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ABSTRACT 
In this paper we describe the development of an efficient 

compiler for digital signal processors (DSP) based on the 

Open64 compiler infrastructure. Our development has 

focused on state-of-the-art DSP architectures that allow 

high degree of instruction level parallelism, support 

hardware loops, address-generation units, DSP-specific 

addressing features (e.g., circular and bit-reversed), and 

many specialized instructions. We discuss the 

enhancements made to the Open64 compiler infrastructure 

to exploit the architectural features of contemporary DSPs. 

1. Introduction 

Open64 is an open source C/C++/Fortran77/90 compiler 

that is currently used in various industry and academic 

research projects. It originates from the SGI Pro64(TM) 

compiler suite that was released under the GNU General 

Public License. Even though Open64 was not originally 

intended to be a DSP compiler, we decided to use and 

enhance it for advanced DSP architectures. We wanted to 

exploit its powerful set of compiler analyses and support for 

multiple languages. To place our discussion in context, we 

will briefly describe the typical features of DSP 

architectures and different components of the Open64 

compiler infrastructure in the next two sections. 

1.1 Architectural features of a typical DSP and 

challenges to compilation 

DSPs typically contain heterogeneous register sets, 

irregular data paths, multiple buses, separate program and 

data memory, address generation units with specialized 

addressing modes such as circular and bit-reversed 

addressing, zero-overhead hardware loops, and instruction-

level parallelism. Most DSPs support zero-overhead 

hardware loops that reduce the control-flow cycles in a 

loop. Many DSPs have low latency CISC like instructions 

(e.g., Multiply-Accumulate), and allow fixed point 

arithmetic, saturation, and rounding. To achieve high 

performance, application software has to effectively utilize 

these hardware features. 

1.2 Using Open64 to develop an efficient compiler for a 

DSP 

Open64 uses an intermediate representation (IR) called 

WHIRL that has multiple levels of representation and 

serves as the common interface for the compiler phases. 

The important phases of Open64 are described below: 

• The very high level optimizer (VHO) lowers 

aggregates, flattens nested calls, etc. 

• The inter-procedural analysis (IPA) first gathers data 

flow analysis information from each procedure locally. 

It then generates the call graph, performs inter-

procedural analysis and transformations. It performs 

global variable optimization, dead function elimination, 

inter-procedural alias analysis, cloning analysis, 

constant propagation, function inlining, etc. 

• The loop nest optimization (LNO) phase calculates 

dependence graph for array accesses and performs loop 

transformations, and automatic vectorization. 

• The global optimizer (WOPT) computes the control 

flow graph, the dominator tree, dominator frontier, 

control dependence set, and then converts the IR to a 

hashed SSA form. It performs def-use analysis, alias 

classification, pointer analysis, induction variable 

recognition/elimination, copy propagation, dead code 

elimination, partial redundancy elimination, register 

variable identification, bitwise dead-code elimination. 

• The code generator (CG) performs target specific 

optimizations, instruction selection, scheduling, 

software pipelining, hyper-block scheduling, register 

allocation and emits the assembly code. 

The details of these phases can be found in [6, 7].  

Our goal was to enhance Open64 to better support DSPs. 

Features of traditional DSPs have been briefly described in 

section 1.1 Many recent DSPs, however, are load-store 

VLIW architectures and support some degree of general-

purpose computing. Given the new trends in DSP 

architectures, we believed that Open64 could be modified 

to be an efficient compiler for these processors.  

This paper is organized as follows. Section 2 discusses the 

C-language extensions we implemented in Open64. Section 

3 describes the enhancements we performed on the global 

optimizer. Section 4 describes the improvements in backend 

including hyperblock scheduler and register allocator. 

Finally, we present our conclusions in section 5. 

2 C-language extensions for DSP  

In recent years, mobile wireless applications and DSP 

architectures on which they are implemented have 

continued to increase in complexity. Consequently, 

compiler support for DSP applications written in a high-
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level language (HLL) has become important. While DSPs 

have traditionally been programmed in assembly, 

application programmers are transitioning to higher-level 

languages such as C and C++ for maintainability and in an 

effort to reduce time-to-market. Therefore, an efficient 

optimizing DSP compiler becomes very important. 

However, a HLL such as C lacks support for many of the 

DSP-specific features such as multiple memory spaces, 

saturated arithmetic, circular and bit-reverse addressing, 

and other specialized instructions. So many DSP compilers 

use C language extensions to address this shortcoming. This 

section describes the DSP-specific language extensions 

added to the C/C++ Open64 compiler. 

2.1 Intrinsics for DSP-specific addressing modes  

DSP’s have specialized addressing modes like circular and 

bit-reverse addressing for efficient implementation of signal 

and image processing algorithms. These addressing modes 

are in addition to the standard indirect addressing modes 

found commonly in different microprocessors. This section 

describes the programmer level APIs developed to facilitate 

the use of these two specialized addressing modes (i.e., 

circular and bit-reversed) and the enhancement needed in 

Open64 to implement the APIs. 

2.1.1   Circular addressing 

Circular addressing performs modulo-N wrap around access 

over a contiguous memory region (called a circular buffer) 

of size N. In between the two bounds of the buffer, the 

pointer can be incremented linearly. Figure 1 shows a 

circular buffer of length 4 words with start address 0x0F04 

(i.e., buffer locations are 0x0F04, 0x0F08, 0x0F0C, and 

0x0F10).  

Hex 

Address 

word data 

0x0F00  

0x0F04  

0x0F08  

0x0F0C  

0x0F10  

0x0F14  

Figure 1: A circular buffer of length 4 words and start 

address as 0x0F04. 

