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Abstract
Unroll-and-jam is an effective loop optimization that not only im-
proves cache locality and instruction level parallelism (ILP) but
also benefits other loop optimizations such as scalar replacement.
However, unroll-and-jam increases register pressure, potentially re-
sulting in performance degradation when the increase in register
pressure causes register spilling. In this paper, we present a low cost
method to predict the register pressure of a loop before applying
unroll-and-jam on high-level source code with the consideration of
the collaborative effects of scalar replacement, general scalar opti-
mizations, software pipelining and register allocation. We also de-
scribe a performance model that utilizes prediction results to de-
termine automatically the unroll vector, from a given unroll space,
that achieves the best run-time performance.

Our experiments show that the heuristic prediction algorithm
predicts the floating point register pressure within 3 registers and
the integer register pressure within 4 registers. With thisalgo-
rithm, for the Polyhedron benchmark, our register pressureguided
unroll-and-jam improves the overall performance about 2% over
the model in the industry-leading optimizing Open64 backend for
both the x86 and x86-64 architectures.

1. Introduction
Unroll-and-jam is a loop transformation that increases thesize of an
inner loop body by unrolling outer loops multiple times followed by
fusing the copies of inner loops back together [4]. Unroll-and-jam
is a very effective loop optimization that is used in modern optimiz-
ing compilers. A carefully designed unroll-and-jam transformation
can dramatically improve single-node loop performance of parallel
or sequential code via improved cache and instruction-level paral-
lelism (ILP) [1, 7, 9, 10, 11, 23]. Many other loop optimizations
such as loop tiling also integrate unroll-and-jam as a part of their
design [19, 23].

The new loop body transformed after unroll-and-jam contains
statements from multiple loop iterations. Array references origi-
nally located on different loop iterations may share address arith-
metic in the unroll-and-jammed loop body. As a result, the live
range of an address register often increases after unroll-and-jam.
Additionally, references to the same memory location that origi-
nally occur on separate outer-loop iterations may now occurin the
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innermost loop. Scalar replacement will effect register allocation
for those array references and increase register pressure.

When a value cannot be allocated to a register it must be spilled
back to memory. The performance of a loop may not be improved
after optimizations due to increased register pressure from unroll-
and-jam. Sometimes performance dramatically degrades because
excessive register spilling increases the number of instructions and
destroys cache locality. Although microprocessor technology has
advanced at an astonishing rate in the past decade, the number of
physical registers available for a program can still be considered
small. Once register pressure is increased due to loop optimiza-
tions, it is difficult to reverse it back later in compilationand code
generation. Thus, all optimizations that may increase register pres-
sure should precisely control their register requirement.

To achieve this goal, we present a pseudo-schedule based low
cost register prediction algorithm for unroll-and-jam along with a
performance model that uses predicted results to determineauto-
matically an unroll vector from a given unroll space that achieves
excellent run-time performance. The prediction algorithmhas
O(n2) time complexity in practice wheren is the size of the loop
body.

Given a loop and an unroll vector, the prediction algorithm pre-
dicts the register pressure with the consideration of the effects of
scalar replacement, general scalar optimizations, software pipelin-
ing and register allocation without actually performing any of them.
The whole framework is designed for a high-level loop represen-
tation such as an abstract syntax tree, providing the compiler a
quick and effective way in an early phase to obtain register pressure
knowledge available only in the final code generation. Approxima-
tion and simplification make the prediction process not onlymuch
cheaper than iterative approaches but also allow the process to be
used in all kinds of compilation environments. Moreover, since ma-
jor loop nest optimizations often operate on a high-level represen-
tation, our algorithms can also easily be integrated into other loop
optimization algorithms that use unroll-and-jam in order to avoid
unexpected performance degradation due to high register pressure.

In this paper, we begin with a brief discussion of the previous
work on register-pressure prediction. Then, we give a review of
unroll-and-jam, scalar replacement and software pipelining. Next,
we present the prediction algorithm and the experiment showing
the effectiveness of our approach. Finally, we give our conclusion
and discuss future work.

2. Previous Work
Wolf et al. [23] present a technique to ensure unroll-and-jam, scalar
replacement and software pipelining do not use too many registers.
Their method defines the pipeline filling requirements of a pro-
cessor as the number of floating-point registers required tokeep
the pipeline running at full speed, which is a reserved value. To



get the total register pressure of a loop, the number of scalars
needed for scalar replacement is added to the pipeline filling re-
quirements. This technique may overestimate the number of reg-
isters required since the registers reserved for pipeline filling may
not all be needed.

Carr et al. [7, 12] estimate register pressure before applying
scalar replacement with a reserved number of registers for schedul-
ing that is experimentally determined. This value is added into the
estimated number of scalars used in a loop by scalar replacement.
As in Wolf’s method, this technique may reserve more registers
than necessary, but also may reserve too few.

Huff [16] defines, two metrics,MaxLive andMinAvg, to mea-
sure the register pressure for software pipelining. MaxLive is only
available after creating a software pipeline, making it toolate for
prediction. MinAvg represents a lower bound on register pressure
before pipelining. It is defined as the sum of minimum lifetimes
of all variables divided by the initiation interval (II), where II is
the number of cycles between the initiations of two consecutive
iterations in a loop. Unfortunately, MinAvg ignores the effects of
overlapping lifetimes and assumes all variables can be scheduled
such that the minimum lifetimes are achieved. Under high resource
constraints the minimum lifetimes are often not achieved, resulting
in highly inaccurate register pressure estimation.

Ding [13] proposes an approach using MinDist to compute reg-
ister pressure. MinDist is a two dimensional array used to compute
dependence constraints in software pipelining that contains infor-
mation about the minimum lifetime of each variable. Ding claims
that the overlapping in software pipelining requires additional reg-
isters only when the lifetime of a variable is longer than II.Since
MinDist gives the lower bound of the lifetime of a variable, the
number of registers for this variable is predicted as

¨

lifetime

II

˝

.
MinDist, however, ignores resource constraints, resulting in an im-
precise prediction under high resource constraints.

