
A Practical Stride Prefetching Implementation in Global
Optimizer

Hucheng Zhou
Tsinghua University

zhou-hc07@mails.tsinghua.edu.cn

Xing Zhou
Tsinghua University

zhoux07@mails.tsinghua.edu.cn

Tianwei Sheng, Dehao Chen,
Jianian Yan

Tsinghua University
{ctw04, chendh05,

yanjn03}@mails.tsinghua.edu.cn

Shinming Liu
Hewlett-Packard Company

shin@cup.hp.com

Wenguang Chen, Weimin Zheng
Tsinghua University

{cwg, zwm-dcs}@tsinghua.edu.cn

Abstract
Software data prefetching is a key technique for hiding memory
latencies on modern high performance processors. Stride memory
references are prime candidates for software prefetches on archi-
tectures with, and without, support for hardware prefetching. Com-
pilers typically implement software prefetching in the context of
loop nest optimizer (LNO), which focuses on affine references in
well formed loops but miss out on opportunities in C++ STL style
codes.

In this paper, we describe a new inductive data prefetching al-
gorithm implemented in the global optimizer. It bases the prefetch-
ing decisions on demand driven speculative recognition of induc-
tive expressions, which equals to strongly connected component
detection in data flow graph, thus eliminating the need to invoke
the loop nest optimizer. This technique allows accurate computa-
tion of stride values and exploits phase ordering. We present an
efficient implementation after SSAPRE optimization, which fur-
ther includes sophisticated prefetch scheduling and loop transfor-
mations to reduce unnecessary prefetches, such as loop unrolling
and splitting to further reduce unnecessary prefetches.

Our experiments using SPEC2006 on IA-64 show that we have
competitive performance to the LNO based algorithms.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

General Terms Compiler, Data Prefetching

Keywords Software Data Prefetching, Induction Variable, Strength
Reduction, Partial Redundancy Elimination

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Open64 Workshop of CGO’08 April 6, 2008, Boston, Massachusetts.
Copyright c© 2008 ACM [to be supplied]. . . $5.00

1. Motivation
The performance of microprocessors has been increasing at a much
faster rate than the main memory (DRAM)’s over the past decades.
The introduction of caches has proven effectiveness to reduce mem-
ory access latency by exploiting spatial and temporal locality in
programs. In addition, data prefetching, which brings data into
caches ahead of time has been proposed to hide the access latencies
for cases that caching strategies can not handle (Patterson 1990;
Gupta et al. 1991).

Data prefetching can be implemented with either software or
hardware, while software data prefetching provides more flexibil-
ities than hardware prefetching (Berg 2002; Callahan et al. 1991;
Chen and Baer 1995). There are many cache misses caused by mas-
sive consecutive memory references in loop nest. A stride-n refer-
ence pattern (Berg 2002; Vanderwiel and Lilja 2000) is recognized
in loops where the stride value of the accessed addresses for a refer-
ence is constant between two consecutive iterations. In this paper,
we focus on compiler-based software data prefetching on strided
references, a technique we call strided prefetching.

C++ has been very popular in the past years and the use of
Standard Template Library (STL) is prevalent. STL vector travers-
ing is a typical strided reference. Traditional LNO based stride
prefetching algorithms (Mowry et al. 1992) cannot issue prefetches
for STL vector references, mainly because of unsupported and un-
expected code patterns. LNO is modeled as a sophisticated vec-
tor space spanned by a system of affine equations and is resolved
through complex time/space consuming mathematical algorithms.
This model is generally effective for array subscripting based mem-
ory references with affine access function in DO loop nest. STL
vector variables don’t fall into this category. Due to the lack of
shape information, it is hard for LNO to handle such strided ref-
erences. We want to materialize these potential prefetching oppor-
tunities even without LNO.

In contrast, global optimizers provides normalized intermedi-
ate representation (IR) on data flow and control flow information,
canonicalizing different control structures and different memory
references. This can be exploited for covering different strided
prefetching. Additionally, other optimizations such as partial re-
dundancy elimination (PRE) and strength reduction in global op-
timizer have provided enough supports and facilities for stride
prefetching, which is shown in the following sections.

In this paper, we present an alternative stride prefetching algo-
rithm in global optimizer, which is based on demand driven specu-
lative recognition of inductive expressions implemented after PRE
and strength reduction.

2. Background
2.1 Software Data Prefetching
Prefetching coverage and prefetching accuracy were defined by
Joseph and Grunwald (Joseph and Grunwald 1999) to measure
the effectiveness of data prefetching algorithm, where prefetching
coverage is ”the fraction of missing references that are removed by
prefetching” and prefetching accuracy is ”the fraction of prefetches
that are useful, r.e., the prefetched data would be referenced at least
once before it is replaced”.

Thus, these are some important features what compiler con-
trolled prefetching algorithm must take into consideration.

1. Prefetching candidate identification
Prefetching is possible only if the corresponding memory ad-
dress can be determined ahead of the access. The more candi-
dates are identified, the broader the prefetching coverage.

2. Prefetching timing determination
Prefetching timing is important as prefetches issued too early
and too late will counteract the benefits.

3. Unnecessary prefetching avoidance
Prefetch is unnecessary if the prefetched data is already located
in the cache. Too many prefetches have negative effects as well.

4. Fine grained prefetch tuning.
The compiler should set the proper read/write flag, if supported
by the hardware. It also determine the optimal cache level data
should be prefetched into, as well as the locality hint selection,
again, if the target machine has such features.

2.2 Related Work
There is a multitude of previous work on data prefetching. Stefan
and Vanderwiel et. al(Berg 2002; Vanderwiel and Lilja 2000) wrote
good surveys on data prefetching mechanisms which cover both
hardware and software prefetching.