Circular addressing is commonly used in digital filters. The 

C-code fragment below for a FIR-filter shows that the 

pointer variable (coeffPointer), accessing the array 

“coeff[]”, must be re-initialized to the start location (i.e., 

&coeff[0]) of the array for every iteration of the outer loop, 

when using linear pointer increment: 

int *coeffPointer; 

for(i=0; i < noOfInputSamples; ++i){ sum = 0; 

    coeffPointer = &coeff[0]; 

    for(j =0; j < 4; ++j) 

        sum += inputSample[i+j] *  *coeffPointer++; 

    outputSample[i]  = sum;} 

However, the re-initialization will be unnecessary if circular 

addressing is used. 

2.1.2 Bit-Reversed Addressing 

Bit-reversed addressing is useful for fast-fourier transforms 

(FFT), viterbi decoding, and any algorithm (e.g., fast DCT) 

that is based on FFT. Typical FFT algorithms either take an 

in-order indexed array input and produce a bit-reverse 

indexed array output or take a bit-reverse indexed array 

input and produce an in-order indexed array output. Table 1 

shows the relationship between the standard index and its 

bit pattern that is repeatedly incremented by 1, and a bit-

reversed pattern and the bit-reversed Index for 3-bit 

address. For 3-bit addresses the accessible buffer is of 

length 8 with indices 0 to 7. 

 

Table 1: relationship between the standard and bit reversed index 

for a buffer of length 8. 

 

As an example, let’s consider Simple radix-2 FFT C code, 

outlined below. Refer [13] for the complete C-code listing. 

The function “ReverseBits()” needs to perform explicit bit-

reversal if support for bit-reverse addressing is unavailable. 
 

unsigned ReverseBits ( unsigned index, unsigned NumBits ){ 

  unsigned i, rev; 

  for ( i=rev=0; i < NumBits; i++ ){ 

    rev = (rev << 1) | (index & 1);  index >>= 1; 

  } 

  return rev; 

} 

void fft( unsigned  NumSamples, int *RealIn, int    *ImagIn,  int    

*RealOut,int    *ImagOut ){ 

    unsigned NumBits;   /*bits needed for indices */ 

    NumBits = NumberOfBitsNeeded (NumSamples); 

  

   //data copy and bit-reversal ordering into outputs. 

   for ( i=0; i < NumSamples; i++ ){ 

      j = ReverseBits ( i, NumBits ); 

      RealOut[j] = RealIn[i]; 

      ImagOut[j] = ImagIn[i]; 

   } 

 

  //Inner kernel operations of FFT which reads RealOut[] and     

  //ImagOut[] and then writes the final output in them. The code   

  //below is actually within nested loops. 

    . . . . . .  

    tr = ar[0]*RealOut[k] - ai[0]*ImagOut[k]; 

Standard 

Index 

Standard Bit 

Representation 

Reverse Bit 

Representation 

Bit-Reversed 

Index 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 

Address pointer       � 
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    ti = ar[0]*ImagOut[k] + ai[0]*RealOut[k]; 

    RealOut[k] = RealOut[j] - tr; ImagOut[k] = ImagOut[j] - ti; 

    RealOut[j] += tr;  ImagOut[j] += ti; 

    . . . . . . . .  

} 

2.1.3 Design of intrinsics for circular and bit-reverse 

addressing  

For circular and bit-reversed addressing, a user level 

intrinsic can specify the buffer (defined by the start location 

and the length), the memory location to access the data, and 

the increment or decrement value used to compute the next 

location in the buffer. A pointer variable in a high level 

language can be used to access data from the buffer. We 

provided four user level intrinsics for circular and bit-

reverse load and store: 

• LOAD_CIRC_DTYPE(v, p, s, l, a); 

• STORE_CIRC_DTYPE(v, p, s, l, a); 

• LOAD_BREV_DTYPE(v, p, s, l, a); and, 

• STORE_BREV_ DTYPE(v, p, s, l, a). 

where “v” is the variable loaded or stored; “p” is the pointer 

variable used to access the buffer and is an l-value; “s” is a 

signed value for linear increment/decrement and is a 

constant; “l” is the buffer length in # of data elements in 

buffer; “a” is the Buffer start address and is an l-value; 

“DTYPE” denotes the data type in the buffer could be int, 

short, char, double, etc depending on the data types 

supported in the DSP.  

As an example, when the API’s for circular load is used, the 

FIR filter code shown in section 2.1.1 becomes: 

int *coeffPointer; int value; 

for(i=0; i < noOfInputSamples; ++i){ sum = 0; 

  for(j =0; j < 4; ++j){ 

    LOAD_CIRC_INT(value, coeffPointer, 1, 4,  &coeff[0]);  

     sum += inputSample[i+j] * value; 

  } outputSample[i]  = sum; 

} 

The API “LOAD_CIRC_INT” loads the elements of the 

array “coeff[]”, in the integer variable “value”, in a modulo 

wrap-around fashion, creating a circular buffer of length 4. 

There is no need to re-initialize the “coeffPointer” in the 

outer loop body, unlike in section 2.1.1. 

Similarly, when the intrinsics for bit-reverse store is used 

the function “ReverseBits()” is no longer needed in the 

Simple Radix-2 FFT implementation shown in section 

2.1.2.  The code below the comment statement “data copy 

and bit-reversal ordering into outputs” in function “fft()” 

can be implemented using bit-reverse store intrinsics as: 
 

int *realOutPointer; int *imagOutPointer; 

for ( i=0; i < NumSamples; i++ ){ 

   STORE_BREV_INT(RealIn[i], realOutPointer, 1,     

                                   NumSamples, &RealOut[0] ). 

