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Abstract

Unroll-and-jam is an effective loop optimization that natyim-
proves cache locality and instruction level parallelisiaP()l but
also benefits other loop optimizations such as scalar repiant.
However, unroll-and-jam increases register pressurenpially re-
sulting in performance degradation when the increase irsterg
pressure causes register spilling. In this paper, we predew cost
method to predict the register pressure of a loop beforeyappl
unroll-and-jam on high-level source code with the consitlen of
the collaborative effects of scalar replacement, genegdas opti-
mizations, software pipelining and register allocatiore &0 de-
scribe a performance model that utilizes prediction restdtde-
termine automatically the unroll vector, from a given uhsgace,
that achieves the best run-time performance.

Our experiments show that the heuristic prediction albarit
predicts the floating point register pressure within 3 tegsand
the integer register pressure within 4 registers. With #igo-
rithm, for the Polyhedron benchmark, our register presguided
unroll-and-jam improves the overall performance about 28r o
the model in the industry-leading optimizing Open64 bacdktr
both the x86 and x86-64 architectures.

1. Introduction

Unroll-and-jam is a loop transformation that increasesthe of an
inner loop body by unrolling outer loops multiple times flled by
fusing the copies of inner loops back together [4]. Unroltkgam
is a very effective loop optimization that is used in modeptiriz-
ing compilers. A carefully designed unroll-and-jam tramafation
can dramatically improve single-node loop performanceanéftel
or sequential code via improved cache and instruction-lexel-
lelism (ILP) [1, 7, 9, 10, 11, 23]. Many other loop optimizais
such as loop tiling also integrate unroll-and-jam as a patheir
design [19, 23].

The new loop body transformed after unroll-and-jam corgtain
statements from multiple loop iterations. Array referenceigi-
nally located on different loop iterations may share adslaa#th-
metic in the unroll-and-jammed loop body. As a result, tive li
range of an address register often increases after unrdijzam.
Additionally, references to the same memory location thégi-o
nally occur on separate outer-loop iterations may now oitthe
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innermost loop. Scalar replacement will effect registéocation
for those array references and increase register pressure.

When a value cannot be allocated to a register it must besdpill
back to memory. The performance of a loop may not be improved
after optimizations due to increased register pressura froroll-
and-jam. Sometimes performance dramatically degradesubec
excessive register spilling increases the number of iostnos and
destroys cache locality. Although microprocessor teabgwlhas
advanced at an astonishing rate in the past decade, the nofmbe
physical registers available for a program can still be wEred
small. Once register pressure is increased due to loop @atim
tions, it is difficult to reverse it back later in compilatiamd code
generation. Thus, all optimizations that may increasestegpres-
sure should precisely control their register requirement.

To achieve this goal, we present a pseudo-schedule based low
cost register prediction algorithm for unroll-and-jamradowith a
performance model that uses predicted results to deteraite
matically an unroll vector from a given unroll space thatiagbs
excellent run-time performance. The prediction algorittas
O(n?) time complexity in practice where is the size of the loop
body.

Given a loop and an unroll vector, the prediction algoritime-p
dicts the register pressure with the consideration of tfecef of
scalar replacement, general scalar optimizations, soétygelin-
ing and register allocation without actually performing afthem.
The whole framework is designed for a high-level loop repres
tation such as an abstract syntax tree, providing the cempil
quick and effective way in an early phase to obtain registesgure
knowledge available only in the final code generation. Agjma-
tion and simplification make the prediction process not anlych
cheaper than iterative approaches but also allow the psdodse
used in all kinds of compilation environments. Moreovencsi ma-
jor loop nest optimizations often operate on a high-levptesen-
tation, our algorithms can also easily be integrated int@otoop
optimization algorithms that use unroll-and-jam in ordemtoid
unexpected performance degradation due to high registespre.

In this paper, we begin with a brief discussion of the presiou
work on register-pressure prediction. Then, we give a vewdé
unroll-and-jam, scalar replacement and software pipaginNext,
we present the prediction algorithm and the experiment sigow
the effectiveness of our approach. Finally, we give our tgsion
and discuss future work.

2. Previous Work

Wolf et al. [23] present a technique to ensure unroll-amd;jscalar
replacement and software pipelining do not use too mangteTsi.
Their method defines the pipeline filling requirements of a-pr
cessor as the number of floating-point registers requireke&p
the pipeline running at full speed, which is a reserved valize



get the total register pressure of a loop, the number of scala
needed for scalar replacement is added to the pipelinedfitén
guirements. This technigue may overestimate the numbesegsf r
isters required since the registers reserved for pipelilegfimay
not all be needed.

Carr et al. [7, 12] estimate register pressure before applyi
scalar replacement with a reserved number of registersifedsil-
ing that is experimentally determined. This value is adaded the
estimated number of scalars used in a loop by scalar repkgem
As in Wolf's method, this technique may reserve more regsste
than necessary, but also may reserve too few.

Huff [16] defines, two metricsMaxLive and MinAvg, to mea-
sure the register pressure for software pipelining. Maglissonly
available after creating a software pipeline, making it ate for
prediction. MinAvg represents a lower bound on registesguee
before pipelining. It is defined as the sum of minimum lifetsn
of all variables divided by the initiation interval (Il), vene Il is
the number of cycles between the initiations of two conseeut
iterations in a loop. Unfortunately, MinAvg ignores theesdfs of
overlapping lifetimes and assumes all variables can bedsiée
such that the minimum lifetimes are achieved. Under higbuese
constraints the minimum lifetimes are often not achieveduylting
in highly inaccurate register pressure estimation.

Ding [13] proposes an approach using MinDist to compute reg-
ister pressure. MinDist is a two dimensional array used tofde
dependence constraints in software pipelining that costaifor-
mation about the minimum lifetime of each variable. Dingirtis.
that the overlapping in software pipelining requires addgl reg-
isters only when the lifetime of a variable is longer thanSince
MinDist gives the lower bound of the lifetime of a variablagt
number of registers for this variable is predicted [4&-5me |,
MinDist, however, ignores resource constraints, resgiitnan im-
precise prediction under high resource constraints.

