

Patent pending

Temporal Distribution Based Software Cache Partition To
Reduce I-cache Misses

Xiaomi An Jiqiang Song Wendong Wang
SimpLight Nanoelectronics Ltd., Beijing China

100088
{xiaomi.an, jiqiang.song, wendong.wang}@simplnano.com

Abstract
As multimedia applications on mobile devices become
more computationally demanding, embedded proces-
sors with one level I-cache become more prevalent, typi-
cally with a combined I-cache and SRAM of 32KB ~
48KB total size. Code size reduction alone is no longer
adequate for such applications since program sizes are
much larger than the SRAM and I-cache combined. For
such systems, a 3% I-cache miss rate could easily translate
to more than 50% performance degradation. As such, code
layout to minimize I-cache miss is essential to reduce the
cycles lost.

In this paper, we propose a new code layout algorithm –
temporal distribution based software cache partition with
focus on multimedia code for mobile devices. This algo-
rithm is built on top of Open64’s [14] code reordering
scheme. By characterizing code according to their temporal
reference distribution characteristics, we partition the code
and map them to logically different regions of the cache.
Both capacity and conflict misses can be significantly re-
duced, and the cache is more effectively used. The algo-
rithm has been implemented as a part of our tool-chain for
our products.

We compare our results with previous works and show
more efficacy in reducing I-cache misses with our approach,
especially for applications suffering from capacity misses.

1. Observation and Motivation
As multi-core and multi-thread are being employed in em-
bedded processors, instruction fetch efficiency is even
more important to total system performance. Instruction
cache performance becomes one of the most critical factors
influencing the entire system design. For example, in our
video codec processor, a cache miss rate of 3% will cause
as much as 50% performance degradation for the H.264
encoder which is the most computationally demanding
video encoding standard today.

Traditional code layout algorithms use both basic block
and procedure as the unit for code positioning. Sometimes,

new “procedures” are generated by procedure splitting be-
fore further positioning. In this work, we always split pro-
cedure into two or more sections as the unit for layout;
called “code blocks”. The record of code blocks’ execution
sequence at runtime is used to analyze the temporal charac-
teristics of them for further code layout; we call the se-
quence “cb-trace”.

By analyzing the runtime temporal characteristics of the
code blocks, we observed two kinds of code blocks: code
blocks which are uniformly distributed along the cb-trace
and code blocks which exhibit a large skew in their distri-
bution. For example, consider the following temporal se-
quence where each alphabet letter represents one code
block:

ABCDEF(UV)5ABCDEF(PQ)5ABCDEF(XY)5ABCDEF

In the above sequence, A,B,C,D,E,F have uniform dis-

tribution, while U,V,P,Q,X,Y do not have uniform distribu-
tion.

Code blocks exhibiting a large skew in the reference dis-
tribution have good temporal locality [13]. They are usu-
ally good candidates for traditional code layout algorithms,
usually focuses on reducing I-cache conflict misses as they
can be well placed to reduce this kind of misses very effec-
tively. Consider the interleaved relationship between the
pairs U and V, P and Q, X and Y; we need only two cache
lines to hold the six code blocks, assuming each has the
size of one cache line. We call them code blocks with good
temporal locality.

On the other hand, code blocks exhibiting uniform ref-
erence distribution have little or no exploitable temporal
locality. This is due to the following reasons:
1. They generally interleave pervasively with other code

blocks and will cause many misses when sharing cache
lines with other code blocks. E.g. we need at least six
cache lines to hold A,B,C,D,E,F to avoid cache misses,
since they are interleaved with all the other code blocks.
To avoid cache misses, we practically have to let them
hold cache lines exclusively.

2. They often have relatively long reuse distance and
hence are prone to suffering from capacity miss. Be-
cause the traditional code layout algorithms are more ef-
fective on conflict misses, not much work has been
done for programs with large capacity.

Since this kind of code blocks have temporally regular
pattern, we call them code blocks with good temporal regu-
larity.

From the above example, it can be seen that different
kinds of code blocks need different layout policies. For
code blocks with good temporal locality, multiple code
blocks can share same cache lines and still incur no more
cache misses. For code blocks with good temporal regular-
ity, they had better hold cache lines as much as possible to
avoid cache misses.