   STORE_BREV_INT(ImagIn[i], imagOutPointer, 1,  

                                   NumSamples, &ImagOut[0] ).} 

2.1.4 Implementation issues in Open64 

WHIRL is a strict tree form with each node representing an 

operator that takes zero or more operands and produces a 

single output.. Therefore, WHIRL cannot represent the 

semantics of an instruction such as "result = *(ptr++incr)” 

as a single node.  Consequently, a single Open64 

“__builtin” cannot be used to implement the user-level 

intrinsics/APIs described in section 2.1.3. Also the 

characteristics of the load and store operations need to be 

maintained. Hence, these user-level intrinsics are 

implemented as macros that expand to two internal 

operations: (i) indirect load/store with the circ/bit-reverse 

pointer, and (ii) an internal intrinsic “circular/bit-reverse 

update”. For example, LOAD_CIRC_INT() would expand 

to an indirect load and a internal circular update intrinsic 

that was transparent to the user:  

#define LOAD_CIRC_INT(v, p, s, l, a) \ 

( (v) =  *( p);   (p) = (int *) circ_update((void *) (p), (s), (l), 

(void *) (a)) ) 

 

Similarly, STORE_CIRC_INT expands to: 

#define STORE_CIRC_INT(v, p, s, l, a) \ 

( *( p) = (v);   (p) = (int *) circ_update((void *) (p), (s), (l), 

(void *) (a)) ) 

 

These WHIRL nodes (i.e., the load/store and the 

circular/bit-reverse update) are combined into a single 

multi-output operation in the CG-phase. The IR looks like 

(we are using the circular load/store to illustrate): 

<result> = load_indirect(pointer);  or,   

              store_indirect(pointer) = <source>;   

and, 

<pointer> = circ_update (pointer, step, CR) 

CR is the configuration register that defines the associated 

circular/bit-reverse buffer based on buffer size and the start 

address. DSP architectures can have different hardware 

implementations of the actual circular/bit-reverse 

instruction; so we assume a generalized form of the 

instruction where a configuration register is used to keep 

track of the buffer associated with a particular circular/bit-

reverse load/store. The operation showing the initialization 

of CR is not shown. The load/store and the corresponding 

circular/bit-reverse update operations are then combined in 

the CG phase into a single 2-output CGIR operation (2 

outputs for the circular/bit-reverse load: one for pointer 

update and the other for the loaded value): 

<result, pointer> =load_circular_update(pointer, step, CR), 

or  

<pointer> =store_circular_update(source, pointer, step, CR) 

The alias analysis for the circular/bit-reverse load/store 

operations are made very conservative, since the pointer 

updates are no longer linear. Some enhancement is needed 

in Open64 to perform efficient alias analysis for circular 
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updates, where the pointer wraps-around the buffer and 

accesses the same memory locations periodically.  

2.1.5 Hoisting and allocation of configuration 

registers 

A DSP can have multiple configuration registers (CRs) to 

support multiple circular/bit-reverse buffers.  The CRs need 

to be assigned and allocated effectively. In our 

implementation within Open64, CRs are considered 

dedicated temporary names (TNs) and require special 

handling. A simple algorithm for the hoisting of the loop-

invariant CR assignment statements and a balanced 

allocation of the CR TNs, for two CR registers (i.e., CR0 

and CR1) is described below: 

1. The “def” of a CR is inserted just before its “use” in the 

circular/bit-reverse load/store.  

2. A special pass hoists the “def” of CRs from the loop 

body, based on the following: 

• A “def” of a CR can be hoisted only if a loop-invariant 

TN is assigned to it.  

• Multiple “def”s of  the same CR from the same loop-

invariant TN are redundant (to a single assignment) 

and can be hoisted above the loop. 

• If different TNs (even if loop-invariant) are assigned to 

the same CR at different points within the loop body, 

none of the assignments can be hoisted above the loop. 

 

3. The CR allocation mechanism follows use-def chains, 

since it’s the use of the TN in the circular/bit-reverse 

load/store instruction that determines if a CR needs to be 

allocated. At the “def” of the TN a copy of the TN to the 

CR is inserted. Thus, if the same TN has any use other than 

in circular/bit-reverse load/store, it gets a GPR through 

actual register allocation. 

• A vector data structure is maintained for the CR 

allocations to TNs in each PU.  

• If there is a pre-existing CR allocated to the same TN, 

it is reused. 

• When a CR allocation is requested for a TN, the least 

allocated CR (CR0 or CR1) within the BB is selected 

to keep the CR usage balanced within the BB. 

2.2  Pragmas for loop optimization 

Many DSP architectures have hardware loops. Efficient 

usage of the hardware loop support can be facilitated if 

certain loop properties (i.e., minimum / maximum number 

of loop iterations, loop step values) are known by the 

compiler.  

2.2.1 Loop trip count pragmas 

We added three pragmas – LOOP_TRIP_COUNT_MIN, 

LOOP_TRIP_COUNT_MAX, and LOOP_TRIP_COUNT-

_MODULO -- that the programmer can use to specify the 

lower bound, the upper bound, and a divisor of the loop trip 

count respectively. The compiler can use these information 

to omit loop guards, omit cleanup or alternate loops during 

unrolling and software pipelining. The compiler can decide 

whether it is profitable to unroll or software pipeline the 

loop. If the “min” is specified, the guard condition for a 

loop can be eliminated. If the “modulo” is a multiple of the 

unroll factor, the remainder loop can be eliminated while 

unrolling. If both the “min” and the “max” values are same, 

the loop is guaranteed to iterate min=max times. It is useful 

in cases when ((loop end – loop start)/loop step) is a 

constant quantity, but both “loop end” and “loop start” are 

variables. In this situation the trip-count computations can 

be made redundant. 