Mowry et al (Mowry et al. 1992) have presented a stride
prefetching technique in the context of LNO to reduce the num-
ber of prefetches based on the locality analysis. It includes three
standard steps. First, compiler analyses the locality information in
the loop nests, based on the resolution of locality equations(Wolf
and Lam 1991). Second, the compiler computes the prefetching
distance according to the cache model Third, the compiler trans-
forms the loop nest to avoid the unnecessary prefetches due to
locality, avoiding insertion of additional predicates to control addi-
tional prefetches.

Vatsa et al (Santhanam et al. 1997) have presented the prefetch
generation algorithm for numerical programs in HP-PA production
compiler for HP PA-8000.

Luk and Mowry (Luk and Mowry 1996; Mowry and Gupta
1991) have investigate the compiler-based prefetching for pointer-
based applications, in particular for those containing recursive
data structures, and proposed three different prefetching schemes:
greedy prefetching, history-pointer prefetching and data-linearization
prefetching. Artour et. al(Stoutchinin et al. 2001) have presented
speculative stride prefetching for linked list prefetching by com-
puting the stride value in run time.

The latest research shows the effectiveness of recognizing
stride references dynamically(Roth and Sohi 1999). Wu(Wu 2002)
used profiling techniques to integrate stride reference information
to cover the situations that compiler cannot recognize statically.
Chilimbi et.al(Chilimbi and Hirzel 2002) proposed a three-phase

profiling technique to automatically insert prefetches for hot stream
data references. Beyer and Clauss(Beyler and Clauss 2007) pre-
sented a prefetching framework based on the finite state machine
to determine the prefetching, guided by the time spent on attaining
the data.

Induction variable recognition(Liu et al. 1996; Gerlek et al.
1995) is very important as it benefits all loop related optimizations,
such as dependence testing or strength reduction. There are two
different ways to recognize induction variables, pattern matching
and Strong Connective Component identification using data flow
dependence.

PRE, first developed by Morel and Renvoise (Morel and Ren-
voise 1979), replaces the partial redundant occurrences with newly
introduced temporary variable while finding the optimal code place
to insert additional computation as the definition of the temporal
variable. Considering the inefficiency of the dense data flow initial-
ization and propagation(Knoop et al. 1992; Khedker and Dhamd-
here 1994), Fred. Chow et al (Kennedy et al. 1999; Chow et al.
1997) have presented a sparse technique called SSAPRE, which
regards the expressions as variables and creates a sparse factored
redundancy graph to process sparsely data flow propagation. SS-
APRE has proven to be highly efficient, has low compilation over-
head, and is widely used in modern optimizing compiler.

Strength reduction refers to program optimization techniques in
which expensive or slow operations are replaced by more efficient
and faster ones(Dhaneshwar and Dhamdhere 1995). It benefits any
inductive expressions, through creating more opportunities for the
PRE on these strength reduction candidates (Dhamdhere 1989;
Kennedy et al. 1998). Robert Kennedy et.al. (Kennedy et al. 1998)
has presented a PRE-based techniques that allow strength reduction
to be performed concurrently with PRE in SSAPRE framework.

3. Introduction
3.1 Overview of compiler components
Existing data prefetching algorithms are implemented as loop nest
optimizations. We instead provide an alternative stride prefetching
algorithm implemented as a scalar optimization in the context of
the global optimizer.

Our algorithm is implemented in the production quality Open64
compiler(ope). For convenience, we give a brief introduction of
the components in Open64 to illustrate the requirements of our
algorithm. Note that our approach is not restricted to any specific
compiler.

Figure 1 gives the rough compilation components in Open64
compiler, and shows the relation of pre-optimizer (PRE-OPT) to
the global optimizer (WOPT), inter-procedural analysis (IPA) and
loop nest optimizer (LNO). One of the goals of PRE-OPT is to
normalize the high level WHIRL IR in a tree form translated from
the FE, including canonicalization the induction variables written
in any form in the original source code(Liu et al. 1996). This
normalized IR is then passed as the input to LNO, IPA and WOPT,
greatly simplifying the latter optimization phases.

In our intermediate representation, which is called WHIRL,
there are five levels of abstraction, going from very high level to
lower levels. The various optimization phases works on a specific
levels of WHIRL and optimization proceeds along the process of
continuous lowering.

Open64 has implemented the stride prefetching in LNO based
on Mowry’s algorithm(Mowry et al. 1992).

3.2 The necessity of our algorithm
Generally, there are four ways to traverse STL vector, shown in Fig-
ure 2, including subscripting style, iterator, const iterator, and at()
references, named ACCESS1, ACCESS2, ACCESS3, ACCESS4

Source Code in

C/C++/FORTRAN

LNO

WOPT

CG

IPA

PRE-OPT

PRE-OPT

PRE-OPT

FE
Front End

Very High level WHIRL

Inter-procedural Analysis

High Level WHIRL

Loop Nest Optimizer

High Level WHIRL

Global Optimizer

Middle Level WHIRL

Code Generator

Object Code

Lower Arrays Lower high level control flows

Figure 1. The components flow of Open64 compiler

typedef double Type;
#define LEN 10000
vector<Type> V(LEN);
Type sum;
#define ACCESS1 {\

sum = 0.0; \
for(int i = 0; i < LEN; i++) { \

sum += V[i]; \ } \
}
#define ACCESS2 {\

sum = 0.0; \
vector<Type>::iterator it;\
for(it = V.begin(); it != V.end(); it++) { \

sum += *it; } \
}
#define ACCESS3 {\

sum = 0.0; \
for(int i = 0; i < LEN; i++) { \

sum += V.at(i); \ } \
}
#define ACCESS4 {\

sum = 0.0; \
vector<Type>::const_iterator cit; \
for(cit = V.begin(); it != V.end(); it++) { \

sum += *cit; } \
}

Figure 2. Four different ways to traverse vector

respectively. Figure 3 shows the internal representations in high
level WHIRL for the ACCESS1 and ACCESS2 respectively. For
comparison, Figure 4 shows the high level WHIRL for simple array
references. The high level WHIRL representations are translated to
a C-style ASCII format for perusal. We omit the high level WHIRL
of ACCESS3 and ACCESS4 since they are the same as ACCESS 2
and ACCESS1 respectively.