Ge [15] describes a method using the information in MinDist
to build a schedule as an approximation of the real schedule f
predicting register pressure. DU chains are computed based
the approximate schedule. The maximum number of DU chains
overlapped in a cycle will be the number of registers predict
By her observation, long DU chains and aggregated short DU
chains reflect the effect of high resource conflicts. Sheemtss
two heuristic algorithms to handle these two types of chaBes
method predicts register pressure more accurately thaAwdiand
MinDist methods. However, Ge's method is designed for a low-
level language representation instead of the source cuek le

Aleta et al [2] use pseudo-schedules to guide data depeadenc
graph partitioning. In this paper, they formally define amprap-
imation similar to Ge’s approximate schedules: “The pseudo
scheduler is a simplified version of the full instruction edhler
and estimates key constraints that would be encounterdifi-t
nal schedule.” [2] This property of the pseudo-schedulekesdt a
good method to predict the effects of software pipeliningwidver,
their method must compute a pseudo-schedule for everytirgsul
partition. This results in an increase in compile time on dheer
of a factor of 10.

Carr and Kennedy [11] give an equation-based algorithmee pr
dict register pressure for unroll-and-jammed loops. ThgsrEthm
computes register pressure from updated dependencesagmref
erences. It can predict the number of floating-point regsssend
address registers used given an unroll vector. This metbat ¢
putes the register pressure of arithmetic computatiomguSethi-
Ullman numbering. Sethi-Ullman numbering only gives thaimi
mum number of registers possible and ignores schedulirgtsff
resulting in a very low prediction accuracy for integer stgr pres-
sure.

Triantafyllis et al. [22] present the first iterative conapil
tion technique suitable for general-purpose productiompiters,
called optimization-space exploration (OSE). OSE aclsiewech
faster speed over the traditional iteration approachessimgupre-
optimization predictions to reduce the exploration spawkwsing
a static performance estimator to avoid running the progiam
measuring actual run-times. Since OSE is a heuristic metiiod
may not reach the best configuration due to the tradeoff inpdem
time savings.

Ma et al. [20] present a pseudo-schedule based low cost al-
gorithm to predict the register pressure of a loop befordyamup
scalar replacement on high-level source code. In the dkgoria
fast constructor scans source code and creates a data dapend
graph (DDG) on the fly to reflect all potential future changelater
compilation phrases. A pseudo-scheduler predicts registssure
from this DDG. It can predict floating-point and integer agr
pressure within less than 3 registers with a time complegity
O(n?) in practice and a worst case complexity @{n>). This
method exposes a potential framework to predict registesgure
for other source code level loop optimizations. Howevezdjuting
the changes made by scalar replacement only involves rexgovi
changing array references in a loop body. No work has beea don
to account for structural changes in a loop due to unrolHana
In addition, there has been little work in register-pressguided
high-level loop optimization. This paper addresses botthete
issues.

3. Background

In this section, we review unroll-and-jam, scalar replaeatrand
software pipelining. We discuss how these transformatioadify
a loop body in detail as well as their effects on register gues

3.1 Unroll-and-Jam

Unroll-and-jam is the combined operations of loop unrgjlend
jamming [4]. For example, the following loop contains twasgr
references:

DO I =1, N2
DOJ =1, M
ACJ 1) = A(J-1,1) + B(J)
ENDDO
ENDDO

If we unroll thel -loop by a factor of two, after the two neivloops
are jammed together, the loop becomes:

DOI =1, N«2, 2
DOJ =1, M
ACJ 1) = A(J-1,1) + B(J)
A(J, 1+1) = A(J-1,1+1) + B(J)
ENDDO
ENDDO

Jamming must maintain the order of data dependences. If it re
verses the execution order of array references, jammingnbes
illegal[7]. Unrolling the innermost loop is always legaldagise no
jamming is required. Usually, unroll-and-jam only refesghe un-
rolling of loops nested outside of the innermost loop. Hosveour
prediction algorithm assumes the innermost loop can alsonbe
rolled, providing a unified solution for loop unrolling.

The number of times a loop is unrolled is called tingoll
factor. To represent multiple unroll factors, we useugnol| vector
with one unroll value for each nesting level of the loop.

After unroll-and-jam, more array references are availabtbe
innermost loop, providing scalar replacement more oppdias
to convert memory references into scalars and softwarditpipg



more instruction-level parallelism. By itself, the reuseray ad- to finish one iteration due to those dependences. Thelowpuld
dressing computations also reduces execution time. Howthe execute i x n cycles on a machine with one-cycle operations.

increased register exploitation demands more physicaitezg, of- A software pipelined version of the loop might well issue
ten leading to spilling in register allocation. Too muchllgpg re- all three operations in one cycle by overlapping executioos

sults in performance degradation due to increased memoegsaes different loop iterations. Under ideal circumstances,stieeduled
and increased cache interference. loop consists of a single-instruction loop body, 2 B;+1C; where

X, denotes operatioX from iteration; of the loop [3]. The cost
3.2 Scalar Replacement of the software pipelined version is about one-third of thetof
Scalar replacement is a loop transformation that usesrscédser the original one, namely. + 2 cycles including the prelude and
allocated to registers, to replace array references toedserthe postlude to fill and drain the pipe. So software pipelining,ca
number of memory references in loops [6, 8, 7, 12, 14]. Com- by exploiting inter-iteration concurrency, dramaticatiduce the