However, traditional code layout algorithms do not dis-
tinguish the difference between these two kinds of code
blocks. When the cache capacity is large enough, we can
do a proper layout using the traditional algorithm. Suppose
we have more than eight cache lines. A traditional code
layout algorithm (e.g. TRG based algorithm) can generate a
placement to avoid all the conflict misses, as shown by the
following:

A B C D E F U/P/X V/Q/Y

However, when there is not enough cache capacity, say,

only six cache lines, different layout methods will generate
different number of cache misses E.g. M1 will have 24
misses and M2 have only 18 misses as shown by the fol-
lowing.

M1:

A/E B/F C D U/P/X V/Q/Y

M2:

A B C D U/P/X/E V/Q/Y/F

The key point here is to prevent code blocks with good

temporal regularity from sharing cache lines among them-
selves as much as possible (since it incurs cache line
thrashing too easily), and to let them hold cache lines ex-
clusively or share cache lines only with code blocks with
good temporal locality if needed.

For example, when A and E share the same cache line, A
and E will suffer from cache misses each time they are ref-
erenced. However, when E shares a cache line with U, P
and X, only references to E incur more cache misses due to
the good temporal locality of U, P and X.

Based on the above observation, we devised a temporal
distribution based software cache partition algorithm to do
code layout. Firstly, we characterize the code blocks by
temporal distribution and classify them according to good
temporal locality and good temporal regularity, respectively.
Secondly, we partition the cache into two regions to hold
these two types of code blocks.

2. Solutions and Methodology
Like traditional code layout algorithms, our partition based
algorithm is also heuristic based. Since the code placement
policy depends heavily on the program characteristics, it is
important to design an adaptive algorithm. Since our proc-
essor is targeted for multimedia, we focus our design and
evaluation on multimedia applications only.

Our layout process includes five steps: 1) code block
formation, including basic-block level (bb-level) reorder
and procedure splitting optimization, 2) execution and cb-
trace generation, 3) cb-trace analysis and temporal distribu-

tion calculation, 4) iterative partition of cache and code
blocks, and 5) layout and placement generation. The fol-
lowing is the summary of our solutions:
1. Characterize the temporal distribution of a cb-trace, in

terms of temporal regularity and locality. We use statis-
tical analysis of positions in cb-traces to do this.

2. Since we want code blocks with good temporal regular-
ity to hold cache lines exclusively, we only select the
ones whose cache misses are critical for total perform-
ance. Good candidates of these code blocks should have
the following characteristics:

a) They should be hot code blocks and directly affect
application performance.

b) They should be “dense” code blocks, that is, code
blocks with few branches. We use instruction den-
sity (dynamic instruction count of the code block
divided by its size) to evaluate the denseness. This
is beneficial to improve spatial usage of cache
lines.

3. Because different code sections inside one procedure
may exhibit different characteristics, hotness, and den-
sity, the various parts of a program procedure may be
completely different from each other, we do bb-level
reorder and procedure splitting before code layout. This
improves the uniformity of the hotness and density of
code blocks generated. Then, we generate distinct
placement for these split code blocks. The algorithm
and implementation of bb-level reorder and procedure
splitting are based on Open64 and will be discussed in
detail in section 3.1.

4. To make the partition applicable to different program
characteristics, we developed an iterative cache parti-
tion algorithm, which makes the algorithm more flexi-
ble and easy to use.

5. Finally, the TRG algorithm (which will be explained in
detail in section 3.2) is used to further place code blocks
inside each partitioned cache region.

The rest of the paper is organized as the following. Sec-

tion 3 reviews the related work. Section 4 gives the equa-
tions to calculate temporal distribution of code blocks and
classify the code blocks. Section 5 describes the iterative
partition and layout algorithm. Section 6 and 7 evaluate the
code layout algorithm by some typical multimedia embed-
ded applications, including four video and one audio pro-
gram. We conclude in Section 8.

3. Related Work
Much work has been done on code layout algorithms to
reduce cache misses. McFarling[2] repositioned programs
so that a direct-mapped cache behaves like a full-
associative cache. Since it is implemented by reordering
basic blocks in object files, portability, debuggability, and
certification are issues concerning this approach. Rami-
rez[4] used maximization of the sequentiality of instruc-
tions. However, when capacity misses dominate, neither
full-associative nor maximized instruction sequence can
help.