2.2.2 Pragma for loop unrolling 

The pragma LOOP_UNROLL(N), where  “N” is a positive 

constant, allows programmers to notify the compiler that a 

loop should be unrolled “N” times. Scheduling opportunity 

and parallelism can be increased by enlarging the loop 

body. The jump overhead can be reduced for processors 

that implement software loops 

2.2.3 Implementation of the loop pragmas in Open64 

Even though many industrial DSP compilers [1,2,3] provide 

support for similar pragmas, the focus is on supporting 

these pragmas in Open64. We present an overview of the 

approach: 

1. Pragmas are recognized in the C/C++ front-end and 

added as whirl “PRAGMA” nodes in the IR just before the 

whirl node for the loop.  

2. The function “CODEREP *IVR:: Compute_trip_-

count()” is modified as: 

• Bypass loop guard generation depending on the 

LOOP_TRIP_COUNT_MIN 

• Loop trip count computation is replaced with a 

constant trip count, if LOOP_TRIP_COUNT_MIN == 

LOOP_TRIP_COUNT_MAX. 

3. BB_Add_Annotation() is used to add the pragmas from 

Whirl to CG IR. 

4. The following modifications are done during CG loop 

optimizations. 

• If the loop min pragma >= SWP stage count, bypass 

generation of alternate low-trip count loop during 

software pipelining. 

• Modify functions “Unroll_Do_Loop” and 

“Unroll_Dowhile_Loop” to bypass “remainder loop” 

and “unrolled loop guard” based on the loop count 

MODULO or  loop count MIN == loop count MAX. 

5. The loop count min/max/modulo pragma are adjusted if 

loop unrolling occurs in CG.  

The pragma based loop unrolling is implemented in the 

LNO phase as a generalized unroller using existing APIs. 
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Even though Open64 performs limited loop unrolling in the 

CG phase, the benefit is in implementing at LNO because 

of the machine independent optimizations (WOPT) 

performed after LNO. The implementation of the 

generalized pragma based loop unroller in LNO is outlined 

below: 

1. Detect a whirl “DO_LOOP” IR and any loop pragmas 

associated with it.  

2. Determine the loop start, end, step, and trip count from 

the “DO_LOOP” IR.   

3. For constant trip count loop, determine if the unroll 

factor perfectly divides the trip count (or the loop count 

modulo pragma value, if specified), giving remainder =0. 

4. If remainder=0 in step 3, invoke 

“Unroll_Loop_By_Trip_Count()”, unroll by the specified 

unroll factor, go to step 7.  

5. If remainder! = 0 in step 3, split the loop into two loops: 

the main loop having trip count that is completely divisible 

by the unroll factor, and the remainder loop, whose trip 

count = original trip count % unroll factor. Figure 2 

illustrates loop splitting with an example. 

6. Call “Unroll_Loop_By_Trip_Count()” for the main loop, 

unroll by the specified unroll factor, (remainder loop is left 

untouched). Go to step 7.  

7. If unrolling occurs, adjust loop count min/max/modulo 

pragmas. Set unroll pragma to 1. 

8. END 

 

 Original loop: 

   #pragma LOOP_UNROLL(6) 

    for (j = 0; j <77; j+=5)                                               

  IR of the DO_LOOP after PreOpt is equivalent to:   

    for (j = 0; j*5 <= 76; j++) 

  The loop after splitting becomes: 

   Main loop (first 12 iterations, perfectly divisible by 6):  

    for (j = 0; j*5 <= 59; j++)    

   Remainder loop (Last 4 iterations):  

     for (j = 12; j*5 <= 76; j++)   

Figure 2: Illustration of loop splitting followed by unrolling 

of the main loop. 

 

We implemented a parser to extract the loop start, end, and 

step information (both for constant and variable trip count 

loops) from the WN_end() of the DO_LOOP abstract 

syntax tree (AST). Figure 3 shows the generalized structure 

of the AST obtained from WN_end() of the  DO_LOOP 

structure. For some variable trip count loops, the AST 

structure has different canonical forms for the same 

functional loop end condition. 

GT , LT , LE ,  GE

Loop END value
“LDID” or Constant

Loop START value
“LDID” or Constant

ADD or SUB

MULTIPLY

“LDID” Loop
Induction Variable

Loop STEP 

a Constant

 

Figure 3: Generalized form of the WN_end() AST for a 

DO_LOOP structure 

3. Enhancement of the Global Optimizer 

3.1 Register promotion of small structures 

Many advanced DSPs support bit-level operations that can 

insert/extract a number of consecutive bits at a given bit-

offset to/from a register. Applications like network 

protocols, cryptography have many bit level operations 

involving structures and unions (with a mix of bit-fields and 

standard C-data type) of size less than or equal to 8 bytes 

(called “small structures” in this paper). A considerable 

reduction in stack size and cycle performance is possible if 

the compiler is able to allocate the small structures 

completely in registers. The algorithm uses the whirl level 

“EXTRACT_BITS” and “COMPOSE_BITS” operations to 

replace individual structure-member auxiliary symbols with 

the full structure-sized auxiliary symbol in the WOPT 

phase, as shown in figure 4. 

• The auxiliary symbol table for a structure/union variable 

contains entries for each member of the structure or union 

that are actually “used” or “defined” in the program. As 

in figure 4, auxiliary symbols “st 8”, “st 9”, “st 10”, and 

“st 4” are auxiliary symbols for the type “PAIR”. Their 

mappings:  “st 8” is for “w[0]”;“st 9” is for “h[1]”; “st 

10” is for “h[3]”, and “st 4” is for  “d”.  