bined with unroll-and-jam, scalar replacement can impitxeeef- execution time required for a loop.
ficiency of pipelined functional units more than by itselbrisid- Unfortunately, the overlapping of loop iterations leadstiali-
ering the unrolled loop in the previous section, there arer@m- tional register requirements. For illustrative purposes,assume
ory references and two floating-point additions in the inmest it- that operationA computes a value;, in a register and that opera-
eration. The value referenced By J-1, 1) andA(J- 1,1 +1) tion C usesv. In the initial sequential version of the lodp one
are defined one iteration of thi-loop earlier byA(J, I') and register is sufficient to store’s value. In the software pipelined
A(J, | +1), respectively. Using scalar replacement to expose the version, we need to maintain as many as three different sayie
reuse, the resulting code is: v because multiple loop iterations are executed simultasigokn
this particular case, we would need two more registers foirsg
DOl =1, N2, 2 the extra two copies af.
a0 = A(0,1) Unroll-and-jam, scalar replacement and software pipagdjizire
gé j A( 2’ ' ;\f/ll) all optimizations that may increase register pressurehdirtcol-

lective effects are not considered, the predicted regmtessure

b0 N B() cannot be accurate. In our prediction algorithm, the coetbief-
a0 = a0 + b0 . . e
A(J,1) = a0 fects_ar_e handle_dln one step. In the next section, we db&aditire
al = al + b0 prediction algorithm.
A(J,1+1) = al _ o _

ENE,I;%DO 4. Register Pressure Prediction Algorithm

) Source code is lowered to a low-level intermediate form keefeg-
Here the number of memory references decreases to thre¢heith  ister allocation. In order to predict register pressureissdy, it is

number of floating-point arithmetic operations remaining $ame, critical to have prediction algorithms work on a represgateclose
which removes one more memory reference than when only ap- to what the register allocator sees. A data dependence (papB)
plying scalar replacement. If the original loop is bound bgrm not only contains all expressions but also the relatiorsshipong

ory accesses, unroll-and-jam and scalar replacement vaoer- data, providing all information needed to pass into a scleedinen
formance. However, three additional scalars are used, ridinmgs later an allocator. So the first step of our prediction aliponiis to
more registers to hold values. Thus scalar replacemen¢ases construct a DDG that reflects all changes made by as many opti-
register pressure and may cause excessive register g@iticth de- mizations as possible.

grade performance. .
4.1 DDG Construction

Our prediction algorithm is applicable to innermost lodpettcon-
Software pipelining [3, 18, 21] is an advanced schedulinrejue tain assignment statements with array references, scaldrarith-
for modern processors. Modulo scheduling [18, 21] is onauf@p  metic operators. For one loop nest, our approach modeldl-unro
approach to software pipelining. This approach tries to thee and-jam applied to at most two outer loops. While this retith
minimum possible cycles to schedule one iteration of a lagfhs is not necessary, it simplifies the approach since it is @epply

3.3 Software Pipelining

that no resource and data dependence constraints areediolaen unroll-and-jam to more than two loops. Our prediction aiton

this schedule is repeated. considers the effects of unroll-and-jam, scalar replacgsoft-
The initiation interval (II) of a loop is the number of cycles  ware pipelining and general scalar optimizations.

between the initiation of two consecutive iterations. Thigation Constructing the DDG for a loop nest consists of four major

interval represents the number of cycles required to erexaingle steps applied in order:

iteration of a loop. Given a loop and a target architectune, t

resource initiation interval (Resll) gives the minimum riagn of 1. Create the base DDG for the loop before unroll-and-jam.

cycles needed to execute one iteration of the loop based upon . —

machine resources such as the number of functional units. Th 2. [F)’E)egare the DDG after unroll-and-jam by duplicating theeo

recurrence initiation interval (Recll) gives the minimuranmber )

of cycles needed for a single iteration based upon the |esfgtie 3. Delete unnecessary DDG nodes and edges.

cycles in the_D_DG. T_ht_e_maximum value _between Recll and Resll, 4. Generate cross-iteration edges.

called the minimum initiation interval (Minll), represana lower

bound on the Il. In the base DDG constructed from the source code, nodes rep-
Software pipelining can significantly improve loop perfor- resent each elementary operation constructed and edges rep

mance. Consider a loop that iterates: times and contains three  sent data dependences[17]. Each edge is labeled with thervec

instructions: A, B, andC. When we assume the dependences in (Delay,Diff), whereDelay represents the minimum number of cy-

L require a sequential ordering of these operations withingles cles needed to perform the source operation Riffl is a vector

loop iteration, even if the target architecture allows 3ragiens to that represents the number of loop iterations for each ounta

be issued in a CPU cycle, the schedule fostill requires 3 cycles loop between the source and the sink of the edge.



D Gray color means deleted

Figure 1. The DDG Construction Process of the Example Loop

4.1.1 Preparing the DDG

Unroll-and-jam brings outer iterations closer togethethimi the
innermost loop. Each copy of the innermost loop body bdsical
contains the same expressions except for the changes im-+the i
dex expressions of arrays. If a DDG is built from an unrolttan
jammed loop body without considering scalar replaceméetye-
sulting graph consists of many similar subgraphs. Eachrsipig
corresponds to one copy of an unrolled iteration. The edgafts t
cross subgraphs are the data dependences between opemation
different copies of the innermost loop bodies. Althougts thDG
contains many redundancies not found in an optimized DDG, in
order to simplify the DDG construction process, we first gatee
the DDG from the loop before unroll-and-jam as the base DDG
then duplicate this DDG multiple times based on the giverollinr
vector. Later, we delete nodes to reflect the changes byrsuatia
mizations. At the end, we compute cross-subgraph edgesdihd a
them to get the final DDG.

Ma et al. [20] present a low-cost algorithm to construct thseb
DDG. The time complexity of the duplication step(¥n) where
n is the size of the input loop. For example, to construct the@DD
for the following loop:

DOJ =1, N
DOl =1, N
Wl,3) = V(1) + P(J, 1)
ENDDO
ENDDO

We first create the base DDG shown in the Box A of Figure 1 using
the low-cost algorithm developed by Ma et al. [20]. Note ttneet
labels on the edges represent the valuddf. If the J loop is
unrolled by a factor of 2, the loop becomes

DOJ =1, N, 2
DOl =1, N
ul,J) = Vv(I) + P(J, 1)
u(l,J+1) = V(1) + P(J+1,1)
ENDDO
ENDDO

We must duplicate the base DDG once for the copy of the inngtrmo
loop body. Box B in Figure 1 contains the updated DDG, contain
ing subgraph 1 and subgraph 2. Clearly, this DDG is not peecis
since it contains redundancies that will be eliminated inepbpti-
mizations. In the next section, we discuss a marking algarithat
will update the DDG to reflect the effects of scalar optimiaas.