We can see that STL vector references are all lowered to indirect
references with explicit address arithmetic after type specification,
member function inlining, copy propagation and dead code elim-
ination in PRE-OPT. Their address values are incremented by a
constant value 8 (sizeof(double)) for each iteration. There are slight
differences of the address calculation between ACCESS1 and AC-
CESS2, where in ACCESS1 it is indirectly dependent on primary
induction variable anon1, while it is definite incremented by 8 in
ACCESS2. Even then their address expressions can be easily rec-

ACCESS1:
// start = &(*V.begin());
// finish = &(*V.end());
sum = 0;
anon2 = (_IEEE64 *)start;
for(anon1 = 0; anon1 <= 9999; anon1 = anon1 + 1)
{

anon2 = anon2 + anon1 * 8;
sum = *anon2 + sum;

}
ACCESS2:

annon1 = (_IEEE64 *)start;
annon 2 = (_IEEE64 *)finish;
while(anon1 != anon2)
{

sum = *anon1 + sum;
anon1 = anon1 + 8;

}

Figure 3. The IR after PRE-OPT for ACCESS1 and ACCESS2

Source Code
double A[1000];
for (int i = 0; i < 1000; i = i + 2)

A[i] = A[i -1] + 5;

WHIRL after PRE-OPT
_IEEE64 anon1[1000LL];
for(anon3 = 0; (anon3 * 2) <= 999; anon3 = anon3 + 1)

anon1[anon3 * 2] = anon1[(anon3 * 2) + -1] + 5.0;

Figure 4. High level WHIRL after PRE-OPT for array references

ognized as inductive expressions or induction variables illustrated
in Section 4 respectively. Whereas, array references are kept as ex-
plicitly subscripting access, providing the corresponding informa-
tion of access function and dimensionality of array.

LNO based strided prefetching algorithms can only issue
prefetches for array reference in Figure 4, but miss out the opportu-
nities for STL vector traversing in Figure 2, since the construction
of locality equations depends on data space and iteration space
representations, as well as explicit access function mapping from
iteration space to data space. Thus LNO operates on high level
WHIRL, where shape information of loop nest and data structures
and subscripting functions are available. Without these information
for STL vector traversing, LNO hardly recognize and model stride
patterns to determine the right prefetching decisions. Instead, in-
ductive expression recognition in global optimizer can identify
these stride reference pattern and calculated the accurate stride
value for further prefetching scheduling. In the example, all four
STL vector traverses are stride reference with stride value 8.

LNO based prefetching algorithm for stride array references is
based on the tight affinity with the other analysis and optimization
phases in LNO, such as locality analysis, cache model. Conversely,
this affinity limits itself only for stride array references in DO loops,
and shows no benefits for STL vector references and the similar
wrapper-based traversing at all. Instead, the tight coupling with
induction variable recognition in global optimizer is amenable to
generalized prefetching of different style stride references. This is
the focus of our paper.

3.3 The introduction of global optimizer
Our algorithm benefits from the infrastructure provided by the
global optimizer, which we summarize in the following.

In Open64’s global optimizer, the IR has been translated to
SSA form(Cytron et al. 1991). Furthermore, Open64 introduced
the Hashed SSA (HSSA) form (Chow et al. 1996) which repre-

sents aliases and indirect references directly in SSA. For the real
definition or use of a variable in program, it expresses potential
definitions and uses for other variables in a program. To represent
these May-Def and May-Use information, HSSA has introduced
chi and mu into SSA form. SSA form greatly most of the global
optimization related to data flow analysis, such as loop invariant
determination, whose definitions are outside the loop.

In this paper, we show the tight affinity that the stride prefetch-
ing candidate identification equals to the recognition of inductive
expression in global optimizer. Continuously lowered in global op-
timizer, the middle level WHIRL benefits the generalized stride
prefetching algorithm for all stride references in all kinds of loop
structures. Furthermore, there is only one primary induction vari-
able in a loop after induction variable canonicalization phase in
PRE-OPT, with other induction occurrences expressed in terms of
the primary induction variable. Thus this greatly simplify the in-
ductive expression recognition.

Section 4 describes inductive expression recognition and the al-
gorithm using it to identify prefetching candidates. Section 5 ex-
plains phase ordering considerations, providing rationale for imple-
menting our algorithm after SSAPRE. Section 6 presents the imple-
mentation details for other prefetching issues, such as prefetching
hint selection. Section 7 shows the experiment results. We conclude
in Section 8 and describe future work.

4. Approach
The effectiveness of software controlled stride prefetching is de-
pendent on the compiler’s ability to recognize as many strided ref-
erences as possible to cover prefetching candidates. In the follow-
ing, we first define inductive expressions and stride references, and
then prove that all stride references that a compiler can identify
statically are references whose addresses are inductive expressions.
Thus, the essence of the stride prefetching candidate identification
equals the recognition of inductive expression. We also discuss the
details of inductive expression recognition in SSA form.

4.1 Basic definition
compiler’s ability is to recognize as many strided references as
possible to cover prefetching candidates. For the convenience of
the following descriptions and proofs, we first define inductive ex-
pressions and stride references, and then prove that all stride refer-
ences that a compiler can identify statically are references whose
addresses are inductive expressions. Note that without explicitly
declaration, all the definitions are integer type. Thus, the essence
of the stride prefetching candidate identification equals the recog-
nition of inductive expression. We also discuss the details of induc-
tive expression recognition in SSA form.

Definition 1. (Loop Invariant) A variable or an expression is said
to be loop invariant if its value remains unchanged during the
execution of all iterations in that loop.