Ge [15] describes a method using the information in MinDist
to build a schedule as an approximation of the real schedule for
predicting register pressure. DU chains are computed basedon
the approximate schedule. The maximum number of DU chains
overlapped in a cycle will be the number of registers predicted.
By her observation, long DU chains and aggregated short DU
chains reflect the effect of high resource conflicts. She presents
two heuristic algorithms to handle these two types of chains. Ge’s
method predicts register pressure more accurately than MinAvg and
MinDist methods. However, Ge’s method is designed for a low-
level language representation instead of the source code level.

Aleta et al [2] use pseudo-schedules to guide data dependence
graph partitioning. In this paper, they formally define an approx-
imation similar to Ge’s approximate schedules: “The pseudo-
scheduler is a simplified version of the full instruction scheduler
and estimates key constraints that would be encountered in the fi-
nal schedule.” [2] This property of the pseudo-scheduler makes it a
good method to predict the effects of software pipelining. However,
their method must compute a pseudo-schedule for every resulting
partition. This results in an increase in compile time on theorder
of a factor of 10.

Carr and Kennedy [11] give an equation-based algorithm to pre-
dict register pressure for unroll-and-jammed loops. This algorithm
computes register pressure from updated dependences on array ref-
erences. It can predict the number of floating-point registers and
address registers used given an unroll vector. This method com-
putes the register pressure of arithmetic computations using Sethi-
Ullman numbering. Sethi-Ullman numbering only gives the mini-
mum number of registers possible and ignores scheduling effects,
resulting in a very low prediction accuracy for integer register pres-
sure.

Triantafyllis et al. [22] present the first iterative compila-
tion technique suitable for general-purpose production compilers,
called optimization-space exploration (OSE). OSE achieves much
faster speed over the traditional iteration approaches by using pre-
optimization predictions to reduce the exploration space and using
a static performance estimator to avoid running the programfor
measuring actual run-times. Since OSE is a heuristic method, it
may not reach the best configuration due to the tradeoff in compile-
time savings.

Ma et al. [20] present a pseudo-schedule based low cost al-
gorithm to predict the register pressure of a loop before applying
scalar replacement on high-level source code. In the algorithm, a
fast constructor scans source code and creates a data dependence
graph (DDG) on the fly to reflect all potential future changes in later
compilation phrases. A pseudo-scheduler predicts register pressure
from this DDG. It can predict floating-point and integer register
pressure within less than 3 registers with a time complexityof
O(n2) in practice and a worst case complexity ofO(n3). This
method exposes a potential framework to predict register pressure
for other source code level loop optimizations. However, predicting
the changes made by scalar replacement only involves removing or
changing array references in a loop body. No work has been done
to account for structural changes in a loop due to unroll-and-jam.
In addition, there has been little work in register-pressure guided
high-level loop optimization. This paper addresses both ofthese
issues.

3. Background
In this section, we review unroll-and-jam, scalar replacement and
software pipelining. We discuss how these transformationsmodify
a loop body in detail as well as their effects on register pressure.

3.1 Unroll-and-Jam

Unroll-and-jam is the combined operations of loop unrolling and
jamming [4]. For example, the following loop contains two array
references:

DO I = 1, N*2
DO J = 1, M

A(J,I) = A(J-1,I) + B(J)
ENDDO

ENDDO

If we unroll theI-loop by a factor of two, after the two newJ-loops
are jammed together, the loop becomes:

DO I = 1, N*2, 2
DO J = 1, M

A(J,I) = A(J-1,I) + B(J)
A(J,I+1) = A(J-1,I+1) + B(J)

ENDDO
ENDDO

Jamming must maintain the order of data dependences. If it re-
verses the execution order of array references, jamming becomes
illegal[7]. Unrolling the innermost loop is always legal because no
jamming is required. Usually, unroll-and-jam only refers to the un-
rolling of loops nested outside of the innermost loop. However, our
prediction algorithm assumes the innermost loop can also beun-
rolled, providing a unified solution for loop unrolling.

The number of times a loop is unrolled is called theunroll
factor. To represent multiple unroll factors, we use anunroll vector
with one unroll value for each nesting level of the loop.

After unroll-and-jam, more array references are availablein the
innermost loop, providing scalar replacement more opportunities
to convert memory references into scalars and software pipelining



more instruction-level parallelism. By itself, the reuse of array ad-
dressing computations also reduces execution time. However, the
increased register exploitation demands more physical registers, of-
ten leading to spilling in register allocation. Too much spilling re-
sults in performance degradation due to increased memory accesses
and increased cache interference.

3.2 Scalar Replacement

Scalar replacement is a loop transformation that uses scalars, later
allocated to registers, to replace array references to decrease the
number of memory references in loops [6, 8, 7, 12, 14]. Com-
bined with unroll-and-jam, scalar replacement can improvethe ef-
ficiency of pipelined functional units more than by itself. Consid-
ering the unrolled loop in the previous section, there are six mem-
ory references and two floating-point additions in the innermost it-
eration. The value referenced byA(J-1,I) andA(J-1,I+1)
are defined one iteration of theJ-loop earlier byA(J,I) and
A(J,I+1), respectively. Using scalar replacement to expose the
reuse, the resulting code is:

DO I = 1, N*2, 2
a0 = A(0,I)
a1 = A(0,I+1)
DO J = 1, M

b0 = B(J)
a0 = a0 + b0
A(J,I) = a0
a1 = a1 + b0
A(J,I+1) = a1

ENDDO
ENDDO

Here the number of memory references decreases to three withthe
number of floating-point arithmetic operations remaining the same,
which removes one more memory reference than when only ap-
plying scalar replacement. If the original loop is bound by mem-
ory accesses, unroll-and-jam and scalar replacement improve per-
formance. However, three additional scalars are used, demanding
more registers to hold values. Thus scalar replacement increases
register pressure and may cause excessive register spilling and de-
grade performance.