4.1.2 Deleting Nodes and Edges

During the construction of the base DDG, the effects fromasca
replacement, general scalar optimizations and softwaneliping
have been considered. But after duplication, we must rédens
them because unroll-and-jam usually provides more oppibigs
for those optimizations. In our prediction algorithm, thedes in

a DDG are classified into four categories: load and store sjode
array addressing nodes, arithmetic nodes and loop conbd@s)
which are each handled separately. The algorithm for nokdziole

is given in Figure 2. The inpWt is the unroll vector corresponding



to the subgraph G. For the example loop, the functidieteNode
will be called twice, wher&/is (1, 1) and(1, 2).

deleteNode( Subgraph’, UnrollVector V' ){
foreach Load/Store node € G
foreach true/input dependence, incident onn
d = the distance vector af
D = the direction vector oé
if d is availablethen
updated usingV’
if d becomes loop independethien
recursively delete: and dead addressing nodes for
else if D can be handlethen
checkD
if D is deletablehen
recursively delete: and dead addressing nodes #for
if n is still not deadhen
r = analyzeSubscript
if »is REMOVEALL then
delete addressing nodes for
else ifr is PARTIALREMOVE then
delete part of addressing nodes for
if G is not the last subgrapten
delete all loop control nodes

Figure 2. DDG Node Deletion Algorithm

Loop control nodes contain branch nodes and their supjgortin
comparison nodes. For the DDG in the Box A of Figure 1, nodes 14
and 15 are loop control nodes. Since only one set is required i
iteration copies, the algorithm just keeps the set in theslasgraph
and marks the others as deleted. Therefore, nodes 14-2 ehdre5
marked as deleted in the Box C. The nodes shaded gray in Figure
have been deleted. In our algorithm, all arithmetic nodeséaways
kept because they hold the logic of a program and it is not comm
for subexpressions to exist amongst array operations. &t cases,
they should not be changed during any compilation. In the Bpx
node 9 is an arithmetic node.

Load and store nodes usually correspond to array refereimces
the Box A, nodes 4, 8 and 13 are in this category. Nodes 1, 2 and
3 are the addressing nodes for the arvy ) ; nodes 5, 6 and 7
are the addressing nodes for the arR{yd, | ) and nodes 10, 11
and 12 are for the array( | , J) . Array references with incoming
loop independent true or input dependences are removedalsr sc
replacement. Nodes for this kind of array are not generated d
ing the base DDG construction. Scalar replacement alsdesol
any node having an innermost loop carried incoming depesalen
These kinds of nodes exist in the base DDG. Unrolling therinne
most loop can remove the innermost loop carried dependénce i
the corresponding distance is less than the unroll amownsir-
plify the computation, we only delete the nodes for arragmefices
having loop independent incoming dependences createdrbyl-un
and-jam that cross copies of the innermost loop in the alyori
As a tradeoff, the final DDG may still contain some nodes dagy
the innermost loop dependence that should be removed bgrscal
replacement, resulting in lower precision. If the distameetord
of a dependence is available, Carr and Kennedy give an equati
to predict the updated dependence vector with exact valftes a
unroll-and-jam [11]. With this equation, if any array hasiacom-
ing dependence that is loop independent in any iteratiow, cogi-
cated by all items ofl becoming 0, its corresponding load or store
node should be deleted.

When only the direction vectoP is available for an array
reference, ifD only contains= andx, wherex is caused by this
array reference being invariant with respect to the comedimg
loop, deleting this array can be determined using the rules:

e The node withD as its incoming direction vector is deletable if
the D; is x and the unroll factor for loop is greater than one.

e Otherwise, the node is not deletable

All unqualified array references will be retained. In therapée
loop before unroll-and-jamV( | ) has a direction vector gf«, =)
where theJ-loop entry isx. When theJ-loop is unrolled by a factor
of two, the second copy &f( | ) will be deleted because the unroll
factor of theJ-Loop for this copy is 2. This copy will be removed
by scalar replacement. Thus, node 4-2 is marked as deleted.

After deleting all load and store nodes that should be dalete
their corresponding addressing computation nodes may aeé. de
Those dead nodes can be deleted recursively by checking node
starting from a deleted load/store node via incoming edtfes.
all outgoing edges of a node are deleted, this node is marked
as deleted. In the example after the load node 4-2 is deldted,
supporting addressing node, node 3-2 is not used. Therefode
3-2 is marked as deleted. Recursively, nodes 1-2 and 2-2lsoe a
marked as deleted.

Besides the deletion caused by data dependences, reused ad-
dressing computation also results in the removal of somesod
corresponding to addressing computation. If an array hasnaat
like A(h,...,4,...,7,...,k) in Fortran and all its dimensions are
constant in the current code region, we use the funciimatyze-
Subscript( A, L1, L2, 7 ) below to determine how to process is ad-
dressing computations, whereis an array,.; and L. are the un-
rolled loops, and is the induction variable of the innermost loop.

analyzeSubscript( A, L1, L2, 5 ) {
p = the induction variable of |
q = the induction variable of.o
if pis on the right ofg in A’s subscripthen
swapp, gand L1, Lo
if p has unroll factor larger thanthen
if pis the leftmost and on the left gfthen
return REMOVEALL
else ifp is the leftmost ang is j then
return REMOVEALL
else ifp is on the left ofj but is not; then
return PARTIALREMOVEp TO 5 )
elsereturn KEEPALL
return KEEPALL

