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Abstract 

A common performance problem faced by 

today's application programs is poor data locality. 

Real-world applications are often written to traverse 

data structures in a manner that results in data cache 

miss overhead. These data structures are often 

declared as structs in C and classes in C++. 

Compiler optimizations try to modify the layout of 

such data structures so that they are accessed in a 

more cache-friendly manner. These compiler 

transformations to optimize data layout include 

structure splitting, structure peeling, and structure 

field reordering. In this paper, we present the design 

and implementation of the transformations of 

structure splitting and structure peeling, in a 

commercial version of the Open64 compiler. We 

present details of how these transformations can be 

achieved in the Open64 compiler, as well as the 

analyses required to safely and usefully perform the 

transformation. We present some performance 

results from the SPEC CPU2000 and the CPU2006 

suites of benchmarks to demonstrate the 

effectiveness of our implementation. Our results 

show that for some applications these layout 

optimizations can provide substantial performance 

improvement. 

Keywords data cache misses; data layout; data 
locality; inter-procedural optimization; profile data; 
reference pattern; structure layout transformation; 
whole program analysis 

 

1. Introduction 

Many of today’s application programs 

exhibit poor data locality. They often access large 

data sets, or access them in a manner that may cause 

cache thrashing. This behavior causes them to suffer 

from high data cache miss penalties. This situation is 

worsened by the growing gap between processor and 

memory speeds, causing the CPU to stay idle more 

often while waiting for data from memory. 

Compilers can play a role in improving data 

cache usage.  One class of compiler optimizations 

that helps this situation is loop transformation, which 

attempts to modify the order in which the data are 

accessed. A second class of optimizations aims to 

change the layout of the data structures to make the 

application more cache-friendly. This second class 

of transformations has program-wide effects because 

they affect all accesses of the modified data 

structure. In this category, one approach is to re-

layout stack variables, global variables, and heap-

allocated objects in a cache-friendly manner. 

Another approach is to modify the layout of data 

types based on accesses of fields in the structure. 

This paper addresses the latter approach of 

changing the layout of structure types. Our approach 

requires the compiler to perform whole-program 

analysis and determine the access patterns of fields 

of hot structures. Based on available dynamically 

generated profile feedback data, or on statically 

estimated frequency counts, our analysis attempts to 

detect the data types that are the most beneficial to 

transform and then determines their desired layout. 

Subsequent compiler transformation changes the 

order of data members (or fields) in the structure 

according to recommendations from the analysis.  

This work is implemented in the PathScale 

version of the Open64 compiler for X86 processors. 

The main contribution of this work is in 

development of the framework to perform this 

structure layout optimization within the Open64 

compiler infrastructure. This involves separating out 

type information summarization into the pre-IPA 

phase called IPL. To fit the IPA framework in the 

Open64 compiler, we also developed an algorithm 

for deciding which structures to transform; this 

algorithm is different from techniques presented 

previously. 

This paper is organized as follows. In 

Section 2, we briefly describe the Open64 compiler 

infrastructure including the IPA (Inter-procedural 

Analysis and Optimization) compilation framework. 

Section 3 describes the structure layout 

transformations called structure splitting, structure 

peeling, and field reordering. Section 4 details the 



analysis and transformation for the structure-layout 

optimizations. We present our performance results in 

Section 5. We discuss related research work in 

Section 6. Finally, we conclude and discuss scope 

for future work in Section 7. 

 

2. Open64 Compiler Infrastructure 

We implemented the structure layout 

transformation in the Open64 compiler. This 

transformation changes the layout of structure types, 

and hence changes the actual definition of such 

types. As a result, such an optimization needs to 

affect all usage of such types in the whole program. 

Hence, we transform such types in the Inter-

Procedural Analysis and Optimizations (IPA) phase 

of the Open64 compiler. This phase is enabled by 

the -ipa option. 

When IPA is enabled, the compiler driver 

first invokes the language-specific front-end on each 

user source file. The next phase, called IPL, analyzes 

its input and stores the results of the analysis in the 

form of summary data. This data summarizes all the 

information that would be used by inter-procedural 

analysis during whole program optimization. At the 

end of IPL, it outputs intermediate object files that 

contain the WHIRL intermediate representation as 

well as summary data. 

IPA has an analysis phase and an 

optimization phase. During the analysis phase, IPA 

works on the summary data and does not open the 

WHIRL Intermediate Representation (IR). The 

summary data can include all information that is 

needed by IPA in the analysis phase. For example, 

the summary may include information about all 

functions and subroutines presented to the compiler. 