Pettis and Hansen[3] presented a profile-guided algo-
rithm based on “closest is best” which can be applied on
both the bb-level and procedure level. Hashemi[1] kept
track of the cache lines (colors) occupied by each mapped
procedure and used it to guide procedure mapping. Instead
of using the weighted call graph, Gloy[5] developed the

temporal relationship graph (TRG) by gathering temporal
profile information representing the interleaving of proce-
dures in a program trace. Although these methods differ
from our approach since they focus only on conflict misses
while ours deal with both capacity and conflict misses, we
still benefit from these traditional technologies, especially
bb-level reorder, procedure-splitting, and TRG. We will
give a brief introduction in section 3.1 and 3.2.

In the embedded world, Chiou[11] presented a hardware
mechanism named column caching by which software can dy-
namically partition the cache and map data regions to a specific
set of cache “columns”. Sanghai [6] presented a framework which
took temporal locality into account and partitioned the codes to
map them onto SRAM and I-cache separately. However, both of
these methods are not simple and cannot adapt to different appli-
cations dynamically because they either need support from hard-
ware or need to be configured statically and thus lack flexibility.

3.1 Basic-block Level Reorder and Procedure Splitting

Basic block reordering of functions into hot and cold por-
tions is now common in most compilers. This improves
static branch prediction rate and code locality for better
instruction cache usage. The bb-level reorder algorithm
implemented in the Open64 compiler is based on Pattis and
Hansen’s algorithm in which consecutive basic blocks will
form a bb-chain. Bb-chains formed by hot basic blocks can
be identified by profiling and are enclosed in a hot region.
Likewise, the Open64 compiler groups the set of cold basic
blocks together; they are chained to form a cold region.
Then distinct sections (we termed them code blocks
throughout this paper) are generated for the hot and the
cold regions respectively, which are further laid out by our
layout algorithm.

Our code layout algorithm benefits from bb-level reor-
der in two folds: 1) to increase the spatial locality of pro-
grams so as to improve the instruction cache performance
and 2) to perform procedural splitting (pu-split).

We benefit from pu-split in three folds: 1) to make generated
code blocks more uniform in hotness, regularity, locality and den-
sity, 2) to enable finer grain control for code layout heuristics by
reducing sizes of objects to be laid out, and 3) by separating
HOT/COLD code regions, we can focus on the HOT part for
more precise code layout and use COLD parts as pads to fill in
the “holes” generated by the layout of hot objects.

3.2 Temporal Relation Graph

The temporal relation graph (TRG) is a powerful tool to
precisely express the temporal interleaved relationship
(called temporal profile information) between code blocks.
We use it to calculate the desired instruction cache size
needed and to map the code blocks onto the cache region
while reducing conflict misses as much as possible.

The temporal profile information is formally defined as
the following. Given a cb-trace of code block references,
for two code blocks P and Q, let R(P,Q) be the number of
times that two consecutive occurrences of P are interleaved
with at least one reference Q, or vice versa. It can be calcu-
lated by maintaining a stack of references and increasing
R(P,Q) between P and Q when interleaved references occur.
R(P,Q) is recorded in TRG as the weight of edge (P, Q).

4. Weighted Temporal Distribution and Code
Block Classification
In this section, we will first illustrate the method to identify
good candidates for code blocks with good temporal regu-
larity in terms of temporal distribution. Then we will intro-
duce the process of code block classification.

4.1 Weighted Temporal Distribution

To identify good candidates for code blocks with good
temporal regularity, we calculate weighted temporal distri-
bution (WTD), which is measurement of whether a code
block is a good candidate in terms of temporal distribution.
Both hotness and distribution uniformity are considered in
its calculation.

To characterize distribution uniformity, we combine the
variance of reuse distance with live range information of
code blocks. The code blocks with long live range and
small variance of reuse distance will be classified to have
uniform distribution. The formula is illustrated below.

Assume we have a cb-trace of code blocks such as
“…A…A…”, in which A is a code block and the total
length of the cb-trace is L.

We define PA to be the array of positions where A ap-
pears in the cb-trace. Assuming the total number of A ap-
pearances is NA and PA(i) is the position number of i-th
appearance of A in cb-trace, then by definition PA(NA) is
the position number of A’s last appearance, and PA(1) is the
position number of A’s first appearance. The live range of A
can be calculated as LRA= PA (NA)- PA(1). A has a longer
live range if LRA is larger.

With LRA, the average reuse distance of A can be calcu-
lated as ARDA=LRA/(NA -1).Then, Var(RDA), the normalized
variance of A’s reuse distance, can be calculated by:

1

1)1()(

)(2

2

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−

=
∑
=

A

N

i A

AA

A N
ARD

iPiP

RDVar

A

The value of Var(RDA) reflects whether A is uniformly

distributed within its live range, that is, from the first time
it appears to the last time it appears.