}

Figure 3. Algorithm for Analyzing Array Subscripts

In the algorithmanalyzeSubscript, p always represents the left-
most unrolled induction variable in the subscriptstf' Because
any node invariant with respect to the innermost loop is ret-g
erated in the base DDG, the addressing computation nodes fro
subscripth to 5 appear in the base DDG jfis the innermost loop
induction variable. For example, consideribgl , J) in the ex-
ample loop, nodes 10, 11, and 12 are the addressing congputati
only from subscript . When an outer loop is unrolled, ifp is at
a location likek, all addressing nodes for this array in all iterations
are retained. So, if we unroll loop for U( I, J), nodes 10, 11,
and 12 should all be retained in the subgraphg.if at j, which
meansp is the innermost induction variable, all addressing nodes
are retained. Ip is at h, all addressing nodes except for the copy
for the first iteration should be deleted sincé the leftmost sub-
script and the addressing computation can share the sartienpor
fromh to 5. P(J, | ) represents this case in Box C of Figure 1. If
p is ati, because is not in the leftmost subscript, the addressing

1This discussion assumes column-major ordering. Simpléfinations are
necessary for row-major ordering.



nodes corresponding the indices frano j should be deleted ex-
cept for the one in the first iteration. However, the addresabdes
corresponding to the indices fromto 7 should be retained for all
copies. To support this case, each subscript should bedagitie
its corresponding addressing nodes during constructidineohase
DDG. If a compiler optimizes subscripts using a differerpach
than outlined here, in order to make prediction accurateDiD&
modification should be adjusted to reflect the differences.

If two loops are unrolled, even if loop has an unroll factor
larger than 1p still determines the final results in the DDG. Con-
sidering the example loop when both ldoandJ are unrolled by a
factor of two, there are four updated copied6, | ) : P(J, I ),
P(J+1,1), P(J,1+1), P(J+1,1+1). The corresponding
values of the unroll amounts fgrandq are (1,1), (2, 1), (1, 2),

may yield a different Recll in the low-level code when congghr
with the Recll predicted from the constructed DDG. Howewer,
large unroll amount causes the Resll of the loop to become the
dominant factor over Recll. Moreover, computing Recll isye
costly, at leasiO(n?) for a precise value or even a worst case
O(n?) for an approximate value using the algorithm presented in
[20]. Thus, we only compute Recll for the base DDG using the
approximation algorithm and use this value as the Recll & th
computation of the estimated II.

Resll is computed from the final DDG. The maximum value
of Recll and Resll becomes the estimated Il. After all nodes a
scheduled, we use the same DU chain estimation method used
in [20] to get the final predicted register pressure.

and(2, 2). The addressing computation nodes in the two subgraphs 4-3 ~ Further Simplification

whereP(J, 1) andP(J, | +1) are located will be retained, but
the rest will be deleted becaugehas an unroll factor no larger
than 1 only in these two cases. If a subscript contains anathay
reference, it should be treated as an unrolled variablectieiges
as long as it contains any induction variable that is culydrging
unrolled. Otherwise, it should be treated as a constant #vén
contains the innermost induction variable.

4.1.3 Create Cross-Iteration Edges

If nodes are scheduled in the order of iteration copies,dbssible
to simplify the DDG construction algorithm and pseudo-stther

further with a lower prediction cost without losing too myateci-
sion. The biggest benefit of this simplification is to make E2G

construction and pseudo-scheduler operate incremerdallthat
the whole framework can run efficiently with a large unrolasp
or a large loop body. In a scheduler, if a scheduled loop weik
as a set of nodes from different iteration copies that areilliged
into the cycle slots of a schedule table, the majority of thdes

In order to get a precise DDG, nodes are marked to reflect the from an iteration copy usually are clustered together. @enisg

changes from scalar replacement, value reuse and othemingti
tions. The duplication of the base DDG creates the edgedensi
one iteration but no cross-iteration edges. The schedpleliea
later assigns the location of a node based onDbey and Diff
tags on its edges. Without cross-iteration edges, all sydbgr are
always scheduled from cycle zero, causing an overestimatio
register pressure. Based on the equation from Carr and kgnne
[11], cross-iteration dependence edges can be computedalny s
ning each dependence edge in the base DDG. This processoan al
be integrated into the node deletion step. If the source and s

the cycle timeline, the nodes from an iteration copy A areallgu
scheduled before the nodes from another iteration copy Bsfie-
fore B in the loop body. Based on these two observationsréds
sonable to ignore the generation of cross-iteration edgdsaly
mark nodes in the DDG construction. During pseudo-scheduli
the subgraphs of iteration copies are scheduled one by mrdén

For each subgraph, we apply the same depth-first schedujng a
rithm. For most cases, a pseudo-scheduled loop with thdiieap
algorithms yields good results.

With these two simplifications, the DDG constructed and the

node of an updated dependence are both live, we add a cancespo  Pseudo-schedule created by a unroll vector with a smallesliun
ing edge into the DDG. If the sink node is deleted, all nodes to @mount can be utilized again with a unroll vector with a large
which it points become the new sink nodes. In the example,loop unroll amount, reducing the whole prediction cost signiftba
when node 4-2 is deleted, we know the dependence causing then register pressure guided unroll-and-jam since the naues

deletion is from the node 4-1. At this time, node 4-1 is livelan
node 9-2 with which node 4-2 is originally connected is alge.l

So an edge from 4-1 to 9-2 is added in the Box C of Figure 1. Node
removal caused by the reuse of address computations aesre
cross-iteration edges. The node that receives a value frooda
deleted in its iteration copy should link to the same nod¢ glea-
erates the same value located in the previous iteration. oy

schedule of one iteration copy are same for predicting amglun
vector.

5. Register Pressure Guided Unroll-and-jam

Our register pressure prediction algorithm can be direrttg-
grated into any loop optimization strategy utilizing uthahd-jam.
The estimated register pressure can be used in the condtrnadn

new edges between 7-1 and 8-2 belong to this case in the Box B ofjgns for those loop optimizations. Sometimes, pursuiregrtin-

Figure 1.