3.3 Software Pipelining

Software pipelining [3, 18, 21] is an advanced scheduling technique
for modern processors. Modulo scheduling [18, 21] is one popular
approach to software pipelining. This approach tries to usethe
minimum possible cycles to schedule one iteration of a loop such
that no resource and data dependence constraints are violated when
this schedule is repeated.

The initiation interval (II) of a loop is the number of cycles
between the initiation of two consecutive iterations. The initiation
interval represents the number of cycles required to execute a single
iteration of a loop. Given a loop and a target architecture, the
resource initiation interval (ResII) gives the minimum number of
cycles needed to execute one iteration of the loop based upon
machine resources such as the number of functional units. The
recurrence initiation interval (RecII) gives the minimum number
of cycles needed for a single iteration based upon the lengthof the
cycles in the DDG. The maximum value between RecII and ResII,
called the minimum initiation interval (MinII), represents a lower
bound on the II.

Software pipelining can significantly improve loop perfor-
mance. Consider a loopL that iteratesn times and contains three
instructions:A, B, andC. When we assume the dependences in
L require a sequential ordering of these operations within a single
loop iteration, even if the target architecture allows 3 operations to
be issued in a CPU cycle, the schedule forL still requires 3 cycles

to finish one iteration due to those dependences. The loopL would
execute in3 × n cycles on a machine with one-cycle operations.

A software pipelined version of the loopL might well issue
all three operations in one cycle by overlapping executionsfrom
different loop iterations. Under ideal circumstances, thescheduled
loop consists of a single-instruction loop bodyAi+2Bi+1Ci where
Xj denotes operationX from iterationj of the loop [3]. The cost
of the software pipelined version is about one-third of the cost of
the original one, namelyn + 2 cycles including the prelude and
postlude to fill and drain the pipe. So software pipelining can,
by exploiting inter-iteration concurrency, dramaticallyreduce the
execution time required for a loop.

Unfortunately, the overlapping of loop iterations leads toaddi-
tional register requirements. For illustrative purposes,we assume
that operationA computes a value,v, in a register and that opera-
tion C usesv. In the initial sequential version of the loopL, one
register is sufficient to storev’s value. In the software pipelined
version, we need to maintain as many as three different copies of
v because multiple loop iterations are executed simultaneously. In
this particular case, we would need two more registers for storing
the extra two copies ofv.

Unroll-and-jam, scalar replacement and software pipelining are
all optimizations that may increase register pressure. If their col-
lective effects are not considered, the predicted registerpressure
cannot be accurate. In our prediction algorithm, the combined ef-
fects are handled in one step. In the next section, we detail the entire
prediction algorithm.

4. Register Pressure Prediction Algorithm
Source code is lowered to a low-level intermediate form before reg-
ister allocation. In order to predict register pressure precisely, it is
critical to have prediction algorithms work on a representation close
to what the register allocator sees. A data dependence graph(DDG)
not only contains all expressions but also the relationships among
data, providing all information needed to pass into a scheduler, then
later an allocator. So the first step of our prediction algorithm is to
construct a DDG that reflects all changes made by as many opti-
mizations as possible.

4.1 DDG Construction

Our prediction algorithm is applicable to innermost loops that con-
tain assignment statements with array references, scalarsand arith-
metic operators. For one loop nest, our approach models unroll-
and-jam applied to at most two outer loops. While this restriction
is not necessary, it simplifies the approach since it is rare to apply
unroll-and-jam to more than two loops. Our prediction algorithm
considers the effects of unroll-and-jam, scalar replacement, soft-
ware pipelining and general scalar optimizations.

Constructing the DDG for a loop nest consists of four major
steps applied in order:

1. Create the base DDG for the loop before unroll-and-jam.

2. Prepare the DDG after unroll-and-jam by duplicating the base
DDG.

3. Delete unnecessary DDG nodes and edges.

4. Generate cross-iteration edges.

In the base DDG constructed from the source code, nodes rep-
resent each elementary operation constructed and edges repre-
sent data dependences[17]. Each edge is labeled with the vector
〈Delay,Diff 〉, whereDelay represents the minimum number of cy-
cles needed to perform the source operation andDiff is a vector
that represents the number of loop iterations for each containing
loop between the source and the sink of the edge.
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Figure 1. The DDG Construction Process of the Example Loop

4.1.1 Preparing the DDG

Unroll-and-jam brings outer iterations closer together within the
innermost loop. Each copy of the innermost loop body basically
contains the same expressions except for the changes in the in-
dex expressions of arrays. If a DDG is built from an unroll-and-
jammed loop body without considering scalar replacement, the re-
sulting graph consists of many similar subgraphs. Each subgraph
corresponds to one copy of an unrolled iteration. The edges that
cross subgraphs are the data dependences between operations in
different copies of the innermost loop bodies. Although this DDG
contains many redundancies not found in an optimized DDG, in
order to simplify the DDG construction process, we first generate
the DDG from the loop before unroll-and-jam as the base DDG
then duplicate this DDG multiple times based on the given unroll
vector. Later, we delete nodes to reflect the changes by scalar opti-
mizations. At the end, we compute cross-subgraph edges and add
them to get the final DDG.

Ma et al. [20] present a low-cost algorithm to construct the base
DDG. The time complexity of the duplication step isO(n) where
n is the size of the input loop. For example, to construct the DDG
for the following loop:

DO J = 1, N
DO I = 1, N

U(I,J) = V(I) + P(J,I)
ENDDO

ENDDO

We first create the base DDG shown in the Box A of Figure 1 using
the low-cost algorithm developed by Ma et al. [20]. Note thatthe
labels on the edges represent the value ofDiff. If the J loop is
unrolled by a factor of 2, the loop becomes

DO J = 1, N, 2
DO I = 1, N

U(I,J) = V(I) + P(J,I)
U(I,J+1) = V(I) + P(J+1,I)

ENDDO
ENDDO

We must duplicate the base DDG once for the copy of the innermost
loop body. Box B in Figure 1 contains the updated DDG, contain-
ing subgraph 1 and subgraph 2. Clearly, this DDG is not precise
since it contains redundancies that will be eliminated by other opti-
mizations. In the next section, we discuss a marking algorithm that
will update the DDG to reflect the effects of scalar optimizations.