To characterize whether A is uniformly distributed along
the whole cb-trace, we define TD(A), the temporal distribu-
tion of A, by:

()
()2

2

)(1
/)(

A

A

RDVar
LLRATD

+
=

We can see that the larger the value of TD(A), the more

uniformly A is distributed along the cb-trace.
Considering hotness, we define weighted temporal dis-

tribution of A WTD(A) as:
)(*)(ATDNAWTD A=

The value of WTD(A) reflects whether A is a good can-
didate in terms of temporal distribution. The larger the
value of WTD(A), the better candidate A is. When NA is
equal to one, we define WTD(A) to be zero. However we
did not include the denseness factor in calculating WTD,
since WTD only focuses on the temporal characteristics
while denseness deals will space. We will consider dense-
ness in the partition process.

To illustrate the process of WTD calculation in detail, we
give an example in the following, using the sequence AB-
CDEF(UV)5ABCDEF(PQ)5ABCDEF(XY)5ABCDEF
from Section 1.

We can see that the length of the cb-trace L=54. For
code block A, we get position array PA={1, 16, 31, 46}.
The total number of A appearances NA=4. We can then cal-
culate WTD(A) using the above formulas:

Live range of A, LRA=46-1=45
Average reuse distance of A, ARDA=45/(4-1)=15
Variance of reuse distance of A, Var(RDA)=0
Temporal distribution of A, TD(A)=(45/54)2/(1+0)2 =

0.83 .
Weighted temporal distribution of A, WTD(A)=4*0.83=

3.33 .
Similarly, we can calculate WTD(U)=0.11. We can see

that WTD(A)>>WTD(U), and thus A will be a better candi-
date for code block with good temporal regularity than U in
terms of temporal distribution. This is consistent with the
observation in Section 1.

4.2 Code Block Classification

Three classes of code blocks are used in our approach:
1. Cold code blocks, which is used as a pad to fill the

“holes” generated by code placement. They are identi-
fied first by counting the number of appearances in the
cb-trace.

2. Hot code blocks with good temporal regularity. For
simplicity, we call them “regular code blocks”. They are
identified by WTD calculation. When the value of WTD
of one code block is greater than a predefined threshold,
we classify it as regular code block. In all our experi-
ments presented later in this paper, we set it to be 4.

3. Leftover code blocks. They belong to the hot code
blocks but with good temporal locality (or irregular dis-
tribution). We call them “irregular code blocks”.
The set of regular and irregular code blocks will be fur-

ther classified in the following partition phase by character-
izing instruction density.

5. Iterative Partition and Layout
In this section, we present the method to partition the cache
into two distinct regions, to adjust the code blocks between
regular and irregular classes when needed, and to layout
each class inside its corresponding region. After that, regu-
lar code blocks are guaranteed to have little cache misses
while the irregular ones may incur some cache misses.

We use a heuristic based algorithm which calculates the
needed cache size for each class iteratively while adjusting
the node from regular class to irregular, according to in-
struction density.

We first calculate the needed size of the each class, that
is, RB_SIZE (size needed by regular code blocks) and
IRB_SIZE (size needed by irregular code blocks). The
method to calculate RB_SIZE is based on TRG, which is
the smallest size needed to avoid cache misses for regular
code blocks. IRB_SIZE is evaluated by giving the prod-
uct of the maximal size of all the irregular code blocks and
a coefficient set in advance, that is, N in the following
pseudo code. The value of the N will help control the size
of IRB_SIZE, and thus will help tune layout results for
different applications. In all our experiments presented later
in this paper, we set N to be 1.

If the sum of RB_SIZE and IRB_SIZE is less than or
equal to cache size, the partition ends. Otherwise, we adjust
one code block in the regular class into irregular class. The
code block with minimal density in regular class will be

selected to be adjusted. Then, RB_SIZE and IRB_SIZE
are recalculated. The process of adjusting and recalculating
may repeat multiple times until the sum of calculated
RB_SIZE and IRB_SIZE is no more than cache size.

The pseudo code for the partitioning is illustrated in fig-
ure 1.