4.2 Register Prediction

One cornerstone of a successful prediction is a DDG that oan p
cisely reflect the code right before register allocatione Pinevi-
ous section has given an algorithm to achieve this goal. Bxé n
phase is to predict register pressure. Based on previoeands
predicting register pressure using a pseudo-scheduler@@ging
method because it considers the impact from instructioecuh
ing. Thus, our algorithm also creates a pseudo-schedulestbigd
register pressure.

The pseudo-scheduler is a fast scheduling algorithm thes do
not consider back edges in the DDG. It schedules using a depth
first scan of a graph starting from the first node of the firsaiien
copy. Initially, the algorithm tries to schedule the loopngsa
schedule length of Minll. Although it has been proved thablln

imum register pressure can maximize the final performanse, e
pecially when not many registers are available in a proceSm
we present a performance model to guide unroll-and-jangusim
prediction algorithm.

To measure the performance of an unroll-and-jammed loop,
we use theunitll as the indicator, where the unitll is defined as
% where I1 is the Il of the innermost loop and is the total
unroll amountj.e., the product of the unroll factors. This leaves the
objective of our performance model as minimizing the unitith
the smallest unroll amount. Given a loop nest, the modelrassu
up to two loop levels can be picked to do unroll-and-jam since
applying unroll-and-jam to more than two loops is rarely gible
and profitable.

While scanning a pre-defined unroll space, the estimatedtl uni
is computed for each unroll vector. Usually, unroll vectars
processed from small to large consecutively in order tazetithe

and-jam does not change the Recll of a loop, the interactions incremental property of the simplified prediction algonithThe

between scalar replacement and address arithmetic optioriz

unroll vector with the minimum unitll is selected for the fina



application of unroll-and-jam. If there is more than one alinr
vector with the same unitll, the one with the smallest totaioll
amount is selected.

5.1 Computing Unitll

After the loop levels are chosen, the next step is to estirtee
unitll. For a certain unroll vector, the Il computed in theepdo-
scheduler is the estimated Il without any spilling. Spdlimstruc-
tions consume CPU cycles and perhaps delay the executidhef o
memory instructions due to cache misses. At the source eveg |
it is difficult to determine where or how many spilling insttions
will be inserted in the assembly code. However, if the nundfer
nodes in two graphs is identical, the graph that contain@modes
with a higher degree of outgoing edges has a higher posgibfii
resulting in more spilling instructions. This is becauseewtthe
result of a node is spilled into memory, spilling instruciksofor
loading the value back are required for every node connémtéts
outgoing edges. So, we use the following equations to estima
unitll for particular unroll vector:

II+11Penalty;+I1IPenaltyy

unitll = ., Tgtallnroll Amoynt
I1IPenalty; = (Ri—P; XI(V.H_ %
I1Penaltyy = (Rf*Pf)X]E]lijrEf)xA

WhereR is the number of registers predicted aRds the number
of registers availableD is the total outgoing degree arid is the
total number of cross iteration edged.is the average memory
access penalty, representing the estimated cycles ofle sipifing
instruction under the influences from instruction exeayticache
performance or pipeline delay, et&v is the number of nodes
in a DDG. The subscript indicates a variable is an integer and
f indicates the variable is floating point. The unroll vectathw
the smallest unitll and the smallest total unroll amountsedito
perform unroll-and-jam.

6. Experiment

Our experiment contains two parts. One is to test the acgurac
of our register pressure prediction algorithm. Anotheroisrtea-
sure the performance of register guided unroll-and-jane fidy-
ister pressure prediction algorithm has been implememnted i
source-to-source Fortran compiler. The performance ofrége
ister pressure algorithm described in this section is alsasured
based on the simplified version without considering craasiton
edges. The compiler optimizes loop nests by unroll-and-gath
scalar replacement, using a number of other auxiliary foanmsa-
tions needed for dependence analysis [5]. The code pratésse
the source-to-source compiler is fed into a retargetabiepder
for ILP architectures. The retargetable compiler perforges-
eral machine-independent scalar optimizations includimigstant
propagation, global value numbering, partial redundariicyiea-
tion, strength reduction and dead code elimination. Thevsoé
pipelining algorithm used is iterative modulo scheduli@d]

The target architecture has two integer functional unitstaro
floating point functional units, sharing 16 floating-poiegisters
and 16 integer registers. All instructions have a latencywvaf cy-
cles. An infinite number of available physical registersastaned
in the backend in order to count register pressure. Thetezgises-
sure of a loop is the sum of registers created in the innertoopt
and its live-in registers. In this experiment, we extractddp nests

are also amenable to unroll-and-jam, scalar replacemehitemra-
tive modulo scheduling.

6.1 Accuracy of Register Pressure Prediction

For a loop, if we predict register pressure without any ureiabl-
jam, our algorithm will generate results identical to theFP&tgo-
rithm presented in [20]. PRP gives better register-prespredic-
tion precision on high-level source code than Ge’s methadf’$1
MinAvg approach and Ding’s MinDist technique. Table 1 shows
the performance of PRP on our test suite without unroll-gamal-

Integer | Floating Point
Average Err| 1.73 0.55
Relative Err| 0.13 0.22

Table 1. The Performance of PRP Without Unroll-and-Jam

In Table 1, “Average Err” means the average of the absolute
values of the difference between the predicted registesspre
and the actual register pressure of the final code. “Reld&ive
is the average of the absolute values of the difference leetee
predicted register pressure and the actual register predatided
by the actual register pressure. Our algorithm predictsrteger
register pressure within 1.73 registers on average andadagn-
point register pressure within 0.55 registers.