Definition 2. (Linear Induction Variable) A linear induction vari-
able is a variable that assigned in a loop and incremented by a
nonzero loop invariant on every iterations. The corresponding in-
variant value is the stride value between two consecutive iterations.
It the stride value is 1, it is primary linear induction variable.

Thus, it is a subclass of sequence variable defined in(Gerlek
et al. 1995) by Wolfe, which also contains polynomial induction
variable, geometric induction variable, wrap-around variable, pe-
riod sequence variable, and monotonic variable.

Definition 3. (Linear Inductive Expression) A linear inductive ex-
pression is an expression whose value is incremented by a nonzero
loop invariant on every iterations. The corresponding invariant
value is the stride value between two consecutive iterations.

Definition 4. (Linear Inductive Expression) A linear inductive
expression is recursively defined as following:

1. If v is a linear induction variable with stride s, then v is a linear
inductive expression with the same stride s;

2. If expr is a linear inductive expression with stride s, then
−expr is a linear inductive expression with the same stride−s;

3. If expr is linear inductive expression with stride s and invar is
a loop invariant, then expr + invar and invar + expr are all
inductive expressions with stride s;

4. If expr1 and expr2 are linear inductive expressions with stride
s1 and s2 respectively, then expr1+expr2 is a linear inductive
expression with stride s1 + s2;

5. If expr is linear inductive expression with stride s and invar
is a loop invariant, then expr ∗ invar and invar ∗ expr are all
inductive expressions with stride invar ∗ s;

6. If expr is linear inductive expression with stride s and invar is
a loop invariant, then expr/invar is a linear inductive expres-
sion with stride s/invar.

This recursive definition is useful for the linear inductive ex-
pression recognition. Mathematically, it equals to the linear com-
bination of linear induction variables and loop invariants, with the
form:

E = c1i1 + c2i2 + . . . + cnin + invar (1)

where c1 . . . cn and invar are loop invariants, i1 . . . in are
linear induction variables.

Lemma 1. Linear inductive expression in Definition 3 can be and
can only be in recursive form in Definition 4.

Proof. The proof of lemma 1 equals to the proof that the linear
inductive expression must be of the form (1).

Sufficient Condition: Suppose E is the linear combination of
linear induction variables and loop invariants with the form (1), the
value of E in two consecutive iterations is V1 and V2 respectively,
then

V1 − V2 = c1(i
′
1 − i′′1) + c2(i

′
2 − i′′2) + . . . + cn(i′n − i′′n) (2)

Since i1 . . . in are induction variables, invar is a loop invariant,
thus the value of formula (2) is a loop invariant. The stride sj of ij
(1 ≤ j ≤ n) is (i′j − i′′j), and the stride of E is

∑
sici .

Necessary condition: We prove the necessary condition by con-
tradiction. If an expression is not represented as the linear combi-
nation of derived induction variables and loop invariants, then there
are two situations: (1). the i1, . . . , in, invar are not linear inductive
variables, such as common variables and pointer dereferences; (2).
The expression is represented as non-linear combination of vari-
ables, such as i1 × i2. We can get the conclusion that V1 − V2 in
situation both (1) and (2) is not guaranteed to be constant.

Without ambiguity, we call linear induction variable and linear
inductive expression as induction variable and inductive expression
respectively for short.

Definition 5. (Stride Reference) A stride reference is the reference
in a loop whose accessed memory address is incremented by a loop
invariant on every iterations. The corresponding invariant value is
the stride value between two consecutive iterations.

Lemma 2. If a reference in loop whose accessed memory address
is represented as an inductive expression, then it is a stride refer-
ence. Obviously, Definition 3 and Definition 5 are identical.

Therefore, the identification of stride prefetching candidate
equals to the recognition of inductive expression with the recur-
sive definition form.

Recent studies(Wu 2002; Stoutchinin et al. 2001) show that
there are irregular references whose stride of accessed address for
two consecutive iterations appears as a constant value, such as p
= p->next if the list is allocated in a sequential memory space.
Apparently, this implicit stride information is not guaranteed in run
time and just a probability. A compiler cannot detect them stat-
ically, only with some tricks such as the help of feedback infor-
mation, by dynamic instrumentation, or sampling techniques. This
scenario is not covered by our static prefetching algorithm, but it
can be seamlessly integrated. We discuss this in the section on fu-
ture work.

4.2 Algorithm in detail
In the following, we present an algorithm for demand driven spec-
ulative recognition of prefetching candidates. It is shown by Figure
5 and Figure 6.

Function Collect_Indirect_Reference creates a work-list
by collecting all of the occurrences of indirect references in loop
nests, and store the needed information of the enclosing statement
and loop. Function Sort_Worklist sorts all the collected occur-
rences in ascending order according to the number of the contained
leaf operands. This avoids repetitively recognize the inductive ex-
pression.

Function Inductive_Expression_Recognition determines
whether the input expression is an inductive expression, which has
the recursive form as in the Definition 4 in section 4.1. For simplic-
ity, we only list the pseudo code corresponding to (1), (3) and (4) in
Definition 4. It will call the function Induction variable Reco-
gnition to speculative determine whether one variable is induc-
tion variable.

The method used to recognize induction variables, demon-
strated by Figure 6, exploits the fact that the use-def chains of the
SSA versions of induction variable must form a strongly connected
component (SCC), presented by(Gerlek et al. 1995). Our algorithm
is different from theirs as we use speculative symbolic evaluation
in the recognition process. Our algorithm is also different from the
method presented at(Liu et al. 1996), since we do demand driven
recognition by creating a sorted work list.

Induction variables in SSA form must satisfy the following con-
dition: (1). there must be a live phi in the corresponding loop header
BB; (2). among the two operands of the phi, the loop invariant
operand must point to the initialization of the induction variable
out of the loop, while the other operand must be defined within the
loop body. We call them init and increment respectively; (3). Af-
ter expanding the increment operand of phi by copy propagation,
the expanding result must contain the result of that phi, with a loop
invariant expression as stride of the induction variable.

