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Abstract
A SMT processor can fetch and issue instructions from
multiple independent hardware threads at every CPU cy-
cle. Therefore, hardware resources are shared among the
concurrently-running threads at a very fine grain level, which
can increase the utilization of processor pipeline. However,
the concurrently-running threads in a SMT processor may
interfere with each other and stall the CPU pipeline. We
call this kind of pipeline stallinter-thread stall (ITS for
short) orthread interlock. In this paper, we present our study
on the ITS problem on an embedded heterogeneous SMT
processor. Our experiments demonstrate that, for some test
cases,50% of the total pipeline stalls are caused by ITS.
Therefore, we have developed a new instruction schedul-
ing algorithm calledbe-nice instruction scheduling, based
on Open64 Global Code Motion, to coordinate the conflicts
between concurrent threads. The instruction scheduler uses
the thread interference information (obtained by profiling)
as heuristics to decrease the number of ITS without sacrific-
ing the overall CPU performance. The experimental results
show that, for our current test cases the be-nice instruction
scheduler can reduce15% of the inter-thread stall cycles,
and increase the IPC of the critical thread by2%-3%. The
experiments are performed using the Open64 compiler in-
frastructure.

1. Introduction
SMT is a very successful architecture design that can effec-
tively improve CPU utilization (1) (2) in face of the ever
increasing long memory access latency (3) and the limits of
instruction level parallelism available in a single thread(4).
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Many chipmakers support SMT in their high-end products.
Some examples are, IBM Power5, Sun UltraSparc 3, Intel
Xeon, and Alpha21464. Now, this trend has been also ex-
tended to the architecture design of embedded processors,
which are widely used in hand-held devices.

Simultaneous multithreading (1) (2) permits multiple in-
dependent hardware threads to share the CPU pipeline re-
sources when they execute concurrently. In every CPU cy-
cle, a SMT processor is able to fetch instructions from mul-
tiple hardware threads and issue these instructions into the
processor pipeline (5). Therefore, hardware resources, i.e.
functions units, are shared among the concurrently-running
threads at a very fine grain level, which is an effective
method to improve the utilization of the processor pipeline
resources. However, concurrently-running threads in a SMT
processor may interfere, or even conflict, with each other,
and thus stall the CPU pipeline. We call this kind of pipeline
stall asinter-thread stall(ITS for short) orthread interlock.

An ITS happens when:

1. A function unit, or all function units of the same type, are
occupied. Therefore, the subsequent instructions (from
different threads) in the issue queue (6) can not be dis-
patched into the pipeline; and

2. the occupied function unit is hold by an instruction that
may execute for a long time, like load/store and un-
pipelined floating point operations.

ITS or thread interlock, essentially, is a kind ofresource
hazard that happens between two threads. In the single
thread system, a crafty compiler with a smart instruction
scheduler can decrease the probability that resource haz-
ard would happen thus alleviate its effect on CPU perfor-
mance. However, the conventional instruction scheduling al-
gorithms (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) only
take into account the code in one thread when they do in-
struction scheduling. They assume that the code being com-
piled would run as a single thread program. Without consid-
ering the interference from another concurrent thread, these
algorithms can do little to alleviate ITS. This motivates usto



re-study the instruction scheduling problem in face of inter-
thread stall in SMT processors.

Generally, ITS may happen in two sets of circum-
stances:heterogeneous multithreadingand homogeneous
multithreading. Heterogeneous multithreading means that,
among all concurrent threads, a subset of threads (usually
contains only one thread) perform mission critical jobs, so
they have higher priorities than other concurrent threads.For
this reason, the methods used to optimize ITS shall favor the
threads with higher priorities and their performances are the
major metric used to evaluate the effectiveness of the partic-
ular ITS optimization technique (intuitively, the ”overall per-
formance” can not be deteriorated too much). On the other
hand, homogeneous multithreading means that all the con-
current threads are equally important. In this condition, the
overall throughput of the system shall be used as the metric
to evaluate the ITS optimization.

