 
give a brief introduction in section 3.1 and 3.2. 

In the embedded world, Chiou[11] presented a hardware 
mechanism named column caching by which software can dy-
namically partition the cache and map data regions to a specific 
set of cache “columns”. Sanghai [6] presented a framework which 
took temporal locality into account and partitioned the codes to 
map them onto SRAM and I-cache separately. However, both of 
these methods are not simple and cannot adapt to different appli-
cations dynamically because they either need support from hard-
ware or need to be configured statically and thus lack flexibility. 

3.1 Basic-block Level Reorder and Procedure Splitting 

Basic block reordering of functions into hot and cold por-
tions is now common in most compilers. This improves 
static branch prediction rate and code locality for better 
instruction cache usage. The bb-level reorder algorithm 
implemented in the Open64 compiler is based on Pattis and 
Hansen’s algorithm in which consecutive basic blocks will 
form a bb-chain. Bb-chains formed by hot basic blocks can 
be identified by profiling and are enclosed in a hot region. 
Likewise, the Open64 compiler groups the set of cold basic 
blocks together; they are chained to form a cold region. 
Then distinct sections (we termed them code blocks 
throughout this paper) are generated for the hot and the 
cold regions respectively, which are further laid out by our 
layout algorithm. 

Our code layout algorithm benefits from bb-level reor-
der in two folds: 1) to increase the spatial locality of pro-
grams so as to improve the instruction cache performance 
and 2) to perform procedural splitting (pu-split). 

We benefit from pu-split in three folds: 1) to make generated 
code blocks more uniform in hotness, regularity, locality and den-
sity, 2) to enable finer grain control for code layout heuristics by 
reducing sizes of objects to be laid out, and 3) by separating 
HOT/COLD code regions, we can focus on the HOT part for 
more precise code layout and use COLD parts as pads to fill in 
the “holes” generated by the layout of hot objects. 

3.2 Temporal Relation Graph 

The temporal relation graph (TRG) is a powerful tool to 
precisely express the temporal interleaved relationship 
(called temporal profile information) between code blocks. 
We use it to calculate the desired instruction cache size 
needed and to map the code blocks onto the cache region 
while reducing conflict misses as much as possible. 

The temporal profile information is formally defined as 
the following. Given a cb-trace of code block references, 
for two code blocks P and Q, let R(P,Q) be the number of 
times that two consecutive occurrences of P are interleaved 
with at least one reference Q, or vice versa. It can be calcu-
lated by maintaining a stack of references and increasing 
R(P,Q) between P and Q when interleaved references occur. 
R(P,Q) is recorded in TRG as the weight of edge (P, Q). 

4. Weighted Temporal Distribution and Code 
Block Classification 
In this section, we will first illustrate the method to identify 
good candidates for code blocks with good temporal regu-
larity in terms of temporal distribution. Then we will intro-
duce the process of code block classification. 

4.1 Weighted Temporal Distribution 

To identify good candidates for code blocks with good 
temporal regularity, we calculate weighted temporal distri-
bution (WTD), which is measurement of whether a code 
block is a good candidate in terms of temporal distribution. 
Both hotness and distribution uniformity are considered in 
its calculation. 

To characterize distribution uniformity, we combine the 
variance of reuse distance with live range information of 
code blocks. The code blocks with long live range and 
small variance of reuse distance will be classified to have 
uniform distribution. The formula is illustrated below. 

Assume we have a cb-trace of code blocks such as 
“…A…A…”, in which A is a code block and the total 
length of the cb-trace is L. 

We define PA to be the array of positions where A ap-
pears in the cb-trace. Assuming the total number of A ap-
pearances is NA and PA(i) is the position number of i-th 
appearance of A in cb-trace, then by definition PA(NA) is 
the position number of A’s last appearance, and PA(1) is the 
position number of A’s first appearance. The live range of A 
can be calculated as LRA= PA (NA)- PA(1). A has a longer 
live range if LRA is larger. 