4.1.2 Deleting Nodes and Edges

During the construction of the base DDG, the effects from scalar
replacement, general scalar optimizations and software pipelining
have been considered. But after duplication, we must reconsider
them because unroll-and-jam usually provides more opportunities
for those optimizations. In our prediction algorithm, the nodes in
a DDG are classified into four categories: load and store nodes,
array addressing nodes, arithmetic nodes and loop control nodes,
which are each handled separately. The algorithm for node deletion
is given in Figure 2. The inputV is the unroll vector corresponding



to the subgraph G. For the example loop, the functiondeleteNode
will be called twice, whereV is 〈1, 1〉 and〈1, 2〉.

deleteNode( SubgraphG, UnrollVectorV ){
foreach Load/Store noden ∈ G

foreach true/input dependence,e, incident onn
d = the distance vector ofe
D = the direction vector ofe
if d is availablethen

updated usingV
if d becomes loop independentthen

recursively deleten and dead addressing nodes forn
else ifD can be handledthen

checkD
if D is deletablethen

recursively deleten and dead addressing nodes forn
if n is still not deadthen

r = analyzeSubscript
if r is REMOVEALL then

delete addressing nodes forn
else ifr is PARTIALREMOVE then

delete part of addressing nodes forn
if G is not the last subgraphthen

delete all loop control nodes
}

Figure 2. DDG Node Deletion Algorithm

Loop control nodes contain branch nodes and their supporting
comparison nodes. For the DDG in the Box A of Figure 1, nodes 14
and 15 are loop control nodes. Since only one set is required in all
iteration copies, the algorithm just keeps the set in the last subgraph
and marks the others as deleted. Therefore, nodes 14-2 and 15-2 are
marked as deleted in the Box C. The nodes shaded gray in Figure1
have been deleted. In our algorithm, all arithmetic nodes are always
kept because they hold the logic of a program and it is not common
for subexpressions to exist amongst array operations. In most cases,
they should not be changed during any compilation. In the BoxA,
node 9 is an arithmetic node.

Load and store nodes usually correspond to array references. In
the Box A, nodes 4, 8 and 13 are in this category. Nodes 1, 2 and
3 are the addressing nodes for the arrayV(I); nodes 5, 6 and 7
are the addressing nodes for the arrayP(J,I) and nodes 10, 11
and 12 are for the arrayU(I,J). Array references with incoming
loop independent true or input dependences are removed by scalar
replacement. Nodes for this kind of array are not generated dur-
ing the base DDG construction. Scalar replacement also applies to
any node having an innermost loop carried incoming dependence.
These kinds of nodes exist in the base DDG. Unrolling the inner-
most loop can remove the innermost loop carried dependence if
the corresponding distance is less than the unroll amount. To sim-
plify the computation, we only delete the nodes for array references
having loop independent incoming dependences created by unroll-
and-jam that cross copies of the innermost loop in the algorithm.
As a tradeoff, the final DDG may still contain some nodes carrying
the innermost loop dependence that should be removed by scalar
replacement, resulting in lower precision. If the distancevectord
of a dependence is available, Carr and Kennedy give an equation
to predict the updated dependence vector with exact values after
unroll-and-jam [11]. With this equation, if any array has anincom-
ing dependence that is loop independent in any iteration copy, indi-
cated by all items ofd becoming 0, its corresponding load or store
node should be deleted.

When only the direction vectorD is available for an array
reference, ifD only contains= and∗, where∗ is caused by this
array reference being invariant with respect to the corresponding
loop, deleting this array can be determined using the rules:

• The node withD as its incoming direction vector is deletable if
theDi is ∗ and the unroll factor for loopi is greater than one.

• Otherwise, the node is not deletable

All unqualified array references will be retained. In the example
loop before unroll-and-jam,V(I) has a direction vector of〈∗, =〉
where theJ-loop entry is∗. When theJ-loop is unrolled by a factor
of two, the second copy ofV(I)will be deleted because the unroll
factor of theJ-Loop for this copy is 2. This copy will be removed
by scalar replacement. Thus, node 4-2 is marked as deleted.

After deleting all load and store nodes that should be deleted,
their corresponding addressing computation nodes may be dead.
Those dead nodes can be deleted recursively by checking nodes
starting from a deleted load/store node via incoming edges.If
all outgoing edges of a node are deleted, this node is marked
as deleted. In the example after the load node 4-2 is deleted,its
supporting addressing node, node 3-2 is not used. Therefore, node
3-2 is marked as deleted. Recursively, nodes 1-2 and 2-2 are also
marked as deleted.

Besides the deletion caused by data dependences, reused ad-
dressing computation also results in the removal of some nodes
corresponding to addressing computation. If an array has a format
like A(h, . . . , i, . . . , j, . . . , k) in Fortran and all its dimensions are
constant in the current code region, we use the functionanalyze-
Subscript( A, L1, L2, j ) below to determine how to process is ad-
dressing computations, whereA is an array,L1 andL2 are the un-
rolled loops, andj is the induction variable of the innermost loop.