• The register variable identification (RVI) cannot promote 

structure/unions to registers because the overlapping data 

layout introduces “may-use” and “may-def” nodes, 

resulting in allocating the small structure always in stack.  
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typedef union {

long long d;
int w[2];

short      h[4];

char       b[8];
} PAIR;

PAIR  var, *Pi, *Po;

U4U4LDID 0 <st 3> 

I8I8ILOAD 0 
I8STID 0 <st 4> 

I4INTCONST 6 (0x6)
I4STID 0 <st 8> 

U4U4LDID 0 <st 3> 
I8I8ILOAD 0 
I8STID 0 <st 4>

I8I8LDID 0 <st 4>

I4INTCONST 6 (0x6)
I8CVTL 32

I8COMPOSE_BITS <bofst:0 

bsize:32>
I8STID 0 <st 4>

I8I8LDID 0 <st 4>

I4INTCONST 7 (0x7)
I8CVTL 16
I8COMPOSE_BITS <bofst:48 

bsize:16>
I8STID 0 <st 4> 

I8I8LDID 0 <st 4> 

U4U4LDID 0 <st 1>
I8ISTORE 0 

I4INTCONST 7 (0x7)
I2STID 6 <st 10>

I8I8LDID 0 <st 4> 
U4U4LDID 0 <st 1>

I8ISTORE 0 

I4INTCONST 3 (0x3)

I2STID 2 <st 9>

I4I4LDID 0 <st 8> 

I4STID 0 <st 5> 

var.d = *Pi; 

var.w[0] =  6;

var.h[1] =  3; 
x = var.w[0];

var.h[3] =  7;
*Po = var.d

I8I8LDID 0 <st 4> 

I4INTCONST 3 (0x3)
I8CVTL 16
I8COMPOSE_BITS <bofst:16 

bsize:16>
I8STID 0 <st 4> 

I8I8LDID 0 <st 4>
I8EXTRACT_BITS <bofst:0 

bsize:32>
I4STID 0 <st 5>

 

Figure 4: Use of EXTRACT_BITS and COMPOSE_BITS for register promotion of small structures.

• However, when all the structure-member auxiliary 

symbol accesses are replaced with the unique full-sized 

auxiliary symbol access, using “EXTRACT_BITS” at the 

“use” locations, and using “COMPOSE_BITS” at the 

“def” locations, the “may-use” and “may-def” nodes are 

no longer present. This facilitates register variable 

identification (RVI).  

This optimization is always beneficial for reducing stack 

size. Moreover, there can be a significant improvement in 

cycle performance if the insert and extract operations can 

be further removed. As an example, if the access involves 

32-bit integer members for a 64-bit structure, the insert and 

extract operations can be completely removed. 

 3.2 Removal of redundant alias stores encountered 

during C++ inlining 

We noticed many instances of redundant stack usage and 

dead stores to stack locations when compiling C++ code 

having variables of type small structures and classes with 

bit-fields. The problem is especially acute when C++ 

overloaded operator functions and small class member 

functions are inlined. For a DSP embedded on a mobile 

device, memory (program, data, or runtime memory) is a 

critical resource.  Hence, even though the discussion in this 

section in not specific to a DSP, the impact of the 

modification is of high importance for DSP’s embedded in 

mobile devices. 

The Whirl IR has address of a stack variable saved using 

the operation “LDA”. The first WOPT pass removes the 

“LDA” operation, since the stack variable can be directly 

accessible after inlining the C++ overloaded operator 

functions and class members. But the second WOPT pass 

still sets the POINTS_TO ALIAS flag, which results into an 

alias store that is actually a dead store. Figure 5 illustrates 

the problem: the “may-def” node is still associated to the 

store of stack variable “anon1” in the second WOPT pass 

even after the WHIRL operation “LDA anon1” is deleted in 

the PreOpt pass, leading to dead store of   “anon1“. The 

problem is solved as follows: 

1. VHO lowering doesn’t lower aggregate types when bit-

fields are present. It lowers by converting a single 

MTYPE_M structure copy to multiple MTYPE_Ix/Ux 

depending on the number & the type of the structure 

members (it flattens nested structures). This was upgraded 

to make a single MTYPE_M structure copy lower to an 

equivalent single MTYPE_I/U structure copy for copies <= 

8 bytes, irrespective of whether bit-fields are present.  

2. The POINTS_TO is computed from the attributes of 

“ST” set by the front-end, and not from attributes 

recomputed in WOPT and set in class “BE_ST”. This gives 

rise to stale alias information in the second pass of WOPT. 

The attributes of BE_ST are used instead: 

• Class “BE_ST” has fields like “address_used_locally”, 

“address_passed”, etc, as in “ST”.  

• Instances of “BE_ST” are created when WOPT creates 

its own symbol table (auxiliary symbols). 

“address_used_locally”,  “address_passed” in BE_ST 

are recomputed:  

• An address saved operation (e.g., “LDA”) done on a 

symbol sets “address_used_locally” in an instance of 

the class BE_ST for the symbol. 

• If the symbol’s address is ever passed to a function, it 

set “address_passed”. 

• The attribute fields of ST are never updated. Hence 

“POINTS_TO” of a symbol (created using information 

from both ST and BE_ST), can have outdated 

information for a two pass WOPT (e.g., when a 

previous WOPT pass deletes a redundant LDA). 
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First pass of WOPT: After PRE-OPT LOWERING

I4I4LDID 0 <2,7,.Mreturn._ZN5tcb_t7get_tagEv_temp_0>
I4STID 0 <2,6,anon1> 

------------------------------------------------------------
U4LDA 0 <2,6,anon1>

U4STID 0 <2,19,_ZZN9msg_tag_t9is_notifyEvE4this> 
--------------------------------------------------------------------------------

U4U4LDID 0 <2,19,_ZZN9msg_tag_t9is_notifyEvE4this>
I4I4ILOAD 0 

I4STID 80 
-----------------------------------------------------------------------------------------
IF 

I4I4LDID 80 
I4INTCONST 0 (0x0)

I4I4EQ

“LDA anon1” can be removed, 
if the indirect access is replaced 
by a direct load from anon1.