As a result, such data enables IPA to easily and 

efficiently perform its analysis without needing to 

open IR files. In the analysis phase, IPA decides the 

transformations that need to be done during the 

optimization phase. The optimization phase opens 

the IR for each subroutine and performs the 

transformations, before writing out the optimized 

subroutine. Depending on the size of the application, 

IPA outputs the transformed routines in a number of 

output files, on which the back-end is run to generate 

the assembly output. Hence, the backend 

compilation of the output files can be done in 

parallel. Figure 1 has an illustration of the 

compilation flow during IPA, where “pathcc” 

invokes the PathScale™ compiler. 

Most of the analysis for performing the 

structure layout optimization is done before IPA by 

the front-end and IPL. These analyses include 

determining what data types can be legally 

transformed, as well as estimating the benefits from 

transforming a certain data type. IPA's analysis 

phase aggregates all summary data and determines 

the data types to be optimized, as well as the new 

layout of such types. The actual transformation is 

performed in IPA's optimization phase. It includes 

updating the data structure layout in the symbol 

tables, as well as modifying the WHIRL IR. 

 

 

 
Figure 1: IPA compilation flow diagram 

 

3. Types of data-layout optimizations 

The layout of structures can be modified in several 

ways, as presented below. Similar forms of structure 

splitting and structure peeling have previously been 

proposed by Hagog et al [1] and Hundt et al [2]. 



 Structure splitting: This optimization splits a 

structure into multiple parts, and inserts pointers 

in the parent structure to access all the newly 

created sub-structures through these pointers. In 

the general case, each of these sub-structures 

can be recursively split, as shown in [1]. Figure 

2(a) shows an example structure. Let us assume 

that the first (d1), third (i), fifth (l), and the last 

field (next) are hot fields. After splitting, the hot 

fields are grouped together into a structure 

shown in Figure 2(b). The cold fields are 

separated out into a different sub-structure 

(Figure 2(c)). The structure with the hot fields is 

considered the root of the hierarchy, and 

contains a link pointer to point to the sub-

structure with the cold fields. This 

transformation introduces a pointer indirection 

(through p in the example) and hence, increases 

the overhead to access the fields in the child 

structure. As a result, the cold fields are laid out 

in the child structure, so that no overhead is 

added in accessing the hot fields of the 

structure. The transformation also increases the 

size of the hot structure by a pointer size. 

 Structure peeling: This is a type of structure 

splitting that does not require the insertion of the 

extra pointers in the parent structure. The name 

structure peeling has been introduced in [1]. 

Figure 3(a) contains the structure definition 

from Figure 2(a), except it does not contain the 

field next. As a result, the structure example is 

not a recursive data structure, in contrast to the 

previous example. This fact indicates to the 

compiler that it can perform structure peeling 

instead of structure splitting. Thus, it can 

prevent inserting an extra pointer and also the 

overhead of indirection through that pointer. 

Assuming the first (d1), third (i), and fifth (l) 

fields of the structure are hot, the compiler peels 

the structure to generate a hot structure (Figure 

3(b)) and a cold structure (Figure 3(c)). It is to 

be noted that the compiler can still peel a 

structure that is an indirectly recursive data 

structure through multiple structures. 

 Field reordering: Based on the hotness of 

fields in a structure, this transformation 

modifies the order in which the fields in the 

structure reside. This optimization is done by 

IPA in the Open64 compiler, but is not the 

subject of this paper. 

 

We describe the implementation of structure 

splitting and structure peeling. We will provide the 

performance impact of this transformation in Section 

5. 

    struct struct_A                               struct new_struct_A                         struct cold_sub_struct_A 
    {                                                        {                                                            { 
      double d1;                                      double d1;                                         double d2; 
      double d2;                                      int i;                                                    float f; 
      int i;                                                 long long l;                                         char c; 
      float f;                                             struct new_struct_A * next;         }; 
      long long l;                                     struct cold_sub_struct_A * p; 
      char c;                                          }; 
      struct struct_A * next; 
    }; 

(a)                                                          (b)                                                              (c) 

Figure 2: An example structure definition (a), hot sub-structure after splitting (b), cold sub-structure after splitting (c) 

(a)                                                          (b)                                                                   (c) 

Figure 3: An example structure definition (a), hot sub-structure after peeling (b), cold sub-structure after peeling (c) 

 

struct struct_A                                          struct hot_struct_A                                struct cold_struct_A 
{                                                                   {                                                                  { 
  double d1;                                                 double d1;                                                 double d2; 
  double d2;                                                 int i;                                                            float f; 
  int i;                                                            long long l;                                                char c; 
  float f;                                                      };                                                                 }; 
  long long l; 
  char c; 
}; 



 

4. Performing structure-layout 

transformations 
 

It is not always safe to change structure 

layout in programs. This is because a programmer 

often uses knowledge of data layout in a structure 

definition for writing an application. The compiler 

has to detect such situations and prevent optimizing 

such data types to ensure correct execution of the 

application. We present this analysis in Section 4.1. 