ITS happens more often on embedded SMT processors
than on general wide-issue superscalar processors. The rea-
son is that an embedded processor usually has less func-
tion units than its superscalar counterpart, so resource con-
tention on embedded processors is more intensive than on
superscalar processors In addition, most embedded proces-
sors do not have cache memory. Examples are Motorola
68HC12 (17), Motorola MCore (18), and Texas Instruments
TMS370Cx (19). Even some embedded chips have cache,
the prefetch logic is usually not included in the chip be-
cause of its high power consumption and hardware complex-
ity. This would cause more long-latency load operations that
make ITS a serious problem.

In this paper, our study on the ITS problem is focused
on an embedded SMT processor that supports only in-order
execution. Besides, we restrict our discussion only to the
heterogeneous multithreaded execution.

Our experiments demonstrate that, for some test cases,
50% of the total pipeline stalls are caused by ITS. To al-
leviate this problem, we have developed a new instruction
scheduling algorithm calledbe-nice instruction scheduling
to coordinate the conflicts between concurrent threads and
therefore reduce the ratio of ITS. First, our be-nice instruc-
tion scheduler needs to obtain the thread interference infor-
mation. So, in the first pass, we profile the multithreaded
program to identify the pieces of code that cause most of the
ITS, and record the runtime status of the processor pipelines.
This information is collected, analyzed, and structured into
well defined format. In the second pass, it is fed into the com-
piler, just right before instruction scheduling phase. Thein-
struction scheduler uses the thread interference information
as heuristics to try to decrease the number of ITS’s with-
out sacrificing too much the overall CPU performance. We
have performed some micro-benchmark experiments on the
Open64 (20) compiler infrastructure. The experimental re-
sults show that, our be-nice instruction scheduler can reduce

15% of ITS cycles, and increase the IPC of critical thread by
2%-3%.

The paper is organized as follows. Section 2 will intro-
duce the ITS problem using a particular embedded SMT pro-
cessor. We will also give some experimental data in this sec-
tion to show how CPU performance is affected by ITS. Next,
in section 3, we present our be-nice instruction scheduling
algorithm, including profiling and scheduling. In section 4,
we will use some micro-benchmarks to verify the effective-
ness of the new algorithm. Related works will be briefly in-
troduced in section 5 and the conclusions are made in section
6. Last, our future work is presented in section 7.

2. Inter-Thread Stall in an Embedded SMT
Processor

In this section, we first introduce the architecture details
of JIAN , a dual-threaded SMT embedded processor. Then,
based on this particular SMT processor, we use a real exam-
ple to introduce the ITS problem. At the end of this section,
we provide some experimental data to show how ITS affects
CPU performance.

2.1 JIAN: a Dual-Threaded Embedded SMT
Processor

JIAN is an embedded processor targeted at wireless multi-
media applications. The processor core adopts a simultane-
ous multithreading design that is capable of executing con-
trol, DSP, and multi-media applications in a single instruc-
tion set architecture. It provides substantial parallelism and
high throughput for communication applications in hard-
ware, and at the same time, it still maintains low power con-
sumption, low cost and high-level language programmabil-
ity.

JIAN is a multi-issue super-scalar machine that effec-
tively utilizes and leverages expensive hardware resources
and achieve performance goals without requiring too high
a clock frequency. Figure 1 illustrates the structure of the
processor core. JIAN has a unified processor core shared
by domain-specific processing and general control-intensive
processing. The two functional tasks, instead of having their
specific execution resource, are represented by two hardware
threads which run on the same execution pipeline with dif-
ferent storage space (register file). This allows better utiliza-
tion of hardware resources and better load balancing.

Before going into details, we define three terms:hetero-
geneous multithreading, α-thread, andβ-threadin the con-
text of JIAN SMT processor. The definition of these terms
would make it easy for us to describe the ITS problem. Thus
they are used throughout this paper.