analyzeSubscript( A, L1, L2, j ) {
p = the induction variable ofL1

q = the induction variable ofL2

if p is on the right ofq in A’s subscriptthen
swapp, q andL1, L2

if p has unroll factor larger than 1then
if p is the leftmost and on the left ofj then

return REMOVEALL
else ifp is the leftmost andp is j then

return REMOVEALL
else ifp is on the left ofj but is notj then

return PARTIALREMOVE(p TO j )
elsereturn KEEPALL

return KEEPALL
}

Figure 3. Algorithm for Analyzing Array Subscripts

In the algorithmanalyzeSubscript, p always represents the left-
most unrolled induction variable in the subscripts ofA. 1 Because
any node invariant with respect to the innermost loop is not gen-
erated in the base DDG, the addressing computation nodes from
subscripth to j appear in the base DDG ifj is the innermost loop
induction variable. For example, consideringU(I,J) in the ex-
ample loop, nodes 10, 11, and 12 are the addressing computation
only from subscriptI. When an outer loopp is unrolled, ifp is at
a location likek, all addressing nodes for this array in all iterations
are retained. So, if we unroll loopJ for U(I,J), nodes 10, 11,
and 12 should all be retained in the subgraphs. Ifp is at j, which
meansp is the innermost induction variable, all addressing nodes
are retained. Ifp is at h, all addressing nodes except for the copy
for the first iteration should be deleted sincep in the leftmost sub-
script and the addressing computation can share the same portion
from h to j. P(J,I) represents this case in Box C of Figure 1. If
p is at i, becausep is not in the leftmost subscript, the addressing

1 This discussion assumes column-major ordering. Simple modifications are
necessary for row-major ordering.



nodes corresponding the indices fromi to j should be deleted ex-
cept for the one in the first iteration. However, the addressing nodes
corresponding to the indices fromh to i should be retained for all
copies. To support this case, each subscript should be tagged with
its corresponding addressing nodes during construction ofthe base
DDG. If a compiler optimizes subscripts using a different approach
than outlined here, in order to make prediction accurate theDDG
modification should be adjusted to reflect the differences.

If two loops are unrolled, even if loopq has an unroll factor
larger than 1,p still determines the final results in the DDG. Con-
sidering the example loop when both loopI andJ are unrolled by a
factor of two, there are four updated copies ofP(J,I): P(J,I),
P(J+1,I), P(J,I+1), P(J+1,I+1). The corresponding
values of the unroll amounts forp andq are 〈1, 1〉, 〈2, 1〉, 〈1, 2〉,
and〈2, 2〉. The addressing computation nodes in the two subgraphs
whereP(J,I) andP(J,I+1) are located will be retained, but
the rest will be deleted becausep has an unroll factor no larger
than 1 only in these two cases. If a subscript contains another array
reference, it should be treated as an unrolled variable thatchanges
as long as it contains any induction variable that is currently being
unrolled. Otherwise, it should be treated as a constant evenif it
contains the innermost induction variable.

4.1.3 Create Cross-Iteration Edges

In order to get a precise DDG, nodes are marked to reflect the
changes from scalar replacement, value reuse and other optimiza-
tions. The duplication of the base DDG creates the edges inside
one iteration but no cross-iteration edges. The scheduler applied
later assigns the location of a node based on theDelay and Diff
tags on its edges. Without cross-iteration edges, all subgraphs are
always scheduled from cycle zero, causing an overestimation of
register pressure. Based on the equation from Carr and Kennedy
[11], cross-iteration dependence edges can be computed by scan-
ning each dependence edge in the base DDG. This process can also
be integrated into the node deletion step. If the source and sink
node of an updated dependence are both live, we add a correspond-
ing edge into the DDG. If the sink node is deleted, all nodes to
which it points become the new sink nodes. In the example loop,
when node 4-2 is deleted, we know the dependence causing the
deletion is from the node 4-1. At this time, node 4-1 is live and
node 9-2 with which node 4-2 is originally connected is also live.
So an edge from 4-1 to 9-2 is added in the Box C of Figure 1. Node
removal caused by the reuse of address computations also creates
cross-iteration edges. The node that receives a value from anode
deleted in its iteration copy should link to the same node that gen-
erates the same value located in the previous iteration copy. The
new edges between 7-1 and 8-2 belong to this case in the Box B of
Figure 1.

4.2 Register Prediction

One cornerstone of a successful prediction is a DDG that can pre-
cisely reflect the code right before register allocation. The previ-
ous section has given an algorithm to achieve this goal. The next
phase is to predict register pressure. Based on previous research,
predicting register pressure using a pseudo-schedule is a promising
method because it considers the impact from instruction schedul-
ing. Thus, our algorithm also creates a pseudo-schedule to predict
register pressure.

The pseudo-scheduler is a fast scheduling algorithm that does
not consider back edges in the DDG. It schedules using a depth-
first scan of a graph starting from the first node of the first iteration
copy. Initially, the algorithm tries to schedule the loop using a
schedule length of MinII. Although it has been proved that unroll-
and-jam does not change the RecII of a loop, the interactions
between scalar replacement and address arithmetic optimization

may yield a different RecII in the low-level code when compared
with the RecII predicted from the constructed DDG. However,a
large unroll amount causes the ResII of the loop to become the
dominant factor over RecII. Moreover, computing RecII is very
costly, at leastO(n3) for a precise value or even a worst case
O(n2) for an approximate value using the algorithm presented in
[20]. Thus, we only compute RecII for the base DDG using the
approximation algorithm and use this value as the RecII in the
computation of the estimated II.

ResII is computed from the final DDG. The maximum value
of RecII and ResII becomes the estimated II. After all nodes are
scheduled, we use the same DU chain estimation method used
in [20] to get the final predicted register pressure.

4.3 Further Simplification

If nodes are scheduled in the order of iteration copies, it ispossible
to simplify the DDG construction algorithm and pseudo-scheduler
further with a lower prediction cost without losing too muchpreci-
sion. The biggest benefit of this simplification is to make theDDG
construction and pseudo-scheduler operate incrementallyso that
the whole framework can run efficiently with a large unroll space
or a large loop body. In a scheduler, if a scheduled loop is viewed
as a set of nodes from different iteration copies that are distributed
into the cycle slots of a schedule table, the majority of the nodes
from an iteration copy usually are clustered together. Considering
the cycle timeline, the nodes from an iteration copy A are usually
scheduled before the nodes from another iteration copy B if Ais be-
fore B in the loop body. Based on these two observations, it isrea-
sonable to ignore the generation of cross-iteration edges and only
mark nodes in the DDG construction. During pseudo-scheduling,
the subgraphs of iteration copies are scheduled one by one inorder.
For each subgraph, we apply the same depth-first scheduling algo-
rithm. For most cases, a pseudo-scheduled loop with the simplified
algorithms yields good results.