With LRA, the average reuse distance of A can be calcu-
lated as ARDA=LRA/(NA -1).Then, Var(RDA), the normalized 
variance of A’s reuse distance, can be calculated by: 

1

1)1()(

)( 2

2

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−

=
∑
=

A

N

i A

AA

A N
ARD

iPiP

RDVar

A

 
The value of Var(RDA) reflects whether A is uniformly 

distributed within its live range, that is, from the first time 
it appears to the last time it appears.  

To characterize whether A is uniformly distributed along 
the whole cb-trace, we define TD(A), the temporal distribu-
tion of A, by: 
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We can see that the larger the value of TD(A), the more 

uniformly A is distributed along the cb-trace.  
Considering hotness, we define weighted temporal dis-

tribution of A WTD(A) as: 
)(*)( ATDNAWTD A=  

The value of WTD(A) reflects whether A is a good can-
didate in terms of temporal distribution. The larger the 
value of WTD(A), the better candidate A is. When NA is 
equal to one, we define WTD(A) to be zero. However we 
did not include the denseness factor in calculating WTD, 
since WTD only focuses on the temporal characteristics 
while denseness deals will space. We will consider dense-
ness in the partition process. 

To illustrate the process of WTD calculation in detail, we 
give an example in the following, using the sequence AB-
CDEF(UV)5ABCDEF(PQ)5ABCDEF(XY)5ABCDEF 
from  Section 1.  



We can see that the length of the cb-trace L=54. For 
code block A, we get position array PA={1, 16, 31, 46}. 
The total number of A appearances NA=4. We can then cal-
culate WTD(A) using the above formulas:  

Live range of A, LRA=46-1=45  
Average reuse distance of A, ARDA=45/(4-1)=15 
Variance of reuse distance of A, Var(RDA)=0  
Temporal distribution of A, TD(A)=(45/54)2/(1+0)2 = 

0.83 . 
Weighted temporal distribution of A, WTD(A)=4*0.83= 

3.33 . 
Similarly, we can calculate WTD(U)=0.11. We can see 

that WTD(A)>>WTD(U), and thus A will be a better candi-
date for code block with good temporal regularity than U in 
terms of temporal distribution. This is consistent with the 
observation in Section 1. 

4.2 Code Block Classification 

Three classes of code blocks are used in our approach:  
1. Cold code blocks, which is used as a pad to fill the 

“holes” generated by code placement. They are identi-
fied first by counting the number of appearances in the 
cb-trace. 

2. Hot code blocks with good temporal regularity. For 
simplicity, we call them “regular code blocks”. They are 
identified by WTD calculation. When the value of WTD 
of one code block is greater than a predefined threshold, 
we classify it as regular code block. In all our experi-
ments presented later in this paper, we set it to be 4.  

3. Leftover code blocks. They belong to the hot code 
blocks but with good temporal locality (or irregular dis-
tribution). We call them “irregular code blocks”. 
The set of regular and irregular code blocks will be fur-

ther classified in the following partition phase by character-
izing instruction density. 

5. Iterative Partition and Layout 
In this section, we present the method to partition the cache 
into two distinct regions, to adjust the code blocks between 
regular and irregular classes when needed, and to layout 
each class inside its corresponding region. After that, regu-
lar code blocks are guaranteed to have little cache misses 
while the irregular ones may incur some cache misses. 

We use a heuristic based algorithm which calculates the 
needed cache size for each class iteratively while adjusting 
the node from regular class to irregular, according to in-
struction density. 

We first calculate the needed size of the each class, that 
is, RB_SIZE (size needed by regular code blocks) and 
IRB_SIZE (size needed by irregular code blocks). The 
method to calculate RB_SIZE is based on TRG, which is 
the smallest size needed to avoid cache misses for regular 
code blocks. IRB_SIZE is evaluated by giving the prod-
uct of the maximal size of all the irregular code blocks and 
a coefficient set in advance, that is, N in the following 
pseudo code. The value of the N will help control the size 
of IRB_SIZE, and thus will help tune layout results for 
different applications. In all our experiments presented later 
in this paper, we set N to be 1. 