The compiler also needs to analyze data 

structures in a program to determine the structures 

that are most profitable to transform. It also needs to 

determine the desired layout of the structures that 

should be transformed. This analysis is discussed in 

Section 4.2. 

Section 4.3 describes our implementation in 

the Open64 compiler in detail. 

 

4.1. Legality Analysis 

The following are the main legality checks 

that our implementation in the Open64 compiler 

does. For any structure type T: 

Type cast: If a cast to a pointer-to-T is found, it 

indicates unsafe usage of T, and so T is invalidated. 

Similarly, a cast from a pointer-to-T also causes T to 

be invalidated. 

There is an exception to this rule. During 

dynamic memory    allocation in C/C++, the library 

routines return (void *). As a result, when memory is 

allocated to hold objects of type T, it will involve a 

type cast from type (void *) to pointer-to-T. In 

WHIRL IR, when the return value is loaded from 

such a routine, it is given the final type as seen after 

the type cast. As a result, such type casts are hidden 

and, hence, does not prevent the optimization of the 

type. 

This type casting restriction is imposed in 

IPL. The IPL phase processes each function (also 

called PU, short for Program Unit) by traversing its 

WHIRL and summarizing the data. During this step, 

IPL also scans for type casting that might prevent a 

structure type (called TY in Open64) from being 

split or peeled. It marks such structure TYs 

appropriately, so that the information can be used by 

IPA’s analysis phase while determining 

transformable types. IPL’s flagging of such TYs is 

discussed in more detail in Section 4.3.1. 

Address of a field is taken: If the compiler detects 

the address of a field of a structure to have been 

taken, then it implies the application may have 

address arithmetic on the data fields. As a result, the 

type needs to be invalidated. 

Escaped types: A type cannot be split if it escapes 

to code outside the scope of analysis. This is because 

the compiler cannot know whether that code outside 

its analysis scope accesses the type in any unsafe 

manner. 

Parameter types: If a type is passed to a routine as 

an argument or is returned from a routine, we do not 

peel that type. The reason is peeling such a type 

would require introducing new parameters to the 

function, and hence changing the function prototype. 

Currently we prevent such types from being    

optimized due to implementation limitations. 

Whole program analysis: Code that is written as 

part of a program    can freely access the internal 

data structures without their passing    as parameters 

to a function. As a result IPA needs to ensure it is    

given the entire application code, so that it can 

perform legality    checks on the whole program. The 

IPA linker (“ipa_link”) can impose this legality 

check by ensuring that all object files presented to it 

during whole-program compilation are IPA object 

files. If the application passes this check, it means 

IPA is able to analyze the entire application code. 

IPA can exclude some system object files and 

libraries that may be passed to it from this 

restriction, because such files cannot access the data 

structures of the user application. 

Alignment restrictions: If the user explicitly 

enforces alignment or packing restrictions on a 

structure type, then that type is invalidated. 

 

4.2. Profitability Analysis 

 
In order to estimate the application 

performance benefit that transforming a data 

structure might bring, we mainly perform two types 

of analyses in the Open64 compiler: hotness analysis 

and affinity analysis. The terms affinity and affinity 

group (used later) have been used in [2]. We 

estimate the number of accesses to structure fields in 

a program. A field that is accessed more frequently 

than other fields is hotter. Currently, we only 

consider field accesses inside loops to determine 

their hotness. In a program, we also analyze accesses 

to fields in a structure to determine “closeness” 

between the fields. We call two structure fields to 

have high affinity when the fields are accessed close 

together in time. Fields that are consistently accessed 

close to each other are considered to have higher 

affinity than others. The affinity is computed at the 

loop-level which means that fields accessed inside 

the same loop are considered affine to each other. 

 



 

4.3. Analysis and Transformation 

Implementation Details 
 

In the Open64 compiler, the 

implementation of the structure layout 

transformations is divided into the three phases: type 

information summarization, analysis, transformation. 

 

4.3.1. Type information summarization 

For each source file, we determine structure 

types that fail any of the legality checks and 

summarize information about structure field 

accesses. The Open64 phase before IPA, called IPL, 

is run over all the input files. This phase traverses 

the PUs and marks TYs that violate any of the 

legality checks. We added a TY flag TY_NO_SPLIT 

to mark types that cannot be split, which applies 

only to structure TYs. This flag, however, cannot be 

set on a TY by a phase before IPA. This is because 

when IPL traverses the WHIRL and invalidates 

types, a certain type may be marked invalid while 

processing one source file. In another file, that type 

may not have any usage that fails the legality 

restrictions. As a result the type definition present in 

that file will not be invalidated. In such a scenario, a 

certain type T may have the flag TY_NO_SPLIT set 

in one file, but not in another. When IPA merges the 

symbol tables from all its input files, it compares the 

symbols and types byte-by-byte to determine if any 

of them are identical and can be merged. As a result, 

it will fail to merge type T from one file with type T 

from another file if they have different flags set. 

