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Abstract  

In this paper, an efficient code size optimization instruction 
set architecture targeting embedded telecommunication 
applications is introduced. Nowadays, mixed 16-bit and 32-
bit size instruction set approaches are commonly used to 
achieve code size reduction while minimizing performance 
loss. They are usually designed with some restrictions such 
as reducing the number of accessible registers, mode 
switching, or special hardware logic handling.  
The approach starts with a common, basic RISC ISA [6] 
and a re-targetable high performance compiler. The 
Open64 compiler was chosen for its machine independent 
optimization so that once retargeted, the generated code 
will be of high performance quality. Once retargeted, we 
start our ISA compression design based on statistics 
collected from the code generated. By judicious selection 
from actual instructions generated, a high code 
compression rate is achieved without adding restrictions to 
the number of registers used and hardware implementation. 
Furthermore, this approach does not introduce any 
noticeable performance degradation due to the mixed 
32/16-bit ISA compared to the full 32-bit ISA. 
Keywords mixed instruction code generation, code size, 
ISA design, instruction scheduling 

 

1. Introduction 

Due to technological advances, people now enjoy high 
speed computing and large amounts of memory at 
relatively low prices in desktop computers. However, in the 
world of embedded systems, the situation is quite different. 
On the embedded systems, size and power consumption is 
a big concern during the development process. Therefore, 

code size is always a critical issue on embedded systems 
while on desktop platforms it is insignificant. 
Because of the importance of code size, many system 
developers place much effort on improving the related 
issue. Common methods to reduce code size are mainly 
based on mode switching, pre-processing decoder, 1-to-n 
instruction mapping, 16/32-bit instructions mixing, or 
reducing the number of accessible registers. Some 
methodologies from well-known developers are discussed 
below: 

1.1 ARM - Thumb [7, 12] 

The code compression is done by using Thumb ISA with 
about extra 36 16-bit instructions. A mode-switch 
instruction is needed to differentiate between the modes, 
and the program can only be executed either in 16-bit mode 
or 32-bit mode. 

 
Thumb ISA cannot handle interrupts and only eight 
registers out of sixteen can be accessed. Code size can be 
reduced up to 20-30% while the performance is reduced 
about 15% due to mode-switch and other overheads [8]. 

1.2 ARM - Thumb-2[11] 

Thumb-2 is an individual ISA with mixed 16-bit and 32-bit 
instructions. Unlike Thumb, Thumb-2 does not require any 
mode-switch and is a complete, functional ISA. A special 
unit is added to map the Thumb-2 instruction to the 
corresponding ARM instruction. 
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Possible code size reduction with Thumb-2 is less than the 
reduction possible with Thumb, with a performance 
penalty of about 15-25% [8]. 

1.3 MIPS - MIPS16e [9] 

MIPS16e is a 16-bit ISA extension in some MIPS 
processors. And MIPS16e is used similarly to Thumb. A 
mode-switch with a special branch instruction is needed to 
switch between 16-bit and 32-bit modes.  

 
Code size can be reduced up to 20-30% while the 
performance is reduced about 15% due to the extraction of 
data structure and mode-switch handlings. 

1.4 IBM PowerPC – CodePack [5, 10] 

CodePack uses an approach similar to application 
compression/decompression. The executable is compressed 
by a program based on several compression algorithms. 
The executable will be decompressed on the fly during 
execution by the CodePack-equipped processor. 

 

CodePack delivers up to 20-30% compression rate with a 
negligible performance penalty [8]. However, a complex 
hardware de-compressor support is required. 

1.5 ARC International – ARCompact [1, 2] 

ARCompact allows users to define their instructions. In 
order to improve the code size optimization, some 16-bit 
instructions are added to the user-defined space.  

 
 

By using intermix of 16/32-bit instructions, up to 40% 
compression rate with a negligible performance penalty [8]. 
However, complex hardware design is required. 
 