To test the accuracy of our prediction algorithm for uniantid-
jam, we compare our predicted register pressure with thatemu
based unroll-and-jam register prediction algorithm pnése in
[11]. In the experiments, no registers are reserved in daeio
a comparison of the accuracy of the prediction methods. Tite o
ermost two loop levels are unrolled. The unroll space costad
combinations of unroll amounts such that the total unrolbant is
no larger than 12 and the single unroll amount for one loopllsv
no more than 5. Thus, the unroll vectors are from1) to (1, 5),
from (2,1) to (2, 5), from (3, 1) to (3,4), from (4, 1) to (4, 3) and
from (5, 1) to (5, 2), where the left value is for the outermost loop
level. For the the 247 unroll vectors applied to the 13 loogtaién
our suite, the average off achieved by the prediction algariis
shown in Table 2.

Our algorithm gets an overall average off of 3.97 for integer
register pressure prediction and 2.92 for floating-poietdftion.
Both values are better than Carr and Kennedy's algorithipe-es
cially for the integer portion. All prediction results wittnroll-
and-jam are worse than those without unroll-and-jam. Thgela
the unroll amount, the lower the accuracy. This fact is eérgld
by the approximations contained in the algorithm. The igrgpof
cross iteration edges in constructing the DDG and backwdge®
in pseudo-scheduling causes the predicted values to beooffthe
real values. Since all iteration copies derive from one lcapg, the
error that exists in the base copy is accumulated while lingol
Cross iteration edges and backward edges are used to ctiwrol
scheduled location of a node. Without them, a node in theduseu
schedule may be scheduled earlier than what it should beein th
real schedule. As more iteration copies are scheduled, oross
iteration and backward edges are ignored, causing loweiqtien
accuracy.

In this experiment, register pressure increases with amgliun
amount bigger than one for all loop nests. If we consider the s
guence of register pressure values for each successivé vece
tor, usually a repeated pattern is observed in the regisémspre
change between two consecutive unroll vectors. For exaruap

from the SPEC2000 benchmark suite as test loops. Loops 01 and08 requires 10, 16, 21, 24, and 26 registers corresponding-to
02 are extracted from 171.swim and loops 03, 04 and 05 are ex-roll vectors(1, 1), (1,2) ,(1,3) ,(1,4) and(1, 5). The incremental

tracted from 172.mgrid. The rest of loops are from 200.abér
All loop nests contain at least two levels and various coidms
of dependences and arrays in order to cover more situatidhs.

values for each step are 4, 5, 3, and 2. The average trendsfor-th
crease of one step is approximately 4. The formation of theat=d
pattern is from the similarity of iteration copies. At firsevassume



Our Algorithm Carr and Kennedy Algorithm

Integer Floating Point Integer Floating Point

Unroll Amount —ayaEr T Rel Err | Avg Err | ReTEr | Avg EfT | RelErr | AVg Err | RelErr
2 2.48 0.15 1.36 0.34 9.24 0.74 2.27 1.16
3 2.80 0.15 2.24 0.38 11.24 0.68 1.08 0.43
4 3.28 0.16 3.03 0.49 11.84 0.64 2.44 0.56
5-6 3.80 0.18 3.40 0.48 13.08 0.65 3.00 0.63
7-9 4.58 0.20 3.67 0.49 14.63 0.67 3.58 0.66
10-12 5.67 0.24 3.79 0.47 16.06 0.65 4.42 0.95
1-12 3.97 0.18 2.92 0.44 14.2 0.66 3.54 0.7

Table 2. The Detailed Performance Comparison Table on Registeid?i@u

there is no node reuse or replacement. At each point whenerat u
factor is increased by one, unroll-and-jam will create @mnaition
copy with the same data dependence subgraph. During samgdul
almost the same number of extra registers is required fadsth
ing the subgraph, especially, when Resll dominates. Usualke
nodes affected by scalar replacement only occupy a smalbpor
of the total nodes. Those replacements only happen in negath
repeated locations based on the property of updated depezsle
For the address arithmetic reuse, the same situation eréstsit-
ing in a repeated pattern. As a result, for a set of consezutivoll
vectors, the incremental or decremental change of regiséssure
is approximately a constant value. We call this kind of pmeno
ena for a loop nest a trend. The quantity of a trend is the vallue
that constant. We found that if our prediction algorithmwaetely
captures the trend, the algorithm performs well.

6.2 Performance of Register Pressure Guided
Unroll-and-Jam

In order to know the real performance of our new model, we im-
plemented our model along with all register pressure ptiedial-
gorithms in the Open64 backend. Open64 is an open-sourée opt
mizing compiler. The commercial FORTRAN compilers that uti
lize the Open64 backend have been proved to deliver thesfaste
code in the world on the Polyhedron benchmark from Polyhedro
Software Ltd. This benchmark suite is designed in FORTRAN an
used for comparing the performance of the latest commeFrO&R -
TRAN compilers on x86-64 and x86 architectures. It only 8o
one option against all benchmarking programs so it is arl glete

to evaluate if our loop model can automatically pick up thetbe
unroll number and deliver a good performance.

Our implementation replaces the register pressure prediat-
gorithm and unroll-and-jam loop model used in the Open64-bac
end directly by our register pressure prediction algoritomd our
loop model except for one change: thie.itI1 variable computed
in our loop model will add an extra valu€ computed with the
information from the Open64’s cache model. Since the uniégs a
different between our loop model and Open64’s cache modkl an
our loop model should perform the dominate effect the equa-

tion to computeC is defined asC' = [£acheCost]io where
CacheCost is the cycles_per_iter varlable defined by Open64s
cache model. Compared withnitI1, C' is always a relative small
number.CacheCost contains the hints of loop header cost and
cache penalty cost. So it is good to addwith UnitII and the
original UnitII still dominates the computation.

In all experiments, we used the Polyhedron standard benéhma
mode to evaluate performance for each loop model. The machin
running the benchmark suite has dual AMD Opteron 2216 proces
sors with 4GB of memory. The operation system is the 64-bit Fe
dora 7. The highest optimization level is always used inexjger-
iment along with the same machine description. The detadsdlt
data are shown in Tables 3 and Table 4.