We addressed this issue by introducing a 

summary data structure in IPL, called 

SUMMARY_TY_INFO. IPL invalidates a TY by 

recording the information in the summary for that 

TY. IPA reads in the array of 

SUMMARY_TY_INFO and updates the merged TY 

table based on the flags in this summary data. This 

summary data structure may also be used in future 

for other information that IPL needs to convey about 

a type to IPA. 

While traversing a PU, IPL also 

summarizes information about structure field 

accesses. This access information is used by IPA to 

compute hotness of and affinity between fields. We 

introduced a summary data structure in IPL, called 

SUMMARY_LOOP. IPL maintains a 

SUMMARY_LOOP data structure for each loop 

(DO_LOOP, WHILE_DO, and DO_WHILE in 

WHIRL). For each loop, it tracks up to N structure 

TYs, where N is a tuning parameter. For each such 

TY, the summary data contains a bit-vector to keep 

track of which fields are accessed inside the loop. 

For a loop, SUMMARY_LOOP only tracks field 

accesses that are contained immediately inside the 

loop, and does not count accesses that may be 

present in a nested loop. From the example in Figure 

4, the summary data for Loop 1 only counts field 

accesses in statement 1, statement 2, and statement 4 

in Loop 1. The heuristic used here is that fields 

accessed inside a nested loop (fields 3 and 4 in the 

figure) are considered affine to each other, but are 

not considered “close” to fields accessed in a parent 

loop (fields 1 and 2 in the figure). 

 

Each SUMMARY_LOOP also has a field 

to store the estimated execution count of the 

statements immediately contained inside the loop. 

When runtime feedback is enabled, this invocation 

count is the information obtained from the profile 

data. In the Open64 compiler, a feedback run is 

obtained by using the compiler options –fb-create 

fbdata and –fb-opt fbdata in the two phases 

respectively. Without profile data, we developed a 

framework that computes static profiles using 

heuristics [3] during compile-time. The execution 

count for the SUMMARY_LOOP is obtained by 

employing these compile-time heuristics. For 

example, without profile feedback, loops are 

assumed to execute 8 times. As this execution count 

is assigned in IPL, the estimate is local to the current 

PU, and is independent of how many times the PU 

itself is called. Hence, IPA needs to fix up this 

estimated execution count, which we discuss below. 

 

4.3.2. IPA Analysis 

After building the IPA call graph early in 

the analysis phase, we added a pass in which IPA 

traverses the call graph to update the statically 

estimated execution count of the PUs. In a top-down 

traversal over the call graph, IPA scales up the 

for ( i = 0; i < N; i++ )        // Loop 1 
{ // Field accesses below are to struct S 
  // Loop 1 statement 1 accesses field 1 
  // Loop 1 statement 2 accesses field 2 
  for ( j = 0; j < M; j++ ) // Loop 2, 
                                    // Loop 1 statement 3 
  { 
    … 
    for ( k = 0; k < L; k++ )  // Loop 3 
    { 
      // Loop 3 accesses fields 3 and 4  
    } 
  } 
  // Loop 1 statement 4 
} 

  Figure 4: A triply-nested loop accessing fields of struct S 



invocation count of a PU based on the invocation 

count of its callers, and the number of times the PU 

is called from each invocation of the callers. This 

pass is similar to the approach mentioned in [3]. It 

then uses this scaling factor to also update the 

statically estimated loop frequencies obtained from 

the SUMMARY_LOOP data structure. 

In the analysis phase, IPA scans through the 

TY table to determine structure TYs that are 

candidates for the structure-layout optimization. The 

decision of whether to split or peel a structure and 

the choice of its new layout depends on a number of 

factors including the type definition of the structure, 

and on the objects of that type that the program has. 

As seen from Figure 2, if a structure type is a 

recursive data structure that contains a pointer to 

itself, then the type may only be split. In such a 

scenario, the compiler does not have the lower-

overhead option of peeling it. 