DEFINITION 2.1. Heterogeneous multithreading is a non-
symmetric thread execution model on JIAN processor. In
this model, two hardware threads perform different types
of tasks, and one thread has higher priority than the other
because it performs mission critical tasks.



DEFINITION 2.2. α-thread is the hardware thread on JIAN
processor that runs general control-intensive workloads,like
runtime system or OS. Since these are not mission critical
jobs,α-thread has lower priority in this heterogeneous mul-
tithreading system.

DEFINITION 2.3. β-thread is the hardware thread on JIAN
processor that runs domain specific workloads, like DSP,
mpeg4 encode&decode, etc. Since these are mission critical
jobs,β-thread has higher priority thanα-thread.

On the JIAN processor, thisheterogeneityis reinforced in
hardware. See the next paragraph for details.
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Every cycle, four instructions from one thread are fetched
from the I-Cache into the thread’s instruction buffer. The
two threads are alternated during instruction fetch. In that
case, only one thread’s instructions will be fetched every
cycle. Because the processor core is an in-order machine,
only the earliest instructions will be checked to see if they
can be issued or not. Currently, the maximum issue width

from α-thread is two and the maximum issue width forβ-
thread is three. This is to save issuing logic and register
ports. At every cycle, up to two earliest instructions from
α-thread’s instruction buffer and three earliest instructions
from β-thread’s instruction buffer will go through hazard
checks. See Figure 2. Up to four cleared instructions will
be selected to enter execution blocks at the next cycle. If
everything is equal, i.e. all five instructions are cleared of
hazard,β-thread has a higher priority thanα-thread. That
means three instructions fromβ-thread and one instruction
from α-thread will be issued.

While the execution engine is unified and shared for two
threads for better load balancing and hardware utilization,
storage such as register file has to be separated. The register
file of 32x32-bit is used for theα-thread to be like many
typical RISCs. The smaller 16x32-bit is used forβ-thread.

2.2 Inter-Thread Stall in Heterogeneous
Multithreading

The current implementation of JIAN SMT architecture has
one load/store unit (LS), one ALU unit (ALU), one hybrid
function unit that can do both load/store and ALU (ALU LS),
and several macro function units which perform a specific
kernel routine, like FFT or Viterbi. See Figure 1 for details.
Currently, our study of the ITS problem is focused on the
three simple functional units: LS, ALU, and ALULS. To
make the problem easier to understand, we use the classical
5-stage pipeline to illustrate how ITS happens in the JIAN
processor core. The five pipeline stages are denoted asIF,
ID, EX, MEM, WB. These are very well known abbrevia-
tions, so we do not need to explain their meaning here.

The two pieces of code below is a runtime snapshot of
the status of the instructions in the pipeline. These code
are dumped out from the JIAN performance simulator. The
first group of instructions are fromα-thread, and the second
group of instructions are fromβ-thread.

From α-thread

I1 FU:LS MEM ldw16 r31,r11 #miss
I2 FU:ALU LS MEM add16.i r3,1

From β-thread

I3 FU:ALU LS EX add16.i r10,4
I4 FU:LS ID ldw r24,r2,-8
I5 FU:ALU ID add16.i r3,1
I6 FU:ALU LS ID ldw r25,r10,-4

Figure 3. An Inter-Thread Stall Example

The comment#missat the end of I1 indicates that a
cache miss happened when instruction I1 was executing on
LS. Since JIAN is an in-order machine (in-order issue, in-
order execution, and in-order commit), I2 was also stalled on
ALU LS. Therefore, all function units that can do load/store
operations are occupied. This made the instrucitions fromβ-
thread, i.e. I4&I6, could not be issued to the function units



that were assigned to them. So, the cache miss inα-thread
stalledβ-thread, which is namedITS.

As we have mentioned,α-thread andβ-thread are not
equally important.β-thread always has higher priority than
α-thread, thus we care for the performance ofβ-thread more
thanα-thread. So, this kind of ITS is what we intend to avoid
at runtime.