Our optimizer will control the copy propagation such that
an expression is not propagated if it causes the live range of
any variable versions in the expression to overlap with another
version of the same variable. Aliasing will also block the copy
propagation as well. Thus we must extend the expanding al-
gorithm in Induction_Varaible_Recognition to resolve the
variables through symbolic interpretation, which does not per-
form real copy propagation. This is implemented as function
Expand_Conservative and Expand_Aggressive, which do
speculative copy propagation backwards to expand the expressions
to be comprised of phi or loop invariant operands.

The other difference with existing induction variable recog-
nition algorithm is that we do speculative determination by ag-
gressive copy propagation across chi nodes in HSSA. A chi node
is attached to store statements, representing the May-Define re-

lation introduced by alias. A variable is defined by chi, imply-
ing that it may be aliased with the variable really defined by the
statement which the chi is attached to. This will block the copy
propagation, thus block the following induction variable recogni-
tion. Since data prefetching are presumed to not cause correct-
ness issues on most architectures, we can identify prefetching
candidates more aggressively than existing algorithms. The cor-
responding details are shown in function Expand_Conservative
and Expand_Aggressive, In Expand_Conservative, we pes-
simistically expand the expressions by symbolic interpreting the
result of chi as the right hand side value of the statement chi at-
tached speculatively. Here we pessimistically assume that the alias
statically analyzed by compiler is a MUST alias relation in run-
time. In contrast, Expand_Aggressive optimistically assume the
alias result is wrong in runtime, thus speculatively copy propagate
the value of the operand of chi to the result of that chi. As a result,
we can recognize more inductive expression as stride prefetch-
ing candidates. Note that we apply on the same pessimistic or
optimistic assumption for all of the chi nodes, either MUST or
MUST NOT alias. This will reduce the complexity and avoid too
many prefetching candidates by false stride references. The func-
tion Insert_Prefetch_For_Ref will be illustrated in section 5.

5. Phase Ordering Consideration
The global optimizer generally includes several important opti-
mizations such as partial redundancy elimination, strength reduc-
tion, register variable identification and dead code elimination.
They are tightly related to each other, and share some common
utilities such as induction variable recognition, loop invariant de-
termination, dead code elimination, and expression simplification,
constant-folding and so on. From the view of both engineers and
researcher, the right ordering between different optimizations will
result in an elegant solution and reduce the complexity of imple-
mentation. In this section, we will discuss the tight relations be-
tween inductive expression recognition and SSAPRE in our global
optimizer.

Our global optimizer has integrated strength reduction within
PRE optimization in SSAPRE framework. For distinguishing
killing definition, it defines the injuring definition with the form a
= a + invariant to identify the candidates for strength reduc-
tions. This benefits the optimization on all inductive expressions in
loops, whose incremental update is injuring definition.

Strength reduction will introduce a new secondary induction
variable to replace injured inductive expression. This greatly sim-
plifies the inductive expression recognition if we implement our
inductive prefetching algorithm after SSAPRE, since almost all of
the address expressions for array references are converted to induc-
tion variables by strength reduction.

The existence of temporal locality for a memory reference in
a loop implies the corresponding address expression is the corre-
sponding loop invariant. The loop invariant hoisting inherently in
SSAPRE will hoist all the loop invariant expression outside of the
loop, including indirect memory reference, which are well known
as load and store PRE or register promotion(Lo et al. 1998). As a
result, if we implement our inductive prefetching algorithm after
SSAPRE, the occurrences of memory references which appear lo-
cality will be hoisted outside the loop, thus will not be collected in
the prefetching worklist. This can automatically avoid the unneces-
sary prefetches in inner loop due to temporal locality.

These characteristics can be shown in Figure 7. The correspond-
ing source code is shown by (a), and (b) is as the input of SSAPRE,
where the address expression of A[i][0] is &A+i∗400 in inner loop
level j. It is loop invariant in loop j, then PRE will hoist it outside
of loop j and replace the real occurrence with preg1, shown by
(c). Then SSAPRE will do strength reduction on injured expression

int Induction_Variable_Recognition (var)
{

phi = Get_phi (var);
if (phi->Bb() != Header()) return 0;
for each opnd of phi {

if (Invariant(opnd))
{ init = opnd; continue; }

expr1 = Expand_Conservative (opnd);
expr2 = Expand_Aggressive (opnd);
if (expr1 contains phi result)

step = Generate_step (expr1);
else if (expr2 contains phi result)

step = Generate_step (expr1);
if (Loop_invariant(step))

{ incr = opnd; return step; }
}

}
int Inductive_Expression_Recognition (ref)
{

if ref is a vairiable {
return Induction_Varaible_Recognition (ref);

} else if ref is (expr1 + expr2) {
stride1 = Inductive_Expression_Recognition (expr1);
stride2 = Inductive_Expression_Recognition (expr2);
if (stride1 && stride2) stride = stride1 + stride2;
if (stride1 && expr2 is loop invariant)

stride = stride1;
if (stride2 && expr1 is loop invariant)

stride = stride2;
} else if ref is (expr1 - expr2) {

stride1 = Inductive_Expression_Recognition (expr1);
stride2 = Inductive_Expression_Recognition (expr2);
if (stride1 && stride2) stride = stride1 - stride2;
if (stride1 && expr2 is loop invariant)

stride = stride1;
if (stride2 && expr1 is loop invariant)

stride = -stride2;
} else if ref is (expr + invar) { ... }

else if ref is (expr1 * expr2) { ... }
else if ref is (expr1 / expr2) { ... }
else if ref is (-expr) { ... }
else return 0;

return stride;
}
Stride_Prefetching (loop)
{

Candidate_List_Clear ();
Collect_Indirect_Reference ();
Sort_Worklist ();
for each reference ref ()

if (Inductive_Expression_Recognition ())
Insert_Prefetch_For_Ref (ref);