 

 

 F4 F3 F2 F1 BV 

L1  22  22 0101 

L2   14  0010 

L3  12  12 0101 

L4 8 8   1100 

L5  6  6 0101 

Table 1: Count of field accesses in loops L1 to L5 

 F4 F3 F2 F1 

AG1  40  40 

AG2   14  

AG3 8 8   

Table 2: Aggregated field access pattern for field 

affinity computation 

In order to determine the new layout of a 

structure type T that has not been invalidated, we 

analyze the structure field accesses from the loop 

summary data of the hottest P PUs, where P is a 

configurable parameter. For structure type T, we 

maintain a list of fields that are accessed in each of 

the hottest loops considered. Let us consider the 

example shown in Table 1 for a structure type T that 

is a candidate for structure peeling. Let us assume 

that T has 4 fields F1-F4. We are analyzing the 

accesses of these fields in the 5 hottest loops 

numbered L1-L5 shown in order of decreasing 

hotness in the rows of the table. The right-most 

column marked BV is a bit-vector that gives the field 

accesses of the structure for the corresponding loop. 

We list the fields F1-F4 in reverse order in the 

columns of the table to make it easier to match them 

with the corresponding bit-vector. The numbers in 

the columns F4-F1 indicate the access count for the 

corresponding field. Fields that we consider “close” 

to each other belong to the same affinity group. In 

order to compute the affinity between the fields, we 

begin scanning the loops starting with the hottest 

loop. For two loops that have the same access 

pattern for the fields of the structure, we aggregate 

the field access counts and merge them into a single 

affinity group. Two loops Li and Lj have same access 

pattern for a structure type T when the fields of T 

accessed in Li are exactly the same as those accessed 

in Lj. From our example in Table 1, we find that 

loops L1, L3, and L5 have the same bit-vector 

signifying the same access pattern. We aggregate 

them and form affinity group AG1 (Table 2). Hence, 

the analysis of the loops in Table 1 results in the 

affinity groups in Table 2. As the affinity groups 

AG2 and AG3 have a very low hotness factor 

compared to AG1, and have a hotness factor less 

than the hotness threshold Th, AG1 takes priority and 

we aggregate all the remaining fields into another 

affinity group. Th is a tunable parameter. If there are 

multiple non-disjoint hot affinity groups (example: if 

both AG1 and AG3 were hot), we scan the affinity 

groups in decreasing order of hotness, and form 

affinity groups using fields that have not already 

been assigned to a group. In general, if there are 

multiple affinity groups that have hot fields, then the 

compiler will peel the original structure T to create 

multiple sub-structures. Each sub-structure will 

correspond to one affinity group. However, if an 

object of type pointer-to-T exists as a field in another 

structure S, then we peel T into at most 2 sub-

structures. The reason is the transformation 

necessitates the compiler to insert fields in S. If T is 

peeled into N sub-structures, then the compiler must 

insert (N – 1) new fields in structure S, thus 

increasing the size of S by (N – 1) times the pointer 

size. To reduce this overhead to a minimum, we 

enforce N=2. In this case, the compiler inserts one 

new field in structure S. 

As a special case, if all or most of the 

hottest loops access only one field Fi in T, then Fi 

becomes the only member of the hottest affinity 

group. If all the other fields of T are relatively cold, 

then they all form another single affinity group. In 

this scenario, the compiler will peel the structure into 

two sub-structures T1 and T2 such that T1 contains 

the lone field Fi, and T2 contains the remaining 

fields. As T1 is a structure containing only one field, 

it can be simplified into the type of Fi. Figure 5(a) 

shows an example of such a structure. Figure 5(b) 

shows the result of peeling out the lone hot field of 

type “double”. The object of type pointer-to-T, p, is 

replicated to give p_1 and p_2. The object p_1 is a 



pointer to the hot field, while object p_2 is a pointer 

to the newly created structure type. 

 If we are analyzing structure type T that is a 

candidate for structure splitting, we analyze the field 

accesses in the hottest loops from Table 1 and divide 

them into two categories: hot fields and cold fields. 

As shown in the example in Figure 2, we create two 

structures, one of which is made the parent or root 

structure. The fields that are hotter than a 

configurable hotness threshold Th constitute the 

parent structure. The child structure is formed from 

the remaining cold fields. A new field pointing to the 

cold structure is added to the end of the root 

structure. As a result, this new field increases the 

size of the parent structure. To be beneficial, the 

total size of fields in the cold structure should be 

greater than a pointer size. It also requires one extra 

level of pointer traversal to access the cold fields. In 

order to minimize these overheads, we keep the 

layout simple and form a hot structure and a cold 

structure. We feel that in general the benefits of 

splitting a structure into many sub-structures based 

on affinity and hotness criteria are offset by the 

overhead introduced by the transformation. 

 

4.3.3. Transformation 

Once IPA’s analysis phase determines the 

structure-layout transformation to be done on a 

structure type, IPA’s optimization phase is ready to 

perform the actual transformation. This 

transformation process involves updating the 

WHIRL symbol tables, as well as the WHIRL IR. 

The following are the main steps: 

 

Adding new type definitions: IPA traverses the 

layout suggested by the analysis phase and forms 

new structure types based on the recommendations. 