From the methodologies listed above, developers place 
much effort on hardware design to improve the code size. 
However, hardware support is always accompanied by 
higher costs and less flexibility compared to software. By 
making use of statistical data from fully optimized binaries 
and software-hardware co-design methodology, an ISA 
that supports mixed 16/32-bit instructions was designed, 
with very limited hardware costs. The code size 
compression ratio is competitive, and the performance 
penalty is negligible. Mode changing is not needed. The 

ISA supports thirty-two registers for both the 32-bit and 
16-bit sized instructions. 
 

2. Instruction Analysis 

Most RISC ISA support a maximum of three operands. 
However, it is not essential that every instruction occupy 
all operand space. Provided that thirty-two registers (ie. 
GPR field = 5bits) and 6-bit opcode length are supported, 
several groups have been defined as follows to generalize 
the instruction format: 

 
Combination Bits used  Example 
No operands 0 bits Jr, Ret 
Index24 24bits Jp 
2 GPRs/ 10 bits Mvtc, Mvfc 
3 GPRs 15 bits Add, muls 
2GPRs+ imm16 10bits+16bits Load/Store 
2GPRs+ imm5 10bits + 5bits Shift imm 

 
In order to compress a 32-bit instruction into a 16-bit 
instruction, the following methods are commonly used: 

 Reducing the number of available registers (the 
number of bits representing GPR fields). As the 
number of useable registers is reduced, the number of 
register swapping will be increased. Performance 
penalty is introduced and the register usability is 
reduced. 

 Reducing the value range of immediate operand. The 
expressible offset/value range is reduced.  

 Breaking a 3-operand instruction to a 2-operand (or 
less) instruction. Extra instructions are needed for the 
same function, and therefore, the number of execution 
cycles is usually increased [6]. 

By compressing 32-bit instructions to 16-instructions, these 
solutions can reduce the code size. However, the overhead 
that accompanies the solutions is also significant and 
impacts the overall performance. In order to select the right 
instruction candidates for optimizing code size, a series of 
analyses have been done. These analyses are based on 
some data from several commonly used applications of 
embedded systems. 

 
 Uclibc Open source library package for 

embedded applications 
 G729a Voice codec program used in mobile 

phones 
 Mpeg4 MPEG-4/ASP decoder program  
 Nucleus A popular RTOS for embedded 

processors (ported to the Mips-like architecture) 
 libmad MPEG audio decoder library 
 ucLinux Linux kernel release 2.6.xx for embedded 

processors 
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 Lay 2/3 Layer 2 and Layer 3 of the GSM wireless 
communication protocol stack 

2.1 Register Reducing Method 

At first, a typical method is used to test the influence to 
performance. The compiler is modified to reduce the 
number of available registers from thirty-two to sixteen. 
Applications are compiled by both original compiler (32 
available registers) and modified compiler (16 available 
registers). The numbers of instruction issuing and 
execution cycles are counted for both versions of 
applications.  
The performance penalty is significantly larger and violates 
the original criteria, namely, achieving a high compression 
ratio without significant performance impact. From this 
experiment, the number of instructions count was increased 
by 1.6%-13.1% (Figure 1) and the number of execution 
cycles was increased by 2%-12.4% (Figure 2). The 
performance penalty will be higher in proportion to the 
complexity of the applications. Because of the significant 
performance penalty, this mechanism is not the ideal 
method to design compressed instructions. 
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Figure 1: Normalized execution instruction counts (32 registers 
vs. 16 registers) 
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Figure 2: Normalized execution cycles (32 registers vs. 16 
registers) 

2.2 Instruction characteristics 

To find a better solution to reduce the code size without a 
large impact on performance, a series of detailed 
experiments were completed. From the results, some 
interesting characteristics have been found. Around 50-
65% of the instruction distribution belongs to one of the 
following groups (Table 1): 

 Instruction using $0 (hardwired register value 0) 
accounts for a large percentage of static instruction 
counts. The reason being that many register copy 
operations are involved (add $rd, $rs, $0). Another 
typical case is branch instructions with branch 
condition involved $0 (eg. x>0).  