}

Figure 5. Inductive Expression Recognition

Get_phi (var)
{

if (var is defined by phi) return var;
def = Get_def (var); // use-def chain
return Get_phi (def);

}
Expand_Conservative (expr)
{

if (expr is variable) {
if (Invariant(expr)) return NULL;

if (expr is real defined by statement)
expr = defstmt->Rhs();
// conservatively assume MUST alias

else if (expr is defined by chi)
expr = defstmt->Rhs();

else if (expr is defined by phi) return NULL;
return Expand_Conservative (expr);

} else if (expr is operator)

for each opnd of expr
expr->Set_opnd (Expand_Conservative (opnd));

}
Expand_Aggressive (expr)
{

if (expr is variable) {
if (Invariant(expr)) return NULL;

if (expr is real defined by statement)
expr = defstmt->Rhs();

// aggressively assume MUST alias
else if (expr is defined by chi)

expr = defchi->opnd;
else if (expr is defined by phi) return NULL;

return Expand_Conservative (expr);
} else if (expr is operator)

for each opnd of expr
expr->Set_opnd (Expand_Conservative (opnd));

}

Figure 6. Induction Variable Recognition

i∗400, by introducing a second induction variable preg2, replacing
&A+ i∗400 as &A+preg2, and inserting preg2 = preg2+400 at
the end of the exit bb of loop I , shown by (d). Afterwards, SSAPRE
will do the same process on &A+preg2, which is injured by preg2,
by introducing another secondary induction variable preg3, replac-
ing &A + preg2 with preg3, and inserting preg3 = preg4 + 400
at the corresponding exit bb, shown by (e). Finally, SSAPRE will
do linear function test replacement(Kennedy et al. 1998) by replac-
ing loop-exit condition i < 100 with preg3 < &A + 40000, then
eliminating the dead variable i, shown by (f).

It benefits to implement our demand-driven recognition of in-
ductive expression after SSAPRE. Shown from Figure 7, the work-
list construction phase of our algorithm will only collect ∗preg3 in
loop i as the prefetching candidate to automatically avoid inserting
the prefetches in inner loop j since temporal locality exists in that
loop. Another important character is that the inductive expression
before SSAPARE &A+ i∗400 was automatically replaced as a new
secondary induction variable preg3 by strength reduction in SS-

APRE. Thus it can automatically simplify the inductive expression
recognition in our algorithm.

By making full use of the optimization result of SSAPRE,
our algorithm based on inductive expression recognition can be
implemented efficiently to be integrated as scalar optimization in
global optimizer.

6. Implementation
Due to the phase ordering considerations elaborated on in section
5, we have implemented our algorithm after SSAPRE in the global
optimizer of the Open64 compiler. The following will describe the
remaining task to generate prefetches effectively and efficiently
after recognizing the stride references.

Besides improving the prefetching coverage, it is beneficial to
avoid unnecessary prefetches and to schedule prefetches on time to
improve cache efficiency. Target dependent abstraction and tuning
can be well integrated into our framework by the cache model.
Thus precise information on prefetch distances, locality hints, and

Figure 7. The demonstration of strength reduction with SSAPRE

prefetch scheduling should be determined, according to both the
cache model and the collected memory references.

Our prefetching algorithm includes the following steps to opti-
mize prefetching effects.

1. Prefetching candidate identification. All the indirect references
are the prefetching candidates if their address expressions are
recognized as inductive expressions. This is accomplished by
demand driven speculative recognition of inductive expression
as discussed before.

2. Leading reference recognition. A leading reference is the first
reference accessing a memory location among all references.
For example, among references A[i] and A[i + 1], A[i] is the
leading reference if i steadily decrease, otherwise, A[i+1] is the
leading reference. This can be done through simple arithmetic
comparison between the corresponding init and stride values of
the recognized induction variables.

3. Prefetch information collection. This includes information of
reference stride, the corresponding data and loop structure, as
well as the target cache model. This data is collected while
creating the prefetching worklist. If the corresponding accurate
information cannot be determined at compile time, we define
them with help of heuristics.

4. Prefetch determination based on the collected information. We
don’t need to generate prefetches for all the prefetch candi-
dates to avoid too much prefetching. There are some heuris-
tic conditions used to exclude the prefetch candidates: (1) Not
leading reference; (2) very small array less than one cache line
and very small loop trip counts; (3) Current loop contains more
than N prefetches (N currently set to 10); (4) For small arrays,
generally if smaller than 3 cache lines, we perform outer-loop
prefetching to hoist prefetch outside the current loop, and don’t
generate the inner loop prefetch any more. If the total data size
accessed in the loop is smaller than the effective cache size of
computed cache level, we do the aggressive outer-loop prefetch
by generating a new loop consisting only of prefetch statements.

5. Computation of prefetch distance. Prefetching distance is the
address distance between the really accessed address and the
prefetched address in current iteration. Too late or too early
prefetch would make prefetching ineffective. In general, the
number of iterations prefetched ahead of use is calculated as the
division of memory latency and the estimated time per iteration
in that loop; prefetch distance equals to the multiplication of the
computed number of iterations ahead and the reference stride.

6. Loop transformations based on locality information to further
reduce the number of prefetches. For spatial locality, loop un-
rolling has precedence to prefetch predicate. In practice, the un-
roll factor equals to the division of cache line size and the ref-
erence stride. The temporal locality of prefetched occurrences
only exists in its parent loop since PRE has exploits the locality
in inner loop, shown in Figure 7. However, if the array refer-
ences is A[0][j] in , PRE cannot hoist the address expression of
&A + j ∗ 4, which is killed by the update of j in loop level j.
We will do loop splitting on the outmost loop level where lo-
cality exists, which based on the same strategy in LNO based
prefetching algorithm(Mowry et al. 1992).