For each field in the structure being transformed, it 

keeps track of the new type that the field will be a 

part of. If the field is to stay alone, then IPA maps 

this field to its base type. 

 

Field table update: The WHIRL symbol tables 

include a field table that contains all fields of all 

structure types in the program. For a structure type, 

the TY structure contains a field which is an index 

into the field table. This index gives the fields 

belonging to that type. In some cases, the 

transformation may need to add new fields to 

existing structure type definitions. One such scenario 

is when the compiler is peeling type T and structure 

type S contains a field that is a pointer-to-T (Figure 

6). As explained earlier, the analysis phase divides 

T’s fields into two affinity groups AG1 and AG2. We 

peel such a structure type T into two sub-structures 

T1 and T2. This part of the transformation updates the 

fields for S by modifying the type of field p and then 

adding a new field pointing to structure T2. 

 
Updating WHIRL IR: This stage forms the major 

part of the transformation process. Once the new 

types have been created and all required type 

struct T 
{ 
  double hot_field; 
  int cold_field1; 
  float cold_field2; 
}; 
struct T * p; 

struct T2 
{ 
  int cold_field1; 
  float cold_field2; 
}; 
double * p_1; 
struct T2 * p_2; 

(a)                                                                                                (b) 

Figure 5:  Original structure example (a) and result of peeling out the first field in (b) 

struct S                 struct T 
{                             { 
  // N fields            // AG1 fields 
  struct T * p;         // AG2 fields 
 // M fields           }; 
}; 

struct S                        struct T1                       struct T2 
{                                    {                                     { 
  // N fields                   // AG1 fields                // AG2 fields 
  struct T1 * p1;          };                                    }; 
  struct T2 * p2; 
  // M fields 
};                               

(a) Before peeling                                                                   (b) After peeling 

Figure 6: Structure peeling of T when S contains a field of type pointer-to-T 



definitions have been updated, IPA needs to traverse 

all PUs and update the WHIRL IR. Let us consider T 

to be the type IPA is transforming. The following are 

the main updates that need to take place: 

 Statements containing field accesses: IPA 

traverses the PUs and updates all statements 

that access a field in the peeled or split 

structure. We call the field number in a 

WHIRL statement a field_id. In statements 

with field accesses, IPA updates the 

field_id as well as the field offset. The 

offset is obtained by traversing the new 

structure TY to find the field with the 

proper field_id. The field data structure 

contains its offset. IPA may also need to 

update the structure TY being accessed. 

When structure type S contains a field 

which is a pointer to peeled type T (Figure 

6), accesses to fields in S may also need to 

change. The type definition of S contains 

fields before and after p in Figure 6. For 

such a type S, accesses to all the M fields 

after p need to be updated with their new 

field_id and offset. 

 New symbols for program variables: IPA 

creates new local and global variables to 

update statements where variables of the 

transformed type occur. It maintains a map 

from old ST_IDX (symbol table index) to 

the new ST_IDX of the corresponding 

variables. According to this map, it updates 

statements as it processes the different PUs. 

 Assignment statements: Statements that 

assign objects of type pointer-to-T need to 

be replicated to ensure assignment for all 

the newly created sub-structures. These 

assignment statements need to be updated 

with proper type information and new 

variable names. Assignment statements that 

need to be handled include both direct 

assignments (involving STID) and indirect 

assignments through pointer indirection 

(involving ISTORE). 

 Function calls to memory management 

routines: IPA needs to update calls to 

memory management routines that allocate 

or free up memory holding objects of type 

T. For a memory allocation function like 

malloc, the call statement does not tell IPA 

what type it is allocating. The statement 

that follows this function call is a store 

(STID in WHIRL) of a special symbol 

called the return value pseudo register (also 

called Return_Val_Preg). This special 

symbol holds the value returned by the 

previous function call. The type of the load 

of the Return_Val_Preg tells IPA the data 

type being allocated. When this data type is 

the transformed type T, IPA updates the 

allocation statement as well as the store of 

the function return value. This update 

includes replicating the memory allocation 

statement as well as the STID statement for 

each sub-structure type created by the 

transformation. IPA also needs to update 

the total size of memory being allocated. 

Typically, allocation function calls use the 

sizeof operator to tell the function how 

much memory to allocate. An example 

function call to allocate memory for 

holding N objects of type T and assigning 

the memory pointer to p is: 

 

p = (T *) malloc (N * sizeof (T)); 
 

WHIRL does not have a sizeof operator. 

Hence, the IR will have the sizeof operator 

replaced by the original size of type T. IPA 

updates this with the size of the new 

structure type being allocated. On the other 

hand, if N is a compile-time constant, then 

the entire expression will be replaced by the 

result of the multiplication. In this case, 

IPA divides the total size (which is the 

result of the expression N * sizeof (T)) by 

the original size of T to determine the 

number of elements N being allocated. IPA 

then multiplies N by the size of the new 

type to compute the memory that needs to 

be allocated. 