If the sum of RB_SIZE and IRB_SIZE is less than or 
equal to cache size, the partition ends. Otherwise, we adjust 
one code block in the regular class into irregular class. The 
code block with minimal density in regular class will be 

selected to be adjusted. Then, RB_SIZE and IRB_SIZE 
are recalculated. The process of adjusting and recalculating 
may repeat multiple times until the sum of calculated 
RB_SIZE and IRB_SIZE is no more than cache size. 

The pseudo code for the partitioning is illustrated in fig-
ure 1. 

In addition, there may exist very large irregular code 
blocks which will incur waste of cache area (since regular 
code blocks may not get enough space), or even cause the 
while loop in function Partition to loop infinitely. To pre-
vent this, we extract this type of code blocks in the parti-
tion process and map them aligned with the start of the 

Input:    CACHE_SIZE:  actual cache size 
N:  coefficient set to help evaluate IRB 
RB:  regular code block set 
IRB:  irregular code block set 

Output: RB:  regular code block set 
IRB:  irregular code block set 
RB_SIZE:  size needed by RB 
IRB_SIZE:  size needed by IRB 

/* Given two code block set, RB and IRB, partition  
/* the cache into two parts and calculate size of each part */ 
Func Partition ( RB, IRB )  { 

Sort the nodes in RB by instruction density  
// highest instruction density first 
RB_SIZE = Calc_rb_size ( RB ) 
IRB_SIZE = Calc_irb_size ( IRB ) 
While ( RB_SIZE + IRB_SIZE > CACHE_SIZE ) { 
 Adjust ( RB, IRB ) 
 RB_SIZE = Calc_rb_size ( RB ) 
 IRB_SIZE = Calc_irb_size( IRB ) 
} 

} 
/* Adjust node with minimal instruction density*/ 
/* from RB into IRB */ 
Func Adjust ( RB, IRB ) { 

Remove tail node from RB and insert it to IRB. 
} 
/* Calculate the needed size of RB */ 
Func Calc_rb_size ( RB ) { 

RB_SIZE = 0 
For each node P in BS { 

If (P fits into allocated cache lines)  
// P can be mapped onto the allocated cache lines 
// without incurring cache misses  

 Continue 
Else   
// Allocate cache lines for P 

 RB_SIZE = RB_SIZE + size ( P )   
// size ( P ) is text size of code block P 

End if 
} 
Return BS_SIZE 

} 
/* calculate the needed size of IRB */ 
Func Calc_irb_size( IRB ) { 

IRB_SIZE = 0 
max_node_size = max size of all the nodes in IRB 

Return N* max_node_size 
} 

Figure 1.  Pseudo code for iterative partition algorithm 



cache region for irregular code blocks. 
After partitioning, we lay out code blocks of each class 

within their own cache region respectively using the TRG 
algorithm and generate placement for each code block. 

6. Experiments 
To evaluate the effectiveness of our algorithm, an execu-
tion trace is used to quantify the instruction cache miss rate 
and the performance. We used two simulators, a function 
simulator which accepts the executable file as input and 
outputs the instruction trace file and a performance simula-
tor which accepts the instruction trace file and outputs per-
formance data. Our layout tool accepts the instruction trace 
file generated by our function simulator as input, and out-
puts a link script which specifies the desired memory lay-
out. The linker produces the final binary based on the 
linker script. The complete process is shown in figure 2. 
All the tools mentioned above are part of our toolchain for 
our product. 