ITS is caused by long-latency instructions executed on
SMT processors. These instructions usually are cache-miss
load and non-pipelined floating point operations. Theoreti-
cally, the amount of performance degradation caused by ITS
is decided by three factors:

1. The number of long-latency instructions executed per
time unit

2. The number of function units occupied by the same
thread when it executes the long-latency instructions.

3. The number of idle cycles caused by the long-latency
instruction.

On a general SMT processor, any thread may lock any
other concurrent thread. In our case, a heterogeneous dual-
threaded SMT processor, we care the performance ofβ-
thread more than the performance ofα-thread, becauseβ-
thread usually run mission critical jobs. In the next section,
we will present some experiment data to show how ITS af-
fects program performance.

2.3 How Inter-Thread Stall Affects the Performance of
β-thread

Figure 4. Stall Cycle Breakdown ofβ-thread: inter-thread
stall vs. intra-thread stall

Before we start thinking of the solution for the inter-
thread stall (or ITS for short) problem, it is very helpful
to know whether ITS affects the performance ofβ-thread
significantly, especially how it compares with other similar
performance degradation factors. In an SMT processor like
JIAN, there are roughly two types of pipeline stalls: intra-
thread stall and ITS. Intra-thread stall is the pipeline hazard

(control, data, or resource) caused by preceding instructions
in the samethread. As we all know, intra-thread stall plus
ITS account for all stall cycles in the execution ofβ-thread.

Figure 4 is the stall cycle breakdown for allβ-threads of
seven micro-benchmarks. Ink-2, 37.75% (the lowest) stall
cycles are ITS cycles, and ink-3, 63.40% (the highest) stall
cycles are ITS cycles. In average, for all benchmarks,50%
of all stall cycles are ITS cycles. This means that ITS ac-
counts for a significant proportion of performance degrada-
tion. This also indicates thatβ-thread is equally stalled by
α-thread (ITS) and itself (intra-thread stall).

These data are obtained from the inside of JIAN per-
formance simulator. At every CPU cycle, the simulator can
check whetherβ-thread is stalled. If it detects that theβ-
thread is stalled, it can analyze the status of each pipeline
stage to see whether this is an intra-thread stall or ITS. If it
is an ITS, a finite state automata will be started to record all
microarchitecture status changes at each following CPU cy-
cle, until the stall disappears, thus obtains the length of this
pipeline stall. Because in JIAN architecture, the instructions
are issued, executed, and retired in order, only one finite state
automata is needed.

3. A Be-Nice Instruction Scheduling
Algorithm

In the last section, we introduced the ITS problem, and
demonstrated how it degrades the performance ofβ-thread
in JIAN - a heterogeneous multithreaded system. In this sec-
tion, we will propose a new instruction scheduling algorithm
that can reduce the number of ITS. Since this method boosts
the performance of one thread (β-thread) through instruction
scheduling in the other thread (α-thread), we call itbe-nice
instruction scheduling.

3.1 The Be-Nice Instruction Scheduling Framework

There are several hardware approaches that can either elim-
inate a certain number of ITS or alleviate their adverse im-
pact to the performance ofβ-thread. First, the issue logic of
the processor can be improved such that instructions fromβ-
thread would not be issued into the functional unit that is al-
ready hold by a long-latency instruction inα-thread. Second,
people can adopt an out-of-order issue & execution engine
instead of an in-order one, so the successive independent in-
structions can be issued and executed even if the previous
instructions are stalled. Third, hardware can use some kind
of prefetching mechanism to reduce the number of cache
miss, therefore reduce the number of long-latency load oper-
ations. All these hardware solutions require extra complex-
ity in hardware design, and demand disproportionally high
power consumption, which is not acceptable for an embed-
ded processor. High-end SMT processors can use these hard-
ware approaches to solve the ITS problem. For an embedded
SMT processor like JIAN, we would prefer to using a power



efficient method - static instructions scheduling at compile
time.