Very often, a memory allocation statement 

as above is followed by a check to ensure 

that the function call actually returned 

usable memory. A typical example is: 

 

if (p == NULL) 
  exit (1); 
 

Once IPA replicates the allocation function 

call, it also needs to update this conditional 

check to use all the new variables holding 

the return values from the memory 

allocation function calls. Pointer 

comparisons in other contexts can be 

adjusted by only comparing pointers to one 

of the peeled sub-structs. For structure 

splitting, when the hot root structure is 

allocated, the compiler also needs to 

generate code to allocate the cold structure. 

 

 

 



5. Performance Results 

 
In this section, we present performance 

measurements on the CPU2000 and the CPU2006 

benchmarks from SPEC [4]. We provide results for 

the SPEC benchmarks using 64-bit ABI and -Ofast 

option without the use of profile feedback data. The 

results are from the following system configurations: 

 2.8 GHz AMD Opteron
TM

, with 4 GB of 

memory and 1 MB of L2 cache 

 3.0 GHz Intel® Xeon® with Core
TM

 

microarchitecture, with 4 GB of memory 

and 4 MB of L2 cache 

 2.0 GHz AMD Barcelona with 8 GB of 

memory and 512 KB of L2 cache 

 3.4 GHz Intel® Xeon® with EM64T, with 

4 GB of memory and 1 MB of L2 cache 

 500 MHz MIPS®-based SiCortex processor 

with 4 GB of memory and 256 KB of L2 

cache 

 

Out of all the CPU2000 and CPU2006 

benchmarks, we observe benefits in three 

benchmarks. They are the CPU2000 FP benchmark 

179.art, INT benchmark 181.mcf, and the CPU2006 

INT benchmark 462.libquantum. We have not 

observed any noticeable impact on other 

benchmarks. The compile-time overhead for the 

optimizations is negligible. The performance 

speedups for the three benchmarks on the different 

sytems are presented in Table 3. If a benchmark 

takes time T1 to run without the structure layout 

optimization, and time T2 to run with the 

transformation, we calculate the speedup as 

(1/T2 – 1/T1) / (1/T1) 
We note that out of the three improvements, the 

AMD Opteron
TM

 system gets the highest speedup on 

two of them, while the AMD Barcelona system gets 

the highest speedup on 181.mcf. 181.mcf shows the 

smallest improvement among the three benchmarks 

for all five systems. From our experience, we have 

observed that the structure layout transformations 

achieve relatively less improvement while compiling 

for the 32-bit ABI. This is expected, since the 

smaller pointer size in the 32-bit ABI enables 

structures containing pointers to be smaller resulting 

in more cache-friendly behavior. 

179.art has a hot structure that is pointed to 

by a global variable. The benchmark uses a 

dynamically allocated array of this structure type. 

The compiler peels the structure type into individual 

types for the fields of the structure. 181.mcf has a 

hot structure that is pointed to by several fields in 

other structures. In addition, the hot structure is a 

recursive data structure. IPA splits this structure into 

a hot root structure and a cold child structure that is 

pointed to by a field in the root. The benchmark 

462.libquantum has a hot structure, say T, with two 

fields. The hottest loops of the benchmark access 

only one of the fields of T making it beneficial to 

peel the hot field out of the structure. This structure 

T is pointed to by a field in another structure, say, S.  

Type S uses a dynamically allocated array of objects 

of type T. As a result, the compiler also needs to 

update the type definition of S after peeling type T. 

The AMD Barcelona system we mentioned 

above has two quad-core Barcelona chips. Each 

Barcelona chip has a 2 MB L3 cache shared among 

the four cores. We ran multiple copies of 

462.libquantum simultaneously and measured the 

performance speedup. The increase in the number of 

simultaneous runs increases the pressure on the 

memory system. In addition, the shared L3 cache 

results in smaller effective cache size for each copy 

of the run. Hence, as we run more simultaneous 

copies of the benchmark, we notice increased 

speedup from the structure peeling transformation. 

We experimented with 1, 2, and 4 copies of the 

benchmark, and observed +51% (from Table 3), 

+69%, and +123% speedup respectively. 

 

6. Related Work 
 

There have been a variety of approaches 

taken to reduce cache misses by improving data 

locality. One approach uses loop nest optimizations 

to modify the access patterns of data arrays [5] and 

[6]. The work in [7] changes the layout of stack 

variables, global variables and heap objects to 

reduce data cache misses. The approach in [8] uses 

generational garbage collection to ensure that objects 

affine to each other are placed close to each other. 