A set of video and audio codec applications are used to 
evaluate the performance of our algorithm, including H264 
video encoder (Baseline Profile), H264 video decoder 
(Baseline Profile), AVS-M video decoder, MPEG4-ASP 
video decoder, and G.729.a voice coder, ordered according 
to their computation complexity from high to low. The 
computation complexity of H264 encoder is up to four 
times that of the H264 decoder while the H264 decoder has 
computation complexity up to 50% more than that of the 
MPEG4 decoder. It is important that the processor can de-
liver the required performance of the most demanding ap-
plication.  Hence, the optimization effect on the H264 
encoder is of highest importance. The cache configuration 
of all experiments is assumed to be two-way set-associative, 
with 32 byte cache line size. 

For video codecs, the experimental results shown in 
Section 7 correspond to encoding (or decoding) one P 
frame, the typical frame type in video sequences. Since 
each frame has 396 macroblocks, each frame represents 
396 different variations that the program will run through. 
For the G.729.a encoder, the results correspond to encoding 

three audio frames. It is worth noting that the codec sources 
we tested have been optimized for two different processors. 
The H.264 encoder, H.264 decoder, and AVS-M decoder 
are optimized on a multi-threaded 4-issue processor with 
powerful 16-wide SIMD engine and multimedia instruction 
extensions, while MPEG4 decoder and G.729.a encoder are 
optimized on a single-threaded 2-issue RISC processor. 
This explains why H.264 and AVS-M codec have much 
better performance numbers than MPEG4 decoder and 
G.729.a encoder in Section 7. 

To compare the performance of our layout algorithm 
(TD) with other approaches, we also implemented the PH 
and TRG algorithm (the type of TRG for procedures, not 
the TRG for procedure chunks) and compared the instruc-
tion cache results of the three methods. To reflect the po-
tential of different layout methods, all comparisons are 
based on the same fully optimized binary.  

Although our algorithm is profile-based, it is well adap-
tive to different inputs. This is because our algorithm, in 
theory, gives higher priority to regular code blocks, which 
tend to be more stable than the irregular ones. Another set 
of experiments was performed to evaluate and compare the 
adaptability of TD, PH and TRG to different input streams. 

7. Results 
Table 1 shows the performance data of our algorithm. To 
help understand the contribution of each type of code lay-
out optimization, instruction cache miss rate and total cycle 
count after each optimization phase are presented. Original 
programs use the standard link order specified in the Make-
file. Bb-level reorder inside the procedure reduced the in-
struction cache miss rate by an average of 19%. Our layout 
tool alone reduced the average instruction cache miss rate 
by 26% without pu-split and by 39% with pu-split. It 
should be noted that pu-split in Open64 helped increase the 
effect of layout tool significantly. 

Table 2 and Figure 3 compare the instruction cache effi-
ciency between our TD algorithm and the two classic algo-
rithms, PH and TRG. TD achieved the best performance in 
almost all cases. Especially for H264 encoder, TD outper-
forms PH and TRG by about 35%. We attribute this to the 
majority of cache misses being capacity miss, which is not 
reduced by considering the affinity relationship between 
code blocks alone, as most previous code layout algorithms 
did.  

The distribution of different kinds of cache misses is 
shown in Table 3. We can see that TD significantly reduced 
the number of capacity misses for all the test cases. The 
minor reduction of compulsory misses is due to better 
alignment. 

Table 4 and Figure 4 give the I-cache miss reduction 
with different input data by TD, PH and TRG algorithm, 
respectively. In Figure 4, “HE” represents H264 encoder 
and “HD” represents H264 decoder. For both the H.264 
encoder and decoder, we used “stenfan” as input for profile 
training, which is a video clip of a person playing tennis. 
We also used another two set of inputs, “akiyo” and “foot-
ball”, for further performance evaluation. “Akiyo” is a 
video clip of typical news report program with an anchor 
person sitting, almost still. “Football” is a video clip of 
playing football with fast camera and object motions. We 
can see that TD produced generally good results and was 
approaching the best performance for all the inputs. 
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Figure 2. Code layout process 