The new instruction scheduling algorithm consists of four
steps:

1. Use the SMT simulator to identify the code sequences
in the two threads that would interfere with each other
frequently. At the same time, the interference information
will be collected and dumped into a file, which is called
interference record file.

2. The interference records are analyzed offline. Not all
interference records are useful, and only part of them will
be analyzed and interpreted to make annotation possible
and easy.

3. At the second round compilation forα-thread, the inter-
ference record file is read and used to annotate the in-
structions before scheduling.

4. When performing instruction scheduling, instructions
that cause many ITS will be lazily scheduled according
to the annotation.

So be-nice scheduling is only applied toα-thread, andβ-
thread isn’t re-scheduled any more. In the next several sec-
tions, we will introduce how each step is performed in de-
tails.

3.2 Profiling and Analysis

The goal of profiling is to obtain the accurate thread inter-
ference information that can be used (as heuristics) by the
instruction scheduler. Thread interference information tells
where inα-thread andβ-thread that ITS happened; the num-
ber of idle cycles caused by the ITS; the functional units that
were blocked in the ITS; and the instructions (in bothα-
thread andβ-thread) that were stalled in the ITS. In this pa-
per, we only focus on the ITS problem in the context of the
heterogeneous multithreaded SMT processor, i.e. the stalls
happened inβ-thread due to the long latency operations in
α-thread.

Thread interference information is collected by JIAN pro-
cessor, and we have implemented this feature in the per-
formance simulator. When the simulator detects an ITS, it
records the necessary machine states and program states. In
order not to slowdown the simulation too much, we only
record the address of the first instruction inβ-thread that was
blocked because of the ITS; the address of the instruction in
α-thread that caused the ITS; and the number of idle cycles.

Formally, thread interference information consists of an
array of interference record. An interference record is de-
fined as triplet:

(Iβ
i , Iα

j , τk) (1)

The first elementIβ
i is the address of the first instruction in

β-thread that was blocked byα-thread. The second element
Iα
j is the address of the instruction that caused ITS. The

third elementτk is the penalty caused by the ITS. So, the

information contained in theinterference record fileis an
array which looks like this:

[(Iβ
i1

, Iα
j1

, τk1
), (Iβ

i2
, Iα

j2
, τk2

), ..., (Iβ
il
, Iα

jl
, τkl

), ...] (2)

Not all interference records will be used to direct instruc-
tion scheduling. We will filter out some records according to
these criteria:

1. For an interference record(Iβ
il
, Iα

jl
, τkl

), if I
β
il

does not
belong to thehotportion of code inβ-thread;

2. For an interference record(Iβ
il
, Iα

jl
, τkl

), if τkl
is smaller

than t - the penalty threshold, which is a configurable
parameter;

3. For an interference record(Iβ
il
, Iα

jl
, τkl

), if the frequency
that Iα

jl
appears in the interference array is not big

enough.

Among all the above criteria, the last two is configurable.
Currently, theITS penalty thresholdused in the second cri-
teria is set to 5, and as to the third criteria, 25% of the least
frequentIα

jl
are removed. Later, we merge all interference

records with the sameIα
jl

to one record. The ITS penalty of
the new record is the arithmetic mean of the ITS penalties
in the old records. Therefore, we get a new version of thread
interference file which contains an array of records like this:

[(Iα
1
, τ1), (I

α
2
, τ2), ..., (I

α
j , τj), ...] (3)

For each record in this file, we mapIα
j back to the as-

sembly code and get the information that can be used by
compiler, i.e. a triplet(Xpu, Y bb, Zop), which are used to
denote thePU number, theBB number and theOP number
in Open64 code generator. So, the final version of interfer-
ence file becomes an array of records:

[((Xpu
1

, Y bb
1

, Z
op
1

), τ1), ..., ((X
pu
i , Y bb

i , Z
op
i ), τi), ...] (4)

Finally, these records will be used to annotate the corre-
sponding OP to direct the instruction scheduling.