Chilimbi et al [9] describe techniques to improve the 

locality of dynamically allocated objects. They 

present two semi-automatic tools called ccmorph 

and ccmalloc that aid in a cache-conscious 

allocation. Lattner et al describe automatic pool 

allocation [10] that uses a context-sensitive pointer 

analysis to partition heap objects and improve cache 

performance. Related work on memory allocation 

and garbage collection to improve memory hierarchy 

performance has been reported in [11] and [12]. The 

approach in [13] improves cache performance of 

dynamically allocated data structures in type-safe 

programming languages by reordering its data 

members based on profile feedback. Rubin et al 

present a profile-based technique that searches the 

space of possible data layouts [14]. The search 

proceeds by prototyping candidate data layouts and 

simulating its performance on a trace of memory 

accesses. 



 

 

Benchmarks AMD Opteron
TM

 AMD Barcelona Intel® EM64T Intel® Core™ SiCortex MIPS® 

179.art  +169% +66% +53% +60% +45% 

181.mcf  +25% +35% +12% +30% +7% 

462.libquantum +82% +51% +75% +70% +69% 

Table 3: Performance impact on SPEC benchmarks with structure splitting and structure peeling 

Chilimbi et al describe the application of 

structure splitting and field reordering for Java 

programs [15]. Truong et al present a field 

reordering technique called instance interleaving 

[16].  Zhong et al present reference affinity [17] to 

measure the “closeness” of data in a reference 

program trace. Then they use this affinity parameter 

for array transformation and structure splitting. 

Hagog et al in [1] present an 

implementation of the structure splitting 

transformation in GCC [18]. Hundt et al [2] describe 

a framework for structure layout transformations in 

the HP-UX compiler for Intel® Itanium®. Both 

these approaches are similar to our framework for 

the Open64 compiler. While many of the earlier 

techniques apply only to type-safe languages, these 

approaches can apply the structure layout 

transformations even on non-type-safe languages 

like C and C++. The GCC implementation depends 

on profile feedback, while our framework works 

with either statically estimated profiles or dynamic 

runtime-generated profiles. Hagog et al use a close 

proximity graph and a field reference graph to 

analyze the “closeness” between fields. Affinity 

graphs are used in [2]. While they perform much of 

the legality and performance analysis in the front-

end (FE), we do these tasks in phase IPL which is 

invoked after the Open64 front-end, and before IPA. 

By not performing these analyses in the front-end, 

we only need to implement the analysis once and are 

able to apply it to all supported languages. Our 

analysis in IPL can also utilize results of other 

optimizations that have been done by the Open64 

pre-optimizer. We also differ in how the information 

is analyzed by IPA in assigning “closeness” 

relationships to structure members. 

In addition to a framework for structure 

layout optimization, Hundt et al present an advisory 

tool that can reuse compiler analysis data and 

performance data from runtime to provide advice on 

improving structure layout. For multi-threaded 

applications, Raman et al [19] propose a technique 

for structure layout optimizations for multithreaded 

applications that reduces false sharing as well as 

improves spatial locality. 

We believe that to maximize the 

effectiveness of cache locality optimizations, the 

approaches of loop nest transformations, re-layout of 

statically and dynamically allocated objects, the 

structure layout optimizations, as well as techniques 

to reduce false sharing in multithreaded programs, 

can be combined without affecting the effectiveness 

of each other, because they address non-overlapping 

aspects of this larger problem. 

 

7. Conclusions and Future Work 
 

We have implemented structure layout 

optimization in the Open64 compiler. The 

substantial performance improvements that we 

observe on three benchmarks out of CPU2000 and 

CPU2006 show that our implementation is highly 

effective in exploiting the opportunities for structure 

optimization whenever they arise. Our results also 

show that the opportunities for structure 

optimization do not exist in most programs, but 

when they do, the performance improvement can be 

quite substantial.  Thus, this is an indispensible 

optimization in modern compilers. 

In the process of implementing structure 

layout optimization in the Open64 compiler, we 

found that the superior infrastructure of this compiler 

has allowed our extensions to its data structures to be 

implemented cleanly and with less effort than we 

have expected. The entire project took only two 

man-months. As the compiler is open-sourced, our 

efforts will benefit the Open64 community as a 

whole. This work also allows other Open64 

developers to build on top of this work and to further 

improve this optimization. 

Several areas hold potential for more 

interesting work. Our current implementation of 

static profile estimates can be tuned further. We can 

relax some restrictions and make the analysis and 

transformation more general, so that more types can 

be transformed. This will allow us to apply the 

transformation to more applications, and analyze the 



effects. We can also make the existing field-

reordering framework and our new structure layout 

optimization framework collaborate with each other 

so as to maximize their combined effects. 
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