  
Test Environment 32K instruction cache,  I-cache miss penalty: 12 

 Application H264 enc H264 dec AVSM dec MPEG4 G729.A 
I$ miss rate 3.15 % 1.41 % 1.15 % 0.12 % 0.034 %Original 
Cycle count 7,394,114 2,547,316 2,348,833 6,741,494 2,950,998
I$ miss rate 2.78 % 1.33 % 0.73 % 0.07 % 0.034 %BB reorder 
Cycle count 6,938,883 2,458,446 2,202,098 6,694,694 2,643,767
I$ miss rate 2.47 % 0.80 % 0.21 % 0.04 % 0.029 %BB reorder and 

layout Cycle count 6,583,374 2,322,348 2,074,742 6,672,417 2,640,573
I$ miss rate 1.74 % 0.47 % 0.13 % 0.03 % 0.028 %BB reorder, pu-

split, layout Cycle count 5,936,792 2,235,330 2,058,496 6,660,513 2,638,241
Reduction of I$ miss rate 44.8 % 66. 6 % 88.7 % 72.5 % 17.6 %
Reduction of cycle count 19.7 % 8.8 % 12.4 % 1.2 % 10.6 %

Table 1. I-cache miss rate and total cycles w.r.t. various optimizations and combinations. 

 

 

Test Environment 32K instruction cache 
Application H264 enc H264 dec AVSM dec MPEG4 dec G729.A 

Original 3.15% 1.41% 1.15% 0.12% 0.034%
PH 2.74 % 0.49 % 0.26 % 0.040 % 0.030 %

TRG 2.64 % 0.86 % 0.24 % 0.037 % 0.028 %
TD 1.74 % 0.47 % 0.13 % 0.033 % 0.028 %

Table 2. I-cache miss rate of TD, PH, and TRG algorithms. 
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Figure 3. Reduction of I-cache misses by TD, PH and TRG. 

 
 

 



Test Environment 32K instruction cache 
Application H264 enc H264 dec 
Input data stenfan akiyo football stenfan akiyo football 
Original 3.15 % 2.11 % 3.35 % 1.41 % 1.02 % 1.91 %

PH 2.74 % 2.02 % 2.97 % 0.49 % 0.26 % 1.72 %
TRG 2.64 % 1.49 % 2.87 % 0.86 % 0.45 % 1.55 %
TD 1.74 % 0.86 % 2.04 % 0.47 % 0.29 % 1.60 %

Table 4. I-cache miss rate of TD, PH, and TRG algorithms. 
 
 

 
Figure 4. Reduction of I-cache misses by TD, PH and TRG with various inputs. 

 
 

8. Conclusion 
In our code layout work, we developed a new algorithm to 
position code using temporal distribution characteristics of 
code blocks and map them to different logical regions of 
the instruction cache. In this method, both capacity and 
conflict cache misses are effectively reduced, and the algo-
rithm showed good adaptability to the various multimedia 
programs to be used in our product, especially out-
performing other traditional algorithms for applications 
suffering from a large number of capacity misses. 

Compared with other algorithms that partition code into 
SRAM and I-cache, our software partition approach can 
produce the same effect and is more flexible and adaptable 
for each application. Also, for systems that will run multi-
ple applications, a static memory configuration will place a 
huge burden on system design, to swapping the binary be-
tween external memory and SRAM at program start. In 
contrast, for a pure cache approach, this is handled auto-
matically. 

 
 
 

 

9. Future work 
We have put forth an attempt to better deal with capacity I-
cache misses for embedded processors with small and sin-
gle level cache. We feel that this approach should be effec-
tive for general purpose processors and for applications in 
general, not just multimedia applications. We have yet to 
prove this is indeed the case. 

There have been precise models to evaluate capacity D-
cache misses to guide data layout, but a more precise mod-
eling of various types of I-cache misses has not been done. 
Such a model may be useful to guide more complex code 
layout algorithms and produce even better results, suggest-
ing another avenue for future work. 
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