 $sp(stack pointer) with small offset, which is mainly 
due to memory spill/fill operations. Offset of this type 
is always word aligned and positive, and we found 
approximately 80.44% could be represented by 7-bit 
immediate operand (Fig. 3). 

 Destination register is same as one of the sources, that 
is, 2-operand logically. The reason is that much of the 
calculation is going to apply the result to itself (eg. 
i++, a=a<<4). 

 Offset is zero. As mentioned, most load/store 
operations have zero offset. 

 Instruction without any operand. 
 Calculation with a small immediate or offset. This is 

due to most of ALU calculations being small number 
or pointer increments (eg. a=b+2, ptr++). Another 
reason is that quite a few of branches are within a 
small offset. Around 78% of the offsets could be 
represented by 5-bit unsigned immediate operand 
(Figure 4). 

 

2.3 Compressible Instructions 

From the above observations, related instructions can either 
be reduced to 16-bit or converted to a 2-operand instruction 
by following ways: 
 

 Removing the unused bits 
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application $0  $sp $rs==$rd imme0 No operand total 

uclibc 26.83% 23.99% 4.88% 5.93% 3.00% 64.64% 

mp3 18.46% 21.07% 8.51% 3.71% 1.79% 53.53% 

mpeg4 12.92% 11.55% 19.10% 4.61% 0.85% 49.02% 

729a 27.24% 22.55% 8.38% 4.60% 1.53% 64.29% 

nucleus-demo 18.44% 21.00% 5.70% 4.52% 3.72% 53.38% 

L2/L3 22.89% 21.21% 3.62% 3.55% 3.55% 54.82% 

linux 19.60% 27.44% 6.85% 3.56% 2.42% 59.86% 

Table 1:  Distribution for some compressible instructions. 
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Figure 3: Range distribution of memory operations based on stack pointer. 
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Figure 4: Range distribution of br.eq/br.ne offset 
 

application uclibc mp3 mpeg4 729a 
Nucleus- 

demo 
linux L2/L3 

coverage 51.62% 42.46% 45.07% 48.89% 45.64% 49.59% 49.04% 

Table 2: Coverage of designed compressed instructions. 
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 Combining destination operand to source when they 
are equal 

 
 

 Implicitly using well-known registers like $0 and $sp 

 
 

 Reducing the immediate size to 5bits for some 
immediate/offset typed instructions 

 
 
By selecting the compressible and frequently used 
instructions, a special 16-bit instruction set is designed. The 
16-bit instruction set can be covered up to approximately 
40% to 50% of the testing program instruction distribution 
(Table 2). 

 

3. Compiler Support 

After designing the 16-bit instruction subset, an enhanced 
compiler is essential for effectively generating those16-bit 
instructions. Since the average coverage is around 47.47%, 
the maximum code reduction goal should be 23.7%. In this 
section, the modifications of the retargeted Open64 
compiler and the code generating process will be described.  
According 2.1 described above, the compressible 
characteristics can be detected after the register allocation 
phase in the compiler. There are three steps to generate 
optimized mixed instructions in the compiler as shown in 
Figure 5.  

 
Figure 5:  Flow of mixed instruction set generation. 

3.1 First step: marking convertible instructions 

According to the rules described in Section 2, the 32-bit 
instruction set is divided into different types (see Table 3). 
If an instruction has a corresponding compressed opcode 
and satisfies any of following conditions, it is marked as a 
candidate for 16-bit instruction. 
Instruction type Satisfied condition 
Opcode rd, rs1, 
rs2 

rd==rs1 or rd==rs2 or rs1==$0 or 
rs2 ==0 

Opcode rd, rs1, 
imm 

((rd==rs1 or rs1 == $sp) and 
restricted immediate value ) or imm 
== 0 

Opcode rd, rs1 no condition 
Opcode  no condition 
Table3: Instruction selection pattern. 