AT EXIT OF PRE-OPTIMIZER AFTER CONVERTING BACK TO WHIRL DOMAIN

I4I4LDID 82 
I4STID 0 <2,6,anon1> 

----------------------------------------
IF 

I4I4LDID 0 <2,6,anon1> 
I4INTCONST 0 (0x0) 

I4I4EQ 

SECOND WOPT PASS: AfterFree flow analysis (FFA) and MU and CHI 

insertion

I4I4LDID 82 <st 12> 
I4STID 0 <st 6> 
chi node in opt_main < [aux_id=15] >
---------------------------------------------------

I4I4LDID 0 <st 6> 
I4INTCONST 0 

I4I4EQ 

THE POINTS_TO
aux_id=6 fixed anon1, 
byte ofst is 0, byte size is 4

“not_address_saved” *NOT* set

attr=not_addr_passed|local|named|
safe_to_speculate|not_f90_pointer|
not_f90_target

ERROR !

“not_address_saved”

should be set, and
the CHI node should 

*NOT* be included

 

Figure 5: Example of redundant alias information

• If the first WOPT pass deletes all address saved 

operations (LDA’s) for a local stack symbol, the 

“address_used_locally” field of BE_ST is FALSE in 

the second pass, even though “address saved” in “class 

ST” is TRUE (i.e., ST is never updated). The solution 

is to use the “address_used_locally” field from BE_ST 

to compute POINTS_TO (instead of the 

“address_saved” field of “class ST”).  

We noticed cycle performance improvements ranging from 

3% to 40%, stack size reductions of as much as 50% and 

code size reductions by 1% to 2% for some modem 

applications when register promotion of small structures are 

enabled as described in section 3.1. These applications have 

extensive use of small structures and unions and are a mix 

of unstructured control flow and some loops. In a C++ 

kernel code having extensive use of small structures and 

classes, we noticed stack size reductions of up to 80% when 

both the modifications described in sections 3.1 and 3.2 are 

applied. 

4. Enhancement of the code generator: hyperblock 

scheduling and register allocation 

In Open64, the main phases of the code generator are: 

instruction selection, register allocation, and scheduling. 

The compiler should strive to exploit the instruction-level 

parallelism provided by the architecture and also efficiently 

allocate registers minimizing spills or copies. The register 

allocation process can be complicated by the presence of 

register pairs. In this section, we will discuss our efforts to 

modify the code generator of Open64 to exploit and 

accommodate architectural features typically present on a 

DSP. 

4.1 Aggressive hyperblock scheduling 

Optimal instruction scheduling has been shown to be a NP-

complete problem [9]1.   As a result, compilers typically use 

heuristic-driven scheduling algorithms. Most conventional 

compilers use a variant of list-scheduling. List scheduling, 

described in [11], is an efficient algorithm that encodes 

scheduling constraints in a directed-acyclic graph (DAG). 

The scheduler traverses the DAG and consults a set of 

heuristics to schedule instructions. This approach works 

well in a single basic-block i.e., in the absence of control-

flow. Several algorithms such as extended-basic block 

scheduling, trace scheduling, superblock scheduling, and 

hyperblock scheduling have since tried to accommodate 

control-flow in an instruction scheduler. In the next few 

sections, we will focus on one such technique: hyperblock 

scheduling. The use of predicated instructions if available 

in a DSP can be extremely beneficial in reducing the 

number of branches in the compiled code and enabling 

aggressive scheduling across basic-blocks. Therefore, we 

wanted to tune Open64 compiler to fully exploit this 

feature. 

                                                                 

1 Interestingly, eliminating control-flow does not improve the 

complexity of the problem from a compiler-engineering 

perspective. Single basic-block scheduling for realistic 

architectural models has been shown to be NP-complete. [10] 
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         Figure 6: Potentially profitable hyperblock rejected by default formation algorithm 

4.1.1 Hyperblock scheduling in Open64 

The Open64 compiler contains a hyperblock scheduler that 

is largely derived from the algorithm described in [12]. To 

obtain efficiently scheduled code, it was important that the 

hyperblock scheduler was tuned for our processor. In this 

paper, we describe the modifications we made to the default 

Open64 hyperblock algorithm to accommodate constraints 

in the target instruction set. 

4.1.2 Predicated execution 

The VLIW target contained support for predicated 

execution. However, in comparison to processors such as 

the Itanium, the predicated execution model on our target 

processor was more restricted. In particular, not every 

operation in the instruction set could be predicated. Due to 

this constraint, we modified the hyperblock-selection 

mechanism in Open64. This restricted form of predication 

stems from a focus on power and resource savings and is 

common on DSP architectures. Thus, changing Open64 to 

handle these constraints makes Open64 more attractive for 

embedded targets.  

4.1.3 Hyperblock formation 

A hyperblock, as described in [12], is a set of basic blocks 

that contains a single entry block that dominates all other 

blocks in the set. Note that the set can contain multiple 

blocks where control-flow exits out of the hyperblock. The 

default hyperblock-formation mechanism in Open64 

rejected any basic blocks that contained instructions that 

could not be predicated. This requirement proved to be too 

restrictive for our architecture. Rejecting every set of basic 

blocks that contained an unpredicatable2  instruction 

                                                                 

2 A note on terminology: in this paper, we have used the terms 

unpredicatable to refer to an instruction that cannot be 

predicated on our architecture and predicatable for instructions 

that can be predicated. 

resulted in too few hyperblocks being formed. We wanted 

to aggressively construct and schedule hyperblocks. 