7. Prefetch statement insertion. Since we will insert prefetches
about n iterations ahead of the real references, thus the first n
data would not be prefetched and the last n data prefetches are
unnecessary. We will add the prologue and epilogue sections as
presented at(Mowry et al. 1992).

7. Experiments
We have conducted experiments against SPEC2006 benchmark
on IA64 platform, which has no hardware prefetching support
and is the good choice for comparison between different software
prefetching algorithms. The results indicate that we have competi-
tive performance to the LNO based algorithm, with the added bene-
fits that the potential prefetching opportunities for STL vector style
code can be materialized in many cases without having to invoke
the loop nest optimizer.

406080
100120
02040 N L W N L W N L W N L W N L W N L W N L W N L W N L W N L W N L W N L W N L W N L Wbwaves milc gromacs cactusADM leslie3d namd dealII soplex povray calculix GemsFDTD tonto lbm sphinx3

Figure 8. Normalized CPU cycles of SPEC 2006 FP evaluation

Our experiments are performed on a quad-processor server with
Redhat Linux Advanced Server 4.0 and 8 GBytes memory in-
stalled. The processor is Itanium 2 Madison 1.6GHz with 6MB L3
cache. The base compiler is Open64 4.1, which has implemented
stride prefetching algorithm in LNO, and yields much better per-
formance gains than gcc 4.1, while having comparable prefetching
result with icc.

We normalized the execution time of benchmarks compiled
with LNO prefetching enabled and WOPT prefetching enabled re-
spectively, where the baseline is the running time of program with-
out prefetching, which is normalized to be 100. All benchmarks
are compiled at -O3 optimization level. To prove the effectiveness
of our approach, we compare our approach with the original LNO
based prefetching algorithm in Open64. The experimental results
on SPEC2006 FP and INT are shown in Figure 8 and Figure 9 re-
spectively. For each benchmark, the three bars correspond to the
cases with no prefetching (N), LNO based prefetching algorithm
(L) and our WOPT based algorithm (W). In each bar, the bottom
section is the amount of time spent on executing instructions (in-
cluding instruction overhead of prefetching), and the section above
is the memory reference time due to data cache misses. It is well
known that data prefetching is used to hide the memory wall time
through reducing the cache misses. Thus, the more the memory
stall time is eliminated, the better the prefetching algorithm is.

We can attain the following two experiment results:

1. The effectiveness of LNO prefetching algorithm. LNO prefetch-
ing can handle almost all of the array references. Compared
with the result of benchmarks with prefetching disabled, LNO
prefetching has improved about 44.21%, 42.22%, 36.1% and
21.8% for 410.bwaves, 470.lbm 437.leslie3d and 459.GemsFDTD
in SPEC2006 FP respectively. Even for non scientific comput-
ing benchmarks in SPEC2006 INT, LNO based prefetching
still get about 9.1% and 4.8% improvements for 429.mcf and
401.bzip2 respectively.

2. The effectiveness of our global optimizer based prefetching
algorithm. Our approach shows 49.65%, 43.13%, 40.13% and
19.40% performance gains for 410.bwaves, 470.lbm 437.leslie3d
and 459.GemsFDTD in SPEC2006 FP respectively. And for
SPEC2006 INT it gets about 25.9% and 3.4% gains 429.mcf
and 401.bzip2 respectively. For these benchmarks benefited
from LNO based prefetching, our approach gets about 5.44%,
0.91%, 7.03%, -1.4%, 14.8% and -1.4% further gains respec-
tively compared with LNO prefetching. Besides, our approach
has also improved 19.4%, 10.75% and 6.36% for 433.milc,
447.dealII and 450.soplex in SPEC2006 FP respectively, which
LNO cannot improve the performance. And in SPEC2006 INT,

our approach shows 50.07% and 4.78% for 462.libquantum and
403.gcc respectively.

Note that 447.deall contains many STL vector style traverses
which can be handled well by our approach. Even libquantum and
milc are not C++ programs and dont include STL vector traversing,
our approach still outperforms LNO based algorithms. Because
they have irregular loop nests and wrapped compound structure,
which cannot be handled by LNO based algorithm, while can be
covered by our approach. In theory, we can cover all of the strided
prefetching candidates determined statically during compile time.
So our WOPT-based approach can be used to replace rather than
complement LNO-based algorithms.

In some benchmarks, the issued prefetches even harms perfor-
mance, e.g. 456.hmmer, due to the overhead introduced by prefetch
instructions and related memory impacts.

8. Conclusion and Future work
In this paper, we propose an alternative inductive data prefetching
algorithm implemented in global optimizer. Compared with most
known stride prefetching algorithms, our algorithm can identify
more prefetch candidates. As far as I know, our inductive stride
prefetching algorithm is the first static compiler technique proposed
to do prefetching for STL vector and other wrapper-based stride
references, shown in Abstraction Penalty Benchmark.

There are two main advantages over existing LNO based al-
gorithm: (1). the prefetching decision is regarded as the induc-
tive expression identification issue in global optimizer (-O2 level),
rather than as the time/space consuming loop nest optimization (-
O3 level); (2). it has higher prefetching coverage and materialize
the potential prefetching opportunities in applications containing
STL vector and other wrapper-based stride references.

Thus, it provides the possibility that implementing stride prefetch-
ing as common scalar optimization fed by data flow information in
global optimizer, and shows the tight coupling between stride data
prefetching and inductive expression recognition, as well as SS-
APRE with strength reduction optimization.

Besides linear inductive expression defined in our paper, we
plan to extend the prefetching candidate identification to cover non-
linear sequence forms defined in, including periodic, polynomial,
geometric, monotonic and wrap-around variables.