In addition, there may exist very large irregular code
blocks which will incur waste of cache area (since regular
code blocks may not get enough space), or even cause the
while loop in function Partition to loop infinitely. To pre-
vent this, we extract this type of code blocks in the parti-
tion process and map them aligned with the start of the

Input: CACHE_SIZE: actual cache size
N: coefficient set to help evaluate IRB
RB: regular code block set
IRB: irregular code block set

Output: RB: regular code block set
IRB: irregular code block set
RB_SIZE: size needed by RB
IRB_SIZE: size needed by IRB

/* Given two code block set, RB and IRB, partition
/* the cache into two parts and calculate size of each part */
Func Partition (RB, IRB) {

Sort the nodes in RB by instruction density
// highest instruction density first
RB_SIZE = Calc_rb_size (RB)
IRB_SIZE = Calc_irb_size (IRB)
While (RB_SIZE + IRB_SIZE > CACHE_SIZE) {
 Adjust (RB, IRB)
 RB_SIZE = Calc_rb_size (RB)
 IRB_SIZE = Calc_irb_size(IRB)
}

}
/* Adjust node with minimal instruction density*/
/* from RB into IRB */
Func Adjust (RB, IRB) {

Remove tail node from RB and insert it to IRB.
}
/* Calculate the needed size of RB */
Func Calc_rb_size (RB) {

RB_SIZE = 0
For each node P in BS {

If (P fits into allocated cache lines)
// P can be mapped onto the allocated cache lines
// without incurring cache misses

 Continue
Else
// Allocate cache lines for P

 RB_SIZE = RB_SIZE + size (P)
// size (P) is text size of code block P

End if
}
Return BS_SIZE

}
/* calculate the needed size of IRB */
Func Calc_irb_size(IRB) {

IRB_SIZE = 0
max_node_size = max size of all the nodes in IRB

Return N* max_node_size
}

Figure 1. Pseudo code for iterative partition algorithm

cache region for irregular code blocks.
After partitioning, we lay out code blocks of each class

within their own cache region respectively using the TRG
algorithm and generate placement for each code block.

6. Experiments
To evaluate the effectiveness of our algorithm, an execu-
tion trace is used to quantify the instruction cache miss rate
and the performance. We used two simulators, a function
simulator which accepts the executable file as input and
outputs the instruction trace file and a performance simula-
tor which accepts the instruction trace file and outputs per-
formance data. Our layout tool accepts the instruction trace
file generated by our function simulator as input, and out-
puts a link script which specifies the desired memory lay-
out. The linker produces the final binary based on the
linker script. The complete process is shown in figure 2.
All the tools mentioned above are part of our toolchain for
our product.

A set of video and audio codec applications are used to
evaluate the performance of our algorithm, including H264
video encoder (Baseline Profile), H264 video decoder
(Baseline Profile), AVS-M video decoder, MPEG4-ASP
video decoder, and G.729.a voice coder, ordered according
to their computation complexity from high to low. The
computation complexity of H264 encoder is up to four
times that of the H264 decoder while the H264 decoder has
computation complexity up to 50% more than that of the
MPEG4 decoder. It is important that the processor can de-
liver the required performance of the most demanding ap-
plication. Hence, the optimization effect on the H264
encoder is of highest importance. The cache configuration
of all experiments is assumed to be two-way set-associative,
with 32 byte cache line size.

For video codecs, the experimental results shown in
Section 7 correspond to encoding (or decoding) one P
frame, the typical frame type in video sequences. Since
each frame has 396 macroblocks, each frame represents
396 different variations that the program will run through.
For the G.729.a encoder, the results correspond to encoding

three audio frames. It is worth noting that the codec sources
we tested have been optimized for two different processors.
The H.264 encoder, H.264 decoder, and AVS-M decoder
are optimized on a multi-threaded 4-issue processor with
powerful 16-wide SIMD engine and multimedia instruction
extensions, while MPEG4 decoder and G.729.a encoder are
optimized on a single-threaded 2-issue RISC processor.
This explains why H.264 and AVS-M codec have much
better performance numbers than MPEG4 decoder and
G.729.a encoder in Section 7.

To compare the performance of our layout algorithm
(TD) with other approaches, we also implemented the PH
and TRG algorithm (the type of TRG for procedures, not
the TRG for procedure chunks) and compared the instruc-
tion cache results of the three methods. To reflect the po-
tential of different layout methods, all comparisons are
based on the same fully optimized binary.