With these two simplifications, the DDG constructed and the
pseudo-schedule created by a unroll vector with a smaller unroll
amount can be utilized again with a unroll vector with a larger
unroll amount, reducing the whole prediction cost significantly
in register pressure guided unroll-and-jam since the nodesand
schedule of one iteration copy are same for predicting any unroll
vector.

5. Register Pressure Guided Unroll-and-jam
Our register pressure prediction algorithm can be directlyinte-
grated into any loop optimization strategy utilizing unroll-and-jam.
The estimated register pressure can be used in the constraint func-
tions for those loop optimizations. Sometimes, pursuing the min-
imum register pressure can maximize the final performance, es-
pecially when not many registers are available in a processor. So
we present a performance model to guide unroll-and-jam using our
prediction algorithm.

To measure the performance of an unroll-and-jammed loop,
we use theunitII as the indicator, where the unitII is defined as
II
u

where II is the II of the innermost loop andu is the total
unroll amount,i.e., the product of the unroll factors. This leaves the
objective of our performance model as minimizing the unitIIwith
the smallest unroll amount. Given a loop nest, the model assumes
up to two loop levels can be picked to do unroll-and-jam since
applying unroll-and-jam to more than two loops is rarely possible
and profitable.

While scanning a pre-defined unroll space, the estimated unitII
is computed for each unroll vector. Usually, unroll vectorsare
processed from small to large consecutively in order to utilize the
incremental property of the simplified prediction algorithm. The
unroll vector with the minimum unitII is selected for the final



application of unroll-and-jam. If there is more than one unroll
vector with the same unitII, the one with the smallest total unroll
amount is selected.

5.1 Computing UnitII

After the loop levels are chosen, the next step is to estimatethe
unitII. For a certain unroll vector, the II computed in the pseudo-
scheduler is the estimated II without any spilling. Spilling instruc-
tions consume CPU cycles and perhaps delay the execution of other
memory instructions due to cache misses. At the source code level,
it is difficult to determine where or how many spilling instructions
will be inserted in the assembly code. However, if the numberof
nodes in two graphs is identical, the graph that contains more nodes
with a higher degree of outgoing edges has a higher possibility of
resulting in more spilling instructions. This is because when the
result of a node is spilled into memory, spilling instructions for
loading the value back are required for every node connectedby its
outgoing edges. So, we use the following equations to estimate a
unitII for particular unroll vector:

unitII =
II+IIPenaltyi+IIPenaltyf

TotalUnrollAmount

IIPenaltyi = (Ri−Pi)×(Di+Ei)×A

Ni

IIPenaltyf =
(Rf−Pf )×(Df+Ef )×A

Nf

WhereR is the number of registers predicted andP is the number
of registers available.D is the total outgoing degree andE is the
total number of cross iteration edges.A is the average memory
access penalty, representing the estimated cycles of a single spilling
instruction under the influences from instruction execution, cache
performance or pipeline delay, etc.N is the number of nodes
in a DDG. The subscripti indicates a variable is an integer and
f indicates the variable is floating point. The unroll vector with
the smallest unitII and the smallest total unroll amount is used to
perform unroll-and-jam.

6. Experiment
Our experiment contains two parts. One is to test the accuracy
of our register pressure prediction algorithm. Another is to mea-
sure the performance of register guided unroll-and-jam. The reg-
ister pressure prediction algorithm has been implemented in a
source-to-source Fortran compiler. The performance of thereg-
ister pressure algorithm described in this section is also measured
based on the simplified version without considering cross iteration
edges. The compiler optimizes loop nests by unroll-and-jamand
scalar replacement, using a number of other auxiliary transforma-
tions needed for dependence analysis [5]. The code processed by
the source-to-source compiler is fed into a retargetable compiler
for ILP architectures. The retargetable compiler performsgen-
eral machine-independent scalar optimizations includingconstant
propagation, global value numbering, partial redundancy elimina-
tion, strength reduction and dead code elimination. The software
pipelining algorithm used is iterative modulo scheduling [21].

The target architecture has two integer functional units and two
floating point functional units, sharing 16 floating-point registers
and 16 integer registers. All instructions have a latency oftwo cy-
cles. An infinite number of available physical registers is assumed
in the backend in order to count register pressure. The register pres-
sure of a loop is the sum of registers created in the innermostloop
and its live-in registers. In this experiment, we extract 13loop nests
from the SPEC2000 benchmark suite as test loops. Loops 01 and
02 are extracted from 171.swim and loops 03, 04 and 05 are ex-
tracted from 172.mgrid. The rest of loops are from 200.sixtrack.
All loop nests contain at least two levels and various combinations
of dependences and arrays in order to cover more situations.All

are also amenable to unroll-and-jam, scalar replacement and itera-
tive modulo scheduling.

6.1 Accuracy of Register Pressure Prediction

For a loop, if we predict register pressure without any unroll-and-
jam, our algorithm will generate results identical to the PRP algo-
rithm presented in [20]. PRP gives better register-pressure predic-
tion precision on high-level source code than Ge’s method, Huff’s
MinAvg approach and Ding’s MinDist technique. Table 1 shows
the performance of PRP on our test suite without unroll-and-jam.

Integer Floating Point
Average Err 1.73 0.55
Relative Err 0.13 0.22

Table 1. The Performance of PRP Without Unroll-and-Jam

In Table 1, “Average Err” means the average of the absolute
values of the difference between the predicted register pressure
and the actual register pressure of the final code. “RelativeErr”
is the average of the absolute values of the difference between the
predicted register pressure and the actual register pressure divided
by the actual register pressure. Our algorithm predicts theinteger
register pressure within 1.73 registers on average and the floating-
point register pressure within 0.55 registers.