3.3 Annotation and Instruction Scheduling

The annotation of ITS information and be-nice instruc-
tion scheduling are performed in the code generator of the
Open64 compiler (20). The flow chart in Figure 5 outlines
the framework of the Open64 code generator,CG for short.
It shows the order of each important optimization phases
performed in it. Open64 CG has its own intermediate repre-
sentation, calledCGIR. It is expanded fromWHIRL, which
is the major intermediate representation of Open64 used in
VHO, IPA/IPO, LNO, andWOPT. CGIR is a language that
is very close to the target machine language. Each CGIR
operation can be mapped directly to a machine instruction.
The operations in CG are partitioned to basic blocks (BB for
short) and basic blocks are connected by direct arcs that de-
note correct control flow relationships.
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input : PU without being annotated
input : An array of thread interference records
output: PU with OPs that are annotated

foreachRecord in the thread interference record1.1

array do
BBnum← Record.BBnum ;1.2

OPnum← Record.OPnum ;1.3

slack← CompSlack(Record.Penalty);1.4

OP← FindOP(BBnum, OPnum);1.5

Mark OP as annotated;1.6

OP.slack←slack ;1.7

end1.8

Algorithm 1 : Annotate Thread Interference Infor-
mation

There are two passes of instruction scheduling in Open64
CG, the global code motion (GCM) phase and the local in-
struction scheduling (LIS) phase. Be-Nice algorithm applies
to both phases, and Algorithm 2 demonstrates how to do it
in GCM. We annotateITS informationon the corresponding
instructions just before global code motion. Since we only
perform be-nice instruction scheduling forα-thread, we only
do annotation on the code ofα-thread, notβ-thread. The an-
notation algorithm is shown in Algorithm 1. The algorithm
has two inputs, the current PU under processing and the as-
sociated thread interference information, which is an array
of ITS records as shown in Equation (4). The algorithm tra-
verse each record in the array. It easily locates the OP based
on the PU number (PUnum) and BB number (BBnum) given
by the ITS record, and then it needs to compute theslack
valueusing a certain heuristic approach. Theslack valuede-
cides how late that the operation would be scheduled.

input : unscheduled PU
output: scheduled PU

foreachunscheduled loop body:loop body in the2.1

current PUdo
initialize candidate listcand list of the current2.2

loop body ;
while there are unscheduled OPs oncand list2.3

do
cand op← select the best OP from2.4

cand list ;
if (cand op is annotated) &&2.5

(cand op.slack > 0) then
cand op.slack −−;2.6

temp op←cand op ;2.7

cand op← the next best OP from2.8

cand list ;
put temp op back tocand list ;2.9

end2.10

if cand op 6= NULL then2.11

if cand op is not annotatedthen2.12

CircularSchedule(cand op,2.13

loop body);
end2.14

EqUpCodeMotion(cand op,2.15

loop body);
EqDownCodeMotion(cand op,2.16

loop body);
end2.17

updatecand list ;2.18

end2.19

end2.20

Algorithm 2 : be-nice instruction scheduling

In the Global Code Motion phase, theslackvalue in each
annotated operation is used as heuristic to direct the instruc-
tion scheduling. Algorithm 2 shows the procedure. The algo-
rithm treats each loop body in the PU as a scheduling unit,
from inner most to outer most. For each loop body, it first
create the initial candidate list, which consists of instructions
that are ready to be issued into the pipeline (which means
their control and data dependence relationships are satis-
fied). The algorithm tries to issue each instruction in the can-
didate list one by one, following an priority order determined
by a particular heuristic. If an annotated instruction was se-
lected from the candidate list, it checks that if theslackvalue
of the instruction is zero. If zero, the annotated instruction
is scheduled as a normal instruction. Otherwise, decrease its
slack value and put the annotated instruction back to the can-
didate list, and another instruction is selected from the candi-
date list for scheduling. The annotated instruction only goes
through equivalent upward code motion or equivalent down-
ward code motion, but not circular scheduling (21), which is



a light-weight software pipeline algorithm other than mod-
ulo scheduling (22). The candidate list is updated after the
selected instruction has been scheduled.