Although our algorithm is profile-based, it is well adap-
tive to different inputs. This is because our algorithm, in
theory, gives higher priority to regular code blocks, which
tend to be more stable than the irregular ones. Another set
of experiments was performed to evaluate and compare the
adaptability of TD, PH and TRG to different input streams.

7. Results
Table 1 shows the performance data of our algorithm. To
help understand the contribution of each type of code lay-
out optimization, instruction cache miss rate and total cycle
count after each optimization phase are presented. Original
programs use the standard link order specified in the Make-
file. Bb-level reorder inside the procedure reduced the in-
struction cache miss rate by an average of 19%. Our layout
tool alone reduced the average instruction cache miss rate
by 26% without pu-split and by 39% with pu-split. It
should be noted that pu-split in Open64 helped increase the
effect of layout tool significantly.

Table 2 and Figure 3 compare the instruction cache effi-
ciency between our TD algorithm and the two classic algo-
rithms, PH and TRG. TD achieved the best performance in
almost all cases. Especially for H264 encoder, TD outper-
forms PH and TRG by about 35%. We attribute this to the
majority of cache misses being capacity miss, which is not
reduced by considering the affinity relationship between
code blocks alone, as most previous code layout algorithms
did.

The distribution of different kinds of cache misses is
shown in Table 3. We can see that TD significantly reduced
the number of capacity misses for all the test cases. The
minor reduction of compulsory misses is due to better
alignment.

Table 4 and Figure 4 give the I-cache miss reduction
with different input data by TD, PH and TRG algorithm,
respectively. In Figure 4, “HE” represents H264 encoder
and “HD” represents H264 decoder. For both the H.264
encoder and decoder, we used “stenfan” as input for profile
training, which is a video clip of a person playing tennis.
We also used another two set of inputs, “akiyo” and “foot-
ball”, for further performance evaluation. “Akiyo” is a
video clip of typical news report program with an anchor
person sitting, almost still. “Football” is a video clip of
playing football with fast camera and object motions. We
can see that TD produced generally good results and was
approaching the best performance for all the inputs.

instruction trace

relocatable files

Binary file

layout tool

linker

Compiler & assembler

C program

Link script

Function simulator

performance simulator

Performance data

Figure 2. Code layout process

Test Environment 32K instruction cache, I-cache miss penalty: 12

 Application H264 enc H264 dec AVSM dec MPEG4 G729.A
I$ miss rate 3.15 % 1.41 % 1.15 % 0.12 % 0.034 %Original
Cycle count 7,394,114 2,547,316 2,348,833 6,741,494 2,950,998
I$ miss rate 2.78 % 1.33 % 0.73 % 0.07 % 0.034 %BB reorder
Cycle count 6,938,883 2,458,446 2,202,098 6,694,694 2,643,767
I$ miss rate 2.47 % 0.80 % 0.21 % 0.04 % 0.029 %BB reorder and

layout Cycle count 6,583,374 2,322,348 2,074,742 6,672,417 2,640,573
I$ miss rate 1.74 % 0.47 % 0.13 % 0.03 % 0.028 %BB reorder, pu-

split, layout Cycle count 5,936,792 2,235,330 2,058,496 6,660,513 2,638,241
Reduction of I$ miss rate 44.8 % 66. 6 % 88.7 % 72.5 % 17.6 %
Reduction of cycle count 19.7 % 8.8 % 12.4 % 1.2 % 10.6 %

Table 1. I-cache miss rate and total cycles w.r.t. various optimizations and combinations.

Test Environment 32K instruction cache
Application H264 enc H264 dec AVSM dec MPEG4 dec G729.A

Original 3.15% 1.41% 1.15% 0.12% 0.034%
PH 2.74 % 0.49 % 0.26 % 0.040 % 0.030 %

TRG 2.64 % 0.86 % 0.24 % 0.037 % 0.028 %
TD 1.74 % 0.47 % 0.13 % 0.033 % 0.028 %

Table 2. I-cache miss rate of TD, PH, and TRG algorithms.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

H264 enc H264 dec AVSM dec MPEG4 dec G729.A

TD

PH

TRG

Figure 3. Reduction of I-cache misses by TD, PH and TRG.

Test Environment 32K instruction cache
Application H264 enc H264 dec
Input data stenfan akiyo football stenfan akiyo football
Original 3.15 % 2.11 % 3.35 % 1.41 % 1.02 % 1.91 %

PH 2.74 % 2.02 % 2.97 % 0.49 % 0.26 % 1.72 %
TRG 2.64 % 1.49 % 2.87 % 0.86 % 0.45 % 1.55 %
TD 1.74 % 0.86 % 2.04 % 0.47 % 0.29 % 1.60 %

Table 4. I-cache miss rate of TD, PH, and TRG algorithms.