Therefore, we relaxed the restrictions in the hyperblock-

selection algorithm to accept a larger set of hyperblock 

candidates. 

4.1.4 Modifications to the hyperblock-formation 

algorithm 

In addition to the architectural constraint described in 

section 4.1.2, the changes in the formation algorithm was 

motivated by code that was generated by Open64. Figure 6 

shows an example of compiled code we observed on 

several benchmarks. The basic-block labeled B3 in the 

figure contains an unpredictable instruction. Thus, this set 

of blocks would be rejected by the default hyperblock 

formation algorithm. However, note that blocks B4 and B5 

contain a large number of instructions and, therefore, it can 

be profitable to consider the blocks shown in the figure as 

candidates for hyperblock scheduling. To that end, we 

relaxed the selection criteria in the Open64 formation 

algorithm. After our modifications, a candidate block can 

contain unpredicatable instructions if it post-dominates the 

entry block of the hyperblock. Consider block B3 in Figure 

6 that contains an unpredicatable instruction. Since it post-

dominates the entry block – B1 – it will be considered for 

inclusion in the hyperblock.  

4.1.5 Safety 

As we shall discuss in the next section, this modification 

allows the hyperblock scheduling to be more aggressively 

applied in our benchmark suite. More importantly, 

however, this modification preserves the semantics of the 

program i.e., this transformation is safe. We outline two key 

attributes of the modified algorithm that ensure safety: 

• First, the entry block of the hyperblock dominates all 

other blocks in the hyperblock. Consider a basic block in  

B1 

B3 

B2 

B4 

B1: Hyperblock entry 
block 
 
B3:Block contains 
unpredicatable 
instructions 
 
B2, B4, B5: large 
completely 
predicatable basic 
blocks. 

B5 
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Benchmark Hyperblocks formed by 

selection algorithm 

M/D 

Basic blocks considered by selection 

algorithm 

M/D 

networking applications 1.13 1.72 

telecommunication applications 1.00 1.49 

Table 2: Hyperblock formation by the default (D) and modified (M) algorithms 

the hyperblock that post-dominates the entry block. The 

instructions in such a basic block will always execute if 

control flows along the hyperblock. 

• Second, the Open64 hyperblock-aware instruction 

scheduler constructs a data-precedence graph for the entire 

hyperblock and does not move instructions across basic 

blocks if the results of the instruction clobber a value in the 

live-out set of the destination basic block. 

These two properties of the algorithm guarantee that the 

modification does not compromise program safety during 

instruction scheduling. 

4.1.6 Profitability 

The modification described in section 4.2.4, the Open64 

compiler increased the aggressiveness of the scheduler – in 

particular, the compiler was able to consider significantly 

more basic blocks as candidates for hyperblock scheduling. 

Table 2 lists the additional number of basic blocks that 

were considered and hyperblocks that were formed because 

of the modification for two classes of applications. Both 

application classes contained a set of programs commonly 

used in DSPs for wireless communications. In the table, D 

refers to the default Open64 algorithm and M refers to the 

modified algorithm. The numbers have been normalized to 

the default hyperblock algorithm. As can be seen in the 

table, the modified algorithm allowed the examination of 

basic blocks that would have been rejected by the default 

block-selection algorithm. In the next section, we will 

discuss a change we made in the code-generator to 

effectively handle register-pairs. 

4.2 Efficient register pair allocation 

Many DSP applications that operate on 64-bit quantity also 

need access to the upper half (bits 32-63) or the lower half 

(bits 0-31) of the data. This can be problematic on DSPs 

that support 64-bit registers by grouping two adjacent 32-

bit registers as register pair. For example, adjacent registers 

r0 and r1 can be grouped together as r1:0 to hold a 64-bit 

value. 

On these architectures, a simple solution to the problem is 

to introduce a copy of the upper or lower register to another 

register. Introducing a copy can be expensive, especially 

when it appears in a tight loop. We want to eliminate this 

copy. The allocation of register pairs has been the focus of 

prior compiler research [14,15]. However, we wanted to 

improve register-pair allocation within the framework of the 

Open64 compiler. We were particularly interested in 

avoiding drastic changes to the default Open64 allocation 

algorithm. 

4.2.1 The solution strategy 

We decided to handle this problem in the register allocator 

since the allocator already performs preference copying. 

The allocator recognizes these operations as special pseudo 

copy instructions. We introduced 2 pseudo instructions as 

follows: 

• pseudo_pair_low: source operand is 8-byte TN, result 

operand is lower 4-byte of source 

• pseudo_pair_high: source operand is 8-byte TN, result 

operand is upper 4-byte of source. 

Figure 7 shows original program and IR dump after CG 

Expand and EBO. EBO recognizes that 8-byte TN242 is 

right shifted by 0x20 and replaces it with pseudo_pair_high 

instruction. Next, the register allocator needs to recognize 

pseudo_pair_high as a special copy and assign TN252 the 

same color as the upper register of GTN242. In the next 

few sections, we discuss our implementation of this 

optimization. 

4.2.2 Challenges 

Implementation of pseudo register pair optimization proved 

to be more difficult than originally anticipated. The Open64 

register allocator works in 2 independent phases. First GRA 

allocates live ranges which are live across multiple basic 

blocks, also known as global live ranges. Next, LRA 

allocates live ranges local to every basic block. 