The slack value of each annotated operation prevent
the ITS instructions from being scheduled too aggressively.
Therefore, the algorithm creates a certain amount of slacks
in α-thread to makeβ-thread less likely to be stalled byα-
thread. In the next section, we will use some experimental
data to show how be-nice instruction scheduling can improve
the throughput ofβ-thread.

4. Experiment Results
In order to verify the effectiveness of be-nice instruction
scheduling, we performed a series of experiments on a JIAN
performance simulator using seven micro-benchmarks. Cur-
rently, all micro-benchmarks are hand-write code. Each
benchmark consists of two threads, running on JIAN sim-
ulator asα-thread andβ-thread, respectively.

The simulator used in our experiments is a cycle accu-
rate performance simulator that models JIAN architecture &
micro-architecture described in section 2. In addition to the
processor core, the simulator also simulates two caches, the
instruction cache (I-Cache) and the data cache (D-Cache).
The 32KB I-Cache is partitioned into two banks (16KB for
each) for each thread. To reduce external memory transac-
tion, the 16KB D-Cache is a write-back cache. Since all
data used byβ-thread are streaming data,β-thread is not
designed to use D-cache. Instead, it use a piece of on-chip
memory to help it to hide the memory access latency. This
on-chip memory is dedicated toβ-thread.α-thread use the
D-Cache, and its miss penalty is 20 cycles.

In the simulator, we do not allowα-thread issue two
memory operations or two ALU operations at the same cy-
cle, which means thatα-thread can issue a single load, or a
single ALU, or an ALU plus a load. The simulator models
an in order machine, and at each cycle it first updates the sta-
tus of pipeline, from WB stage to ID stage, and then it take
the instructions from the buffer to feed into the ID stage of
relative FUs if the resource is available. ITS can be detected
when the simulator scans and updates the status of pipeline
stages. Therefore, the simulator can record all the informa-
tion necessary for profiling.

We used Open64 compiler to compile each benchmark
twice. In the first pass, we run the binary to collect the thread
interference information; in the second pass, we applied the
be-nice instruction scheduling with the knowledge of thread
interference information collected in the first pass and runt it
again. The details about how to do profiling and scheduling
are presented in section 3.

We compared the performance data of two versions of
binary code: the one with be-nice instruction scheduling
and the one without be-nice instruction scheduling. Figure
4 shows the absolute number of ITS cycles that were de-
creased after we applied be-nice instruction scheduling. All

Figure 6. The Number of Inter-Thread Stall Cycles inβ-
thread: w/ Be-Nice Scheduling vs. w/o Be-Nice Scheduling

benchmarks exceptk-2 got > 10% decrease in the number
of ITS cycles. The biggest improvement was obtained on
k-7 whose ITS cycles reduced17%. The smallest one isk-
2, which only got3% improvement. The average is15%.
This result indicates that our be-nice instruction scheduling
method can effectively reduce ITS cycles inβ-thread.

Figure 7. IPC Improvement with Be-Nice Instruction
Scheduling

Figure 7 shows the instruction issue rate improvement of
β-thread. The metric on y-axis is IPC: instruction per cycle.
The bars with deep color represent the IPC of the code with-
out be-nice instruction scheduling, and the bars with light
color represent the IPC of the code with be-nice instruction
scheduling. Since this is an in-order issue processor, noneof
the benchmarks have IPC bigger than 2. The improvements
of IPC range from0.63% to 4.90%. Average is2.37%, not
a significant improvement. We think the reason is that our
benchmarks are still too small and can not run for a long
time.

However, the average performance has a small decrease
about2% on α-thread, because it has a lower issue rate in
Be-Nice scheduling. Since this is an heterogeneous maltreat-



ing environment, we are OK with this trivial performance
decrease.