Figure 4. Reduction of I-cache misses by TD, PH and TRG with various inputs.

8. Conclusion
In our code layout work, we developed a new algorithm to
position code using temporal distribution characteristics of
code blocks and map them to different logical regions of
the instruction cache. In this method, both capacity and
conflict cache misses are effectively reduced, and the algo-
rithm showed good adaptability to the various multimedia
programs to be used in our product, especially out-
performing other traditional algorithms for applications
suffering from a large number of capacity misses.

Compared with other algorithms that partition code into
SRAM and I-cache, our software partition approach can
produce the same effect and is more flexible and adaptable
for each application. Also, for systems that will run multi-
ple applications, a static memory configuration will place a
huge burden on system design, to swapping the binary be-
tween external memory and SRAM at program start. In
contrast, for a pure cache approach, this is handled auto-
matically.

9. Future work
We have put forth an attempt to better deal with capacity I-
cache misses for embedded processors with small and sin-
gle level cache. We feel that this approach should be effec-
tive for general purpose processors and for applications in
general, not just multimedia applications. We have yet to
prove this is indeed the case.

There have been precise models to evaluate capacity D-
cache misses to guide data layout, but a more precise mod-
eling of various types of I-cache misses has not been done.
Such a model may be useful to guide more complex code
layout algorithms and produce even better results, suggest-
ing another avenue for future work.

Acknowledgments
The authors would like to thank Sun Chan for his encouragement
and support for this work. We also thank Robert Hundt for his
helpful comments in improving the quality of this paper.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

HE:stenfan HE:akiyo HE:football HD:stenfan HD:akiyo HD:football

TD
PH
TRG

References
 [1] A. H. Hashemi, D. R. Kaeli, et al, “Efficient Procedure

Mapping Using Cache Line Coloring,” In ACM Con-
ference on Programming Languages Design and Im-
plementation, pages 171–182, 1997.

[2] S. McFarling, “Program Optimization for Instruction
Caches,” In ACM Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 183-191, 1989.

[3] K. Pettis and R. C. Hansen, “Profile-guided code posi-
tioning,” In ACM Conference on Programming Lan-
guages Design and Implementation, pages 16-27,
1990.

[4] A. Ramirez, J.-L. Larriba-Pey, et al, “Software Trace
Cache,” In International Conference on Supercomput-
ing, pages 119-126, 1999.

[5] Nikolas Clemens Gloy, “Code Placement using Tempo-
ral Profile Information,” PHD thesis. 1998.

[6] Kaushal Sanghai and David Kaeli, “A Code Layout
Framework for Embedded Processors with Configur-
able Memory Hierarchy,” 5th Workshop on Optimiza-
tions for DSP and Embedded Systemsm 2007.

[7] Alex Ramirez, Luiz Andre Barroso, et al, “Code Layout
Optimization for Transaction Processing Workloads,”
In International Symposium on Computer Architecture

Proceedings of the 28th annual international sympo-
sium on Computer architecture. 2001.

[8] O. Temam, C. Fricker, et al, “Cache Interference Phe-
nomena,” In Proceedings of the 1994 ACM SIGMET-
RICS Conference on Measurement and Modeling of
Computer Systems, pages 261-271, 1994.

[9] Chi-Keung Luk, Robert Muth, et al, “Ispike: A post-
link Optimizer for the Intel Itanium Architecture,” In
International Symposium in Code Generation and Op-
timization. 2004.

[10] Chun Xia, Josep Torrellas, “Instruction Prefetching of
Systems Codes With Layout Optimized for Reduced
Code Misses,” In International Symposium on Com-
puter Architecture.1996.

[11] Chiou, D. Jain, et al, “Application-Specific Memory
Management for Embedded Systems,” Design Auto-
mation Conference, 2000.

[12] Peter J. Denning, “The Working Set Model for Pro-
gram Behavior,” ACM Symposium on Operating Sys-
tems Principles, 1967.

[13] Trishul M. Chilimbi, “Efficient Representations and
Abstractions for Quantifying and Exploiting Data Ref-
erence Locality,” ACM Conference on Programming
Language Design and Implementation, 2001.

[14] Open64, http://open64.sourceforge.net/