 
In this step, instruction candidates will be selected and 
tagged but instruction replacement will not be done. In our 
architecture, 16-bit instructions must be half-word aligned, 
and 32-bit instructions must be word aligned. Therefore, 
16-bit instructions should come in pairs. Also, a 16-bit 
NOP is required to fill up the slot of the unaligned 16-bit 
instructions should the next instruction be a 32-bit one. As 
such, the compression rate will be reduced if the code 
replacement is completed in this step. For example, if the 
assembler code sequence is as below, 16-bit NOP 
instruction will be inserted between instr16 and instr32 for 
fetching alignment, thus the code size cannot be reduced. 
Moreover, a nop16 instruction occupies an issue slot and 
instruction buffer, which is extra overhead. 

… 
instr16 
instr32 
instr16 
… 

instr16 
nop16 
instr32 
instr16 
nop16 

 
After this step, the average code size reduction of 14%-
21% can be achieved (Table 4). 
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3.2 Second step: optimization for code size reduction 

In this step, 16-bit instruction will be grouped together by 
the compiler scheduler. This operation differs from three-
operand instruction with limited registers which need a 
complex cost model in the register allocation phase to 
achieve a balance between the register spill cost and code 
size[3,4,13]. Originally, instruction scheduling in Open64 
is designed to minimize the number of performance stalls. 
By making use of the original local scheduler, a heuristic 
process to group suitable 16-bit instructions together is 
added. For each basic block, a list of candidate instructions 
is computed. The instructions without data hazard at each 
time step t are selected and sorted by latency in decreasing 
order. A compressed instruction is selected at time step t as 
best candidate if and only if one of following conditions is 
satisfied: 

 At time step t, the compressed instruction is the only 
candidate. 

 At time step t, the number of compressed instructions 
of the candidate list is larger than 1. 

 The committed scheduled instruction at time step t-1 is 
compressed. 

By this method, compressed instructions can be scheduled 
together and paired up. Based on this heuristic instruction 
scheduling, the code size reduction is achieved by 17%-
24% (Table 4). 
Meanwhile, in order to minimize performance degradation, 
not all basic blocks are treated in the same manner. For 
example, if the basic block is a loop body, performance has 
higher preference than code size. In order to have a balance 
between performance and code size, the code scheduling 
will favor performance over code size. Thus the code size 
compression rate is achieved by 16%-23% (Table 4). 

3.3 Third step: instruction replacement 

In this step, the instruction replacement will finally be 
carried out. All tagged 16-bit instructions will be checked. 
If paired instructions are found, they will be substituted by 
equivalent 16-bit instructions. Otherwise, the tag will be 
removed, and the original 32-bit instruction will be used. 
As a result, there may still be several percents of 32-bit 
instructions that cannot be replaced for lack of paired 16-bit 
instructions.  

 

4. Hardware support 

The 16-bit instruction set will actually be expanded to a 
corresponding equivalent 32-bit instruction so no extra 
execution unit is required. The decoding is transparent to 
the program. The 16-bit instruction will be supported and 
handled by the corresponding 32-bit instruction execution 
unit and the instruction will be expanded in the normal 
decoding phase. In the instruction decoding phase, a special 

instruction fetching handler with limited hardware logic is 
provided.  

4.1 Original 32-bit instructions 

The 32-bit instruction will be fetched and decoded as usual. 
Only word aligned PC is supported. 

 

 
 

4.2 Word aligned 16-bit instructions 

For a 16-bit instruction with word aligned PC, the 16-bit 
instruction opcode will be decoded so that only the first 
sixteen bits will be taken by the decoder to form a 
corresponding word-aligned 32-bit instruction.  
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File size(byte) instr32 Mixed-perf 