The source and result operands of pseudo pair instructions 

can be either global or local. Thus, we need to handle the 

following 4 cases: 

 

Source         Destination Comments 

Global  Global             Both handled in GRA 

Global Local         Need interaction between GRA and LRA 

Local Global              Need interaction between GRA and LRA 

Local  Local               Both handled in LRA 
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Original C code After CG Expansion 

extern long long bar(int a, long long b); 

extern int baz(long long);                        

int foo(long long a, int c)   {                   

   long long tmp = c + bar(1, a);              

   int retval = (tmp>>32);                        

   if (c > 0) tmp++;                                   

   return retval + baz(tmp); } 

[11] TN249:8 :- asr_i_p TN242:8 (0x20) ; 

 [11] TN250:4 :- tfr TN249:8 ;  

[11] TN1(r0):4 :- add TN248:4 TN250:4 ; 

After EBO 

 [11] TN252:4 :- pseudo_pair_high GTN242:8 ; 

 [11] GTN1(r0):4 :- add GTN1(r0):4<defopnd> TN252:4 

Figure 7: IR before and after CG expand and EBO 

This problem is aggravated by the fact that LRA does not 

build an interference graph and hence can not reason about 

preference copies. To reduce the problem space, we 

globalize any local live range which appears in pseudo pair 

instruction, provided the other operand is global. 

For example, in Figure 8, TN252 will be globalized since it 

is the result operand of pseudo_pair_high and the source 

operand TN242 is global. After promoting local live ranges 

to global, we reduce the original problem to the following 2 

cases: 

Source         Destination Comments 

Global  Global             Both handled in GRA 

Local Local  Both handled in LRA 

 

4.2.3 Implementation details 

We can group most of the changes in the following 

categories: Globalize local live ranges, GRA Changes, and  

LRA Changes 

4.2.3.1 Globalize local live ranges 

First, we identify local live ranges that should be promoted 

to global by inserting a call to a new function 

Identify_Pseudo_Globls in 

Create_GRA_BBs_And_Regions for each basic block. In 

Identify_Pseudo_Globls, we iterate over each instruction in 

the basic block and mark a TN as pseudo global if it is the 

source or the destination of a pseudo pair instruction and 

the other TN is global. We add a new field pseudo_globls 

in bbregs structure to hold promoted pseudo global TNs in 

each basic block. Next, pseudo global TNs are added to 

GTN_UNIVERSE and the needs_a_register set of 

GRA_BB. 

After Create_GRA_BBs_And_Regions, all pseudo global 

TNs are recognized as globals since they are present in 

GTN_UNIVERSE. Create_Live_BB_Sets is called to 

populate live basic block sets of each global TN. Since 

pseudo globals are not truly global (live only in 1 basic 

block), Create_Live_BB_Sets does not account for them. 

We populate a pseudo global TN's live set by iterating over 

every basic block. 

4.2.3.2 GRA changes 

We were able to use the existing preference copying 

mechanism to handle pseudo pair instructions. The only 

modification needed was in the 

CGTARG_Is_Preference_Copy function to return TRUE 

for pseudo pair instructions. A pseudo pair instruction was 

treated like a normal copy instruction that GRA attempts to 

remove by preferencing.  

4.2.3.3 LRA changes 

LRA is expected to be a quick single pass allocation to 

color all local live ranges. LRA does not create interference 

graph and performs limited preference coloring. To support 

pseudo pair instructions, we made the following changes in 

LRA: 

1. Added a new field preftn_list to live_range structure to 

keep track of preferencing TNs. 

2. For each basic block, we added a local pass to ensure 

that source and result operands of pseudo pair instructions 

are defined only once. This is a relatively inexpensive way 

of ensuring that source and result operands can preference 

each other without building an interference graph. 

3. If pseudo pair instructions of the basic block do not 

interfere, populate the preftn_list list of each local live 

range. 

4. Add code to the Open64 function Allocate_Register that 

checks if a TN can be preferenced. If a member of a TN’s 

preftn_list has been allocated a register, we assign the same 

register to the TN. 

4.2.4 Performance analysis of efficient register-pair 

allocation 

We evaluated the impact of the register-pair optimization 

on two sets of benchmarks: telecommunication benchmarks 

and kernel codes commonly used in DSP applications. On 

telecommunication benchmarks, the optimization improved 

performance by 3.91% on average. On kernel codes, 

enabling the register-pair optimization resulted in an 

improvement of 1.77% on average. 
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5. Summary and conclusion 

In this paper we described improvements to Open64 for 

state of the art advanced DSP targets. We added support for 

DSP-specific C-language extensions and loop 

optimizations. We enhanced the register promotion of small 

structures and the removal of dead stores in the global 

optimizer. We also changed the hyperblock scheduling 

algorithm to support DSP architectures that placed 

significant constraints on the default block-selection 

algorithm. Finally, we described the enhancement done to 

the register allocator to efficiently allocate register pairs so 

that the register-copies are minimized. Even though the 

changes described in this paper are not a complete set of 

changes needed to enhance Open64 for DSPs, they proved 

to be effective: the modifications improved performance for 

embedded programs and also allowed compiler users to 

more effectively author DSP applications. The work to 

enhance Open64 for DSPs is ongoing and further 

enhancements are being looked into. We compared the 

enhanced Open64 compiler with a GNU 3.4.6. C/C++ 

compiler retargeted for the same DSP. On average, the 

enhanced Open64 compiler with interprocedural analysis 

and optimizations (i.e., IPA) performed 5% to 40% better 

(cycle comparison) than GCC 3.4.6. In a few benchmarks, 

GCC 3.4.6 performed slightly better than Open64 and we 

are investigating the causes. 
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