To test the accuracy of our prediction algorithm for unroll-and-
jam, we compare our predicted register pressure with the equation-
based unroll-and-jam register prediction algorithm presented in
[11]. In the experiments, no registers are reserved in orderto do
a comparison of the accuracy of the prediction methods. The out-
ermost two loop levels are unrolled. The unroll space contains 19
combinations of unroll amounts such that the total unroll amount is
no larger than 12 and the single unroll amount for one loop level is
no more than 5. Thus, the unroll vectors are from〈1, 1〉 to 〈1, 5〉,
from 〈2, 1〉 to 〈2, 5〉, from 〈3, 1〉 to 〈3, 4〉, from 〈4, 1〉 to 〈4, 3〉 and
from 〈5, 1〉 to 〈5, 2〉, where the left value is for the outermost loop
level. For the the 247 unroll vectors applied to the 13 loop nests in
our suite, the average off achieved by the prediction algorithm is
shown in Table 2.

Our algorithm gets an overall average off of 3.97 for integer
register pressure prediction and 2.92 for floating-point prediction.
Both values are better than Carr and Kennedy’s algorithm, espe-
cially for the integer portion. All prediction results withunroll-
and-jam are worse than those without unroll-and-jam. The larger
the unroll amount, the lower the accuracy. This fact is explained
by the approximations contained in the algorithm. The ignoring of
cross iteration edges in constructing the DDG and backward edges
in pseudo-scheduling causes the predicted values to be off from the
real values. Since all iteration copies derive from one basecopy, the
error that exists in the base copy is accumulated while unrolling.
Cross iteration edges and backward edges are used to controlthe
scheduled location of a node. Without them, a node in the pseudo-
schedule may be scheduled earlier than what it should be in the
real schedule. As more iteration copies are scheduled, morecross
iteration and backward edges are ignored, causing lower prediction
accuracy.

In this experiment, register pressure increases with any unroll
amount bigger than one for all loop nests. If we consider the se-
quence of register pressure values for each successive unroll vec-
tor, usually a repeated pattern is observed in the register pressure
change between two consecutive unroll vectors. For example, loop
08 requires 10, 16, 21, 24, and 26 registers corresponding toun-
roll vectors〈1, 1〉, 〈1, 2〉 ,〈1, 3〉 ,〈1, 4〉 and〈1, 5〉. The incremental
values for each step are 4, 5, 3, and 2. The average trend for the in-
crease of one step is approximately 4. The formation of the repeated
pattern is from the similarity of iteration copies. At first we assume



Our Algorithm Carr and Kennedy Algorithm

Unroll Amount
Integer Floating Point Integer Floating Point

Avg Err Rel Err Avg Err Rel Err Avg Err Rel Err Avg Err Rel Err
2 2.48 0.15 1.36 0.34 9.24 0.74 2.27 1.16
3 2.80 0.15 2.24 0.38 11.24 0.68 1.08 0.43
4 3.28 0.16 3.03 0.49 11.84 0.64 2.44 0.56

5- 6 3.80 0.18 3.40 0.48 13.08 0.65 3.00 0.63
7 - 9 4.58 0.20 3.67 0.49 14.63 0.67 3.58 0.66

10 - 12 5.67 0.24 3.79 0.47 16.06 0.65 4.42 0.95
1 - 12 3.97 0.18 2.92 0.44 14.2 0.66 3.54 0.7

Table 2. The Detailed Performance Comparison Table on Register Prediction

there is no node reuse or replacement. At each point where an unroll
factor is increased by one, unroll-and-jam will create an iteration
copy with the same data dependence subgraph. During scheduling,
almost the same number of extra registers is required for schedul-
ing the subgraph, especially, when ResII dominates. Usually, the
nodes affected by scalar replacement only occupy a small portion
of the total nodes. Those replacements only happen in regular and
repeated locations based on the property of updated dependences.
For the address arithmetic reuse, the same situation exists, result-
ing in a repeated pattern. As a result, for a set of consecutive unroll
vectors, the incremental or decremental change of registerpressure
is approximately a constant value. We call this kind of phenom-
ena for a loop nest a trend. The quantity of a trend is the valueof
that constant. We found that if our prediction algorithm accurately
captures the trend, the algorithm performs well.

6.2 Performance of Register Pressure Guided
Unroll-and-Jam

In order to know the real performance of our new model, we im-
plemented our model along with all register pressure prediction al-
gorithms in the Open64 backend. Open64 is an open-source opti-
mizing compiler. The commercial FORTRAN compilers that uti-
lize the Open64 backend have been proved to deliver the fastest
code in the world on the Polyhedron benchmark from Polyhedron
Software Ltd. This benchmark suite is designed in FORTRAN and
used for comparing the performance of the latest commercialFOR-
TRAN compilers on x86-64 and x86 architectures. It only allows
one option against all benchmarking programs so it is an ideal suite
to evaluate if our loop model can automatically pick up the best
unroll number and deliver a good performance.

Our implementation replaces the register pressure prediction al-
gorithm and unroll-and-jam loop model used in the Open64 back-
end directly by our register pressure prediction algorithmand our
loop model except for one change: theUnitII variable computed
in our loop model will add an extra valueC computed with the
information from the Open64’s cache model. Since the units are
different between our loop model and Open64’s cache model and
our loop model should perform the dominate effect, the equa-

tion to computeC is defined asC =
ˆ

CacheCost
UnitII

˜
1

10 , where
CacheCost is thecycles per iter variable defined by Open64’s
cache model. Compared withUnitII , C is always a relative small
number.CacheCost contains the hints of loop header cost and
cache penalty cost. So it is good to addC with UnitII and the
originalUnitII still dominates the computation.

In all experiments, we used the Polyhedron standard benchmark
mode to evaluate performance for each loop model. The machine
running the benchmark suite has dual AMD Opteron 2216 proces-
sors with 4GB of memory. The operation system is the 64-bit Fe-
dora 7. The highest optimization level is always used in thisexper-
iment along with the same machine description. The detailedresult
data are shown in Tables 3 and Table 4.