Mixed-

perf 

reduction

Mixed-size
Mixed-size

reduction 
Mixed-p&s 

Mixed-

p&s 

reduction

Uclibc 126400 105664 19.62% 103664 21.93% 103952 21.59% 

mp3 55004 48092 14.37% 46764 17.62% 47148 16.66% 

mpeg4 113220 97940 15.60% 95892 18.07% 96836 16.92% 

729aori 53244 44812 18.82% 43820 21.51% 44140 20.63% 

nucleus-demo 37779 32451 16.42% 31763 18.94% 31827 18.70% 

L2/L3 600795 506971 18.51% 494011 21.62% 495435 21.27% 

Linux 1016364 843244 20.53% 823792 23.38% 826400 22.99% 

Table 4: Code size reduction comparison using 32-bit instructions and mixed instruction set. 
*for uclibc, the size is text segment 
* mixed-*: mixed 32/16 instructions with different scheduling policies 
* mixed-perf: for performance only 
* mixed-size: for code size 
* mixed-p&s: for code size except loop body 
 

4.3 Half-word aligned 16-bit instructions 

For a 16-bit instruction with half-word aligned PC, the 16-
bit instruction raw bits will be shifted to form a 
corresponding word-aligned 32-bit instruction. Then the 
opcode will be fetched and decoded as a world-aligned 16-
bit instruction. 

 

 
 

By using this simple fetching and decoding scheme, 16-bit 
and 32-bit instructions can be mixed transparently with 
negligible performance impact and hardware 
implementation cost. 

 

5. Performance Analysis 

In order to determine the impact of our ISA compaction on 
performance, the execution cycles of applications have 
been  
 

 
measured. A performance simulator was used to measure 
pure execution cycles. For the compressed instruction 
replacement algorithm, the total instruction numbers of 
different mixed 16/32-bit versions are same as the full 32-
bit instructions. For the heuristic instruction scheduling on 
code size purpose, the mixed instructions scheme has slight 
but negligible degradation to performance compared to the 
full 32-bit instructions without memory effects such as I-
cache miss and D-cache misses (Figure 6). Furthermore I-
cache miss counts are decreased (approximately 26% ~ 
46%) due to code size reduction (Figure 7). If considering 
the penalty of I-cache miss, the mixed instructions scheme 
has slight improvement to performance from 0.6% to 4.6% 
(Figure 8). 
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Figure 6: Normalized cycle counts without I-cache miss 
penalty. 
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Figure 7: Normalized I-cache miss counts 
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Figure 8: Normalized cycle counts with I-cache miss 
penalty. 
 

6. Summary 

See Table 5. 

7. Conclusion 

A methodology of compressed instruction selection and 
generation is introduced in this article. By using a native 
support 16/32-bit mixed ISA, an advanced compiler, and 
limited hardware logics, a significant 17-23% code 
reduction ratio is achieved without performance penalty. 
The instruction scheduling heuristic on code size purpose 
helps to improve about 2.7% of the code reduction ratio. 
With the scheduling policy, the average code reduction 
ratio is 20.44%, which achieved 86.2% of the peak code 

reduction ratio (23.7%) of our mixed instruction. Other 
than instruction alignment, there are practically no 
restrictions on the code generated. All thirty-two registers 
are usable in any of the instructions used. There is no need 
for mode changing during execution. 
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Scheme Methodology Decoding Compression 
ratio 

Performance 
Penalty 

Hardware  
Cost 

Compiler 
complexit
y 

ARM -Thumb Extended ISA + 
mode Switching 

Instruction 
mapping 20-30% Very High Thumb Engine Low 

ARM - 
Thumb-2 

Separated ISA 
with Mapping 
Engine 

Instruction 
mapping 15-25% 

High Thumb-2 instruction 
mapping  Engine High 

MIPS - 
MIPS16e 

Extended ISA + 
mode Switching 

Native 
support 20-30% Very High Special branch 

detection engine Low 

IBM- 
CodePack 

Binary 
Compression via 
software engine 

Build-in de-
compressor 
Engine 

20-30% 
Negligible Hardware de-

compressor No effort 

ARC- 
ARCompact 

16-bit instruction 
support via User 
defined interface 

Native 
support 20-40% 

Negligible Complex 
reconfigurable 
processor 

Low 

Proposed 
Heuristic 
Scheme 

Native 16/32-bit 
mixed ISA 

Native 
support 17-23% 

Negligible to 
positive gain Simple fetch 

handler Low 

Table 5:  summary of different schemes 
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