In the tables, ‘Compile’ means the time used to compile a test
and ‘Ave Run’ means the execution time reported by the Pelyhe
dron benchmark. Our model achieves over two percent average
speedup over Open64’s model on the geometric mean of the av-
erage execution time in both the 32-bit and the 64-bit moee- P
formance is improved for most tests. For four tests, thediygeés
more than 6%. Only seven tests have worse performance fgecaus
of the inaccurate prediction results. The compilation dpieein-
creased by an average 2.3%. It is reasonable because oiatipred
algorithm is more sophisticated than the one used in the &pen
backend. We also believe this is an acceptable tradeofftivétim-
proved performance.

Most of loop optimizations are performed interactively in
Open64’s compiler. When the highest optimization level sedy
some loop optimizations are also applied in the code geperat
phrase. The unroll-and-jam model is designed at the poski®
fore many other high level loop optimizations. If a loop isaited
to a certain shape, the following loop optimizations may bet
triggered or select different algroithms for it. Thus, aliigh our
unroll-and-jam model executes a longer time than Open’sakhod
the overall execution time used for the whole compilationyma
be shortened in some situations. This explains why AIR usss |
compilation time with our new model in 64-bit mode.

In Open64’s loop optimization framework, the unroll-arzar
model and the cache model along with loop permutation are two
separate phases. As mentioned, we add an extra value pdoduce
by Open64’s cache model to the Unitll to reflect the effects of
cache. We believe that we could achieve better results wigfnter
integration between our unroll-and-jam and Open64’s caubael.

7. Conclusion

We have presented an algorithm for register-pressure duidel|-
and-jam. The framework targets prediction from a highdleee-
resentation such as an abstract syntax tree. Without aygpgy
actual optimization, the prediction algorithm predictgisger pres-
sure after unroll-and-jam, scalar replacement, geneedasopti-
mizations and software pipelining. It constructs a dataedédpnce
graph close to the intermediate code right before regiditaragion
and then applies a pseudo-schedule to predict registesyses he
performance model utilizes the predicted register pressfiorma-
tion with a given a unroll space heuristically to determine tinroll
vector that may give the best unitll.

In our experiments, the prediction algorithm achieves anaiV
average off 3.97 for integer register pressure and 2.92datifig-
point registers. For the Polyhedron benchmark, our regpstes-
sure guided unroll-and-jam improves the overall perforoeahy
about 2% over the model used by the industry-leading opingiz
Open64 backend for both the x86 and x86-64 architectures.

Along with good performance, the low cost design and optiona
simplification make the approach portable and easily iategr
into other loop optimizations using unroll-and-jam. Weibet a



32bit Open64’s Model Our Model Speedup
Unit: Seconds | Compile | Ave Run | Compile | Ave Run | Compile | Ave Run
AC 221 13.45 1.98 13.20 10.41% | 1.86%
AIR 7.31 20.79 7.20 20.55 1.50% 1.15%
AERMOD 140.89 35.83 145.57 34.48 -3.32% | 3.77%
DODUC 20.78 50.14 21.37 50.25 -2.84% | -0.22%
LINPK 1.02 33.05 1.17 3297 | -14.71% | 0.24%
MDBX 3.96 21.68 3.95 21.21 0.25% 2.17%
TFFT 0.83 9.70 0.99 9.26 -19.28% | 4.54%
CAPACITA 4.26 75.08 4.86 74.67 | -14.08% | 0.55%
CHANNEL 2.09 20.35 1.96 19.47 6.22% 4.32%
FATIGUE 6.46 8.40 6.91 7.96 -6.97% | 5.24%
GAS.DYN 4.53 9.62 4.76 9.46 -5.08% 1.66%
INDUCT 11.97 34.20 11.94 34.87 0.25% | -1.96%
NF 1.74 31.10 152 30.68 12.64% | 1.35%
PROTEIN 6.23 59.37 7.57 59.50 | -21.51% | -0.22%
RNFLOW 8.84 36.45 9.88 35.84 | -11.76% | 1.67%
TESTFPU 5.73 24.95 481 23.28 16.06% | 6.69%
Geometric Mean| 5.18 25.10 5.32 24.57 -2.69% | 2.08%
Table 3. Polyhedron 32bit Benchmarking Results
64bit Open64’s Model Our Model Speedup
Unit: Seconds | Compile | Ave Run | Compile | Ave Run | Compile | Ave Run
AC 1.89 11.20 1.88 10.74 0.53% 4.11%
AIR 22.47 18.05 13.89 16.36 38.18% | 9.36%
AERMOD 304.31 34.43 325.49 35.46 -6.96% | -2.99%
DODUC 27.91 44.52 28.11 44.76 -0.72% | -0.54%
LINPK 1.21 33.33 1.15 33.16 4.96% 0.51%
MDBX 3.57 20.73 3.99 20.21 | -11.76% | 2.51%
TFFT 1.14 9.53 131 9.18 -14.91% | 3.67%
CAPACITA 5.43 69.90 6.12 70.08 | -12.71% | -0.26%
CHANNEL 1.68 18.98 1.99 18.74 | -18.45% | 1.26%
FATIGUE 8.17 6.71 8.62 6.27 -5.51% | 6.56%
GASDYN 5.78 6.66 5.99 6.56 -3.63% 1.50%
INDUCT 17.85 32.92 17.56 33.00 1.62% | -0.24%
NF 1.32 30.58 161 30.55 | -21.97% | 0.10%
PROTEIN 9.17 55.04 10.00 54.54 -9.05% | 0.91%
RNFLOW 8.76 33.07 8.48 31.00 3.20% 6.26%
TESTFPU 6.21 24.08 5.79 24.03 6.76% 0.21%
Geometric Mean| 6.45 22.80 6.59 22.32 -2.10% | 2.11%

Table 4. Polyhedron 64bit Benchmarking Results

loop optimization insensitive to register pressure is mptete. In
our research, we have presented prediction algorithmofonare
pipelining, scalar replacement and unroll-and-jam. In filtere,
more loop optimizations will be covered.
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