In the tables, ‘Compile’ means the time used to compile a test
and ‘Ave Run’ means the execution time reported by the Polyhe-
dron benchmark. Our model achieves over two percent average
speedup over Open64’s model on the geometric mean of the av-
erage execution time in both the 32-bit and the 64-bit mode. Per-
formance is improved for most tests. For four tests, the speedup is
more than 6%. Only seven tests have worse performance because
of the inaccurate prediction results. The compilation speed is in-
creased by an average 2.3%. It is reasonable because our prediction
algorithm is more sophisticated than the one used in the Open64
backend. We also believe this is an acceptable tradeoff withthe im-
proved performance.

Most of loop optimizations are performed interactively in
Open64’s compiler. When the highest optimization level is used,
some loop optimizations are also applied in the code generation
phrase. The unroll-and-jam model is designed at the position be-
fore many other high level loop optimizations. If a loop is unrolled
to a certain shape, the following loop optimizations may notbe
triggered or select different algroithms for it. Thus, although our
unroll-and-jam model executes a longer time than Open’s model,
the overall execution time used for the whole compilation may
be shortened in some situations. This explains why AIR used less
compilation time with our new model in 64-bit mode.

In Open64’s loop optimization framework, the unroll-and-jam
model and the cache model along with loop permutation are two
separate phases. As mentioned, we add an extra value produced
by Open64’s cache model to the UnitII to reflect the effects of
cache. We believe that we could achieve better results with atighter
integration between our unroll-and-jam and Open64’s cachemodel.

7. Conclusion
We have presented an algorithm for register-pressure guided unroll-
and-jam. The framework targets prediction from a high-level rep-
resentation such as an abstract syntax tree. Without applying any
actual optimization, the prediction algorithm predicts register pres-
sure after unroll-and-jam, scalar replacement, general scalar opti-
mizations and software pipelining. It constructs a data dependence
graph close to the intermediate code right before register allocation
and then applies a pseudo-schedule to predict register pressure. The
performance model utilizes the predicted register pressure informa-
tion with a given a unroll space heuristically to determine the unroll
vector that may give the best unitII.

In our experiments, the prediction algorithm achieves an overall
average off 3.97 for integer register pressure and 2.92 for floating-
point registers. For the Polyhedron benchmark, our register pres-
sure guided unroll-and-jam improves the overall performance by
about 2% over the model used by the industry-leading optimizing
Open64 backend for both the x86 and x86-64 architectures.

Along with good performance, the low cost design and optional
simplification make the approach portable and easily integrated
into other loop optimizations using unroll-and-jam. We believe a



32bit Open64’s Model Our Model Speedup
Unit: Seconds Compile Ave Run Compile Ave Run Compile Ave Run

AC 2.21 13.45 1.98 13.20 10.41% 1.86%
AIR 7.31 20.79 7.20 20.55 1.50% 1.15%

AERMOD 140.89 35.83 145.57 34.48 -3.32% 3.77%
DODUC 20.78 50.14 21.37 50.25 -2.84% -0.22%
LINPK 1.02 33.05 1.17 32.97 -14.71% 0.24%
MDBX 3.96 21.68 3.95 21.21 0.25% 2.17%
TFFT 0.83 9.70 0.99 9.26 -19.28% 4.54%

CAPACITA 4.26 75.08 4.86 74.67 -14.08% 0.55%
CHANNEL 2.09 20.35 1.96 19.47 6.22% 4.32%
FATIGUE 6.46 8.40 6.91 7.96 -6.97% 5.24%
GAS DYN 4.53 9.62 4.76 9.46 -5.08% 1.66%
INDUCT 11.97 34.20 11.94 34.87 0.25% -1.96%

NF 1.74 31.10 1.52 30.68 12.64% 1.35%
PROTEIN 6.23 59.37 7.57 59.50 -21.51% -0.22%
RNFLOW 8.84 36.45 9.88 35.84 -11.76% 1.67%
TEST FPU 5.73 24.95 4.81 23.28 16.06% 6.69%

Geometric Mean 5.18 25.10 5.32 24.57 -2.69% 2.08%

Table 3. Polyhedron 32bit Benchmarking Results

64bit Open64’s Model Our Model Speedup
Unit: Seconds Compile Ave Run Compile Ave Run Compile Ave Run

AC 1.89 11.20 1.88 10.74 0.53% 4.11%
AIR 22.47 18.05 13.89 16.36 38.18% 9.36%

AERMOD 304.31 34.43 325.49 35.46 -6.96% -2.99%
DODUC 27.91 44.52 28.11 44.76 -0.72% -0.54%
LINPK 1.21 33.33 1.15 33.16 4.96% 0.51%
MDBX 3.57 20.73 3.99 20.21 -11.76% 2.51%
TFFT 1.14 9.53 1.31 9.18 -14.91% 3.67%

CAPACITA 5.43 69.90 6.12 70.08 -12.71% -0.26%
CHANNEL 1.68 18.98 1.99 18.74 -18.45% 1.26%
FATIGUE 8.17 6.71 8.62 6.27 -5.51% 6.56%
GAS DYN 5.78 6.66 5.99 6.56 -3.63% 1.50%
INDUCT 17.85 32.92 17.56 33.00 1.62% -0.24%

NF 1.32 30.58 1.61 30.55 -21.97% 0.10%
PROTEIN 9.17 55.04 10.00 54.54 -9.05% 0.91%
RNFLOW 8.76 33.07 8.48 31.00 3.20% 6.26%
TEST FPU 6.21 24.08 5.79 24.03 6.76% 0.21%

Geometric Mean 6.45 22.80 6.59 22.32 -2.10% 2.11%

Table 4. Polyhedron 64bit Benchmarking Results

loop optimization insensitive to register pressure is incomplete. In
our research, we have presented prediction algorithms for software
pipelining, scalar replacement and unroll-and-jam. In thefuture,
more loop optimizations will be covered.
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