We will also try to integrated stride prefetching algorithm with
strength reduction optimization in SSAPRE framework. This is
partially done, but some inductive expressions cannot be handled
by strength reduction due to alias issue. As this paper described,
we plan to extend strength reduction by symbolic interpretation to
fully integrated stride prefetching into SSAPRE framework. Global

60

80

100

120

140

0

20

40

N L W N L W N L W N L W N L W N L W N L W N L W N L W N L W

bzip2 gcc mcf gobmk hmmer sjeng libquantum omnetpp astar xalancbmk

Figure 9. Normalized CPU cycles of SPEC 2006 INT evaluation

optimizer has the combination of loop and dependence analysis
to capture the repetitive references; it may be a good choice to
implemented pointer chasing style prefetch in global optimizer,
hybrid with current algorithm to provide a wider domain covered
by global optimizer based prefetching framework.

It is also interesting to coordinate the data prefetch with data
layout optimization, to solve the memory wall in a better way. In
addition, the analysis of impact of different parameter on prefetch-
ing is useful, from which we could get more real heuristics to
prefetch decisions. Feed back guided heuristics selection will be
more effective way to provide a hybrid prefetching framework in-
tegrating static and dynamic information.

Considering that X86 platforms are overwhelmed and provide
the hardware prefetching supports, we will further investigate the
interaction between software and hardware prefetching according
to the static compiler analysis and feedback information.

Acknowledgments
We would like to thank to Robert Hundt and Sun Chan for their
comments and revisal.

References
The open64 compiler. URL http://www.open64.net.
Stefan G. Berg. Cache prefetching. Technical report, March 05 2002.
Jean Christophe Beyler and Philippe Clauss. Performance driven data cache

prefetching in a dynamic software optimization system. In Burton J.
Smith, editor, ICS, pages 202–209. ACM, 2007. ISBN 978-1-59593-
768-1.

David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching.
pages 40–52, 1991.

Tien-Fu Chen and Jean-Loup Baer. Effective hardware based data prefetch-
ing for high-performance processors. IEEE Trans. Computers, 44(5):
609–623, 1995.

Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetch-
ing for general-purpose programs. pages 199–209, 2002.

Fred Chow, Sun Chan, Shin ming Liu, Raymond Lo, and Mark Streich.
Effective representation of aliases and indirect memory operations in
SSA form, December 24 1996.

Fred C. Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo,
and Peng Tu. A new algorithm for partial redundancy elimination based
on SSA form. In PLDI, pages 273–286, 1997.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form

and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, October 1991.

Dhamdhere. A new algorithm for composite hoisting and strength reduction
optimisation (+ corrigendum). IJCM: International Journal of Computer
Mathematics, 1989.

Vikram M. Dhaneshwar and Dhananjay M. Dhamdhere. Strength reduction
of large expressions. J. Prog. Lang, 3(2), 1995.

Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction
variables: Detecting and classifying sequences using a demand-driven
SSA form. ACM Transactions on Programming Languages and Systems,
17(1):85–122, January 1995. ISSN 0164-0925.

Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and
Wolf-Dietrich Weber. Comparative evaluation of latency reducing and
tolerating techniques. In Proceedings of the 18th Annual International
Symposium on Computer Architecture, pages 309–318, May 1991.

Doug Joseph and Dirk Grunwald. Prefetching using markov predictors.
IEEE Trans. Computers, 48(2), 1999.

Robert Kennedy, Fred C. Chow, Peter Dahl, Shin-Ming Liu, Raymond Lo,
and Mark Streich. Strength reduction via SSAPRE. In Computational
Complexity, pages 144–158, 1998.

Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and
Fred Chow. Partial redundancy elimination in SSA form. ACM Trans-
actions on Programming Languages and Systems, 21(3):627–676, May
1999. ISSN 0164-0925.

Uday P. Khedker and Dhananjay M. Dhamdhere. A generalized theory
of bit vector data flow analysis. ACM Transactions on Programming
Languages and Systems, 16(5):1472–1511, September 1994.

J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. In Proceedings
of the SIGPLAN ’92 Conference on Programming Language Design and
Implementation, San Francisco, CA, June 1992.

Shin-Ming Liu, Raymond Lo, and Fred Chow. Loop induction vari-
able canonicalization in parallelizing compilers. In Proceedings of the
1996 Conference on Parallel Architectures and Compilation Techniques
(PACT ’96), pages 228–237, Boston, Massachusetts, October 20–23,
1996. IEEE Computer Society Press.

Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu.
Register promotion by sparse partial redundancy elimination of loads
and stores. In SIGPLAN ’98 Conference on Programming Language
Design and Implementation, pages 26–37, 1998.

Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for
recursive data structures. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS VII), Computer Architecture News, pages
222–233. ACM SIGARCH/SIGOPS/SIGPLAN, October 1996.

Etienne Morel and Claude Renvoise. Global optimization by suppression
of partial redundancies. Commun. ACM, 22(2):96–103, 1979.

T. Mowry and A. Gupta. Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors. Journal of Parallel and
Distributed Computing, 12(2):87–106, June 1991.

Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation
of a compiler algorithm for prefetching. In ASPLOS, pages 62–73, 1992.

D. Patterson. Computer architecture: a quantitative approach. Morgan-
Kaufmann, Los Altos, 1990.

Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for
linked data structures. In ISCA, pages 111–121, 1999.

Vatsa Santhanam, Edward H. Gornish, and Wei-Chung Hsu. Data prefetch-
ing on the hp pa-8000, 1997. ISSN 0163-5964.

Artour Stoutchinin, Jose Nelson Amaral, Guang R. Gao, James C, Suneel
Jain, and Alban Douillet. Speculative prefetching of induction pointers,
March 07 2001.

Vanderwiel and Lilja. Data prefetch mechanisms. CSURV: Computing
Surveys, 32, 2000.

Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.
In PLDI, pages 30–44, 1991.

Youfeng Wu. Efficient discovery of regular stride patterns in irregular
programs and its use in compiler prefetching. ACM SIGPLAN Notices,
37(5):210–221, May 2002. ISSN 0362-1340.