5. Related Works
In order to increase the pipeline utilization and improve the
overall throughput, many people have studied the thread sen-
sitive scheduling problem on simultaneous multithreading
processors (23) (24) (25) (26). However, they either adopt
a hardware approach (23) (25), or try to explore the thread
scheduling policies in operating system (24) (26), insteadof
instruction scheduling methods in compiler.

In (23), the SMT processor under consideration supports
eight concurrent threads and can fetch up to eight instruc-
tions from one thread each cycle. The authors have studied
many diverse instruction fetch schemes - either fetch four
instructions from two different threads, or fetch two instruc-
tions from four different threads, etc. Meanwhile, threadsare
given priorities based on their characteristics of workload,
the length of instruction queue, or the likelihood of branch
mis-prediction and cache miss. (25) extended the work in
(23) with a thread sensitive instruction scheduler that uses
the ready-instruction-count (RIC) metric. The RIC metric is
a dynamic and real-time metric that quantifies the urgency
of a thread for CPU resources. Instruction issue is first per-
formed at the intra-thread phase in the partitioned instruc-
tion queue (27), then at the inter-thread phase, in which
the thread-sensitive scheduler perform thread-sensitiveissue
policy.

The above methods are hardware-based solutions. They
try to implement the thread sensitive instruction scheduling
in front-end of processor pipeline, i.e. fetch units and issue
scheduler. These hardware costs are heavyweight which can
not be afforded by a low-power embedded chip.

In (24), operating system uses the thread-behavior feed-
back information to choose the set of threads that can
best utilize the CPU resources to try to maximize proces-
sor throughput. The thread-behaviors taken into considera-
tion are cache (L1 or L2) miss rate, IPC, characteristic of
workload (integer or floating point intensive), etc. Different
thread-sensitive scheduling schemes are experimented and
compared with those thread-oblivious scheduling schemes.
(26) investigates the problem that how the contention for
shared resources affect the overall system throughput. The
author found that the contention for L2 cache has the great-
est impact on system performance. Based on this finding,
a balanced-set scheduling principle is adopted. It tries to
schedule a group of threads whose combined working set
has no problem to fit into L2 cache.

The above OS-based thread-sensitive scheduling and our
compiler-based thread-sensitive instruction schedulingalgo-
rithm are perfectly complement to each other. The OS-based
methods try to solve the resource contention problem at the
thread level, while our method works at instruction level,
which is more fine grain.

6. Conclusion
In the previous sections, we discussed the ITS problem
in a heterogeneous multithreaded SMT embedded proces-
sor. We demonstrated that ITS caused many idle cycles in
the thread that execute mission critical code. Instead of us-
ing the traditional hardware-based approach, we proposed a
static compiler optimizing technique calledbe-niceinstruc-
tion scheduling to solve this problem. The experimental re-
sults show that thebe-niceinstruction scheduling can effec-
tively reduce the number of ITS happened at runtime. And
therefore increase the throughput of the critical thread. The
advantage of our approach is that it avoids adding more com-
plicate hardware logics in the processor as the previous so-
lutions. This makes a lot of sense for an embedded SMT
processor that has very tight power budget.

7. Future Work
In this paper, our discussion of ITS is restricted to an in-order
issue embedded SMT processor. We haven’t yet studied this
problem carefully on the general SMT processors that sup-
port out-of-order issue & execution (28). The reason is that,
with more function units and the flexibility of speculative
execution, the effect of ITS would be alleviated.

In the next step, we will study the impact of ITS to the
CPU performance of general SMT processors that support
out-of-order execution. At the same time, we will extend our
be-nice instruction scheduling to do cross-thread instruction
scheduling and solve the problem in a more general frame-
work. We will also study the method that can profile a mul-
tithread program running on a SMT processor to identify the
places in the code that would trigger most of the harmful
ITS. In addition, we also want to extend our study to homo-
geneous multithread execution.
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