
Structure Layout Optimizations in the Open64 Compiler: Design,

Implementation and Measurements

Gautam Chakrabarti, Fred Chow

PathScale, LLC.

{gautam, fchow}@pathscale.com

Abstract

A common performance problem faced by

today's application programs is poor data locality.

Real-world applications are often written to traverse

data structures in a manner that results in data cache

miss overhead. These data structures are often

declared as structs in C and classes in C++.

Compiler optimizations try to modify the layout of

such data structures so that they are accessed in a

more cache-friendly manner. These compiler

transformations to optimize data layout include

structure splitting, structure peeling, and structure

field reordering. In this paper, we present the design

and implementation of the transformations of

structure splitting and structure peeling, in a

commercial version of the Open64 compiler. We

present details of how these transformations can be

achieved in the Open64 compiler, as well as the

analyses required to safely and usefully perform the

transformation. We present some performance

results from the SPEC CPU2000 and the CPU2006

suites of benchmarks to demonstrate the

effectiveness of our implementation. Our results

show that for some applications these layout

optimizations can provide substantial performance

improvement.

Keywords data cache misses; data layout; data
locality; inter-procedural optimization; profile data;
reference pattern; structure layout transformation;
whole program analysis

1. Introduction

Many of today’s application programs

exhibit poor data locality. They often access large

data sets, or access them in a manner that may cause

cache thrashing. This behavior causes them to suffer

from high data cache miss penalties. This situation is

worsened by the growing gap between processor and

memory speeds, causing the CPU to stay idle more

often while waiting for data from memory.

Compilers can play a role in improving data

cache usage. One class of compiler optimizations

that helps this situation is loop transformation, which

attempts to modify the order in which the data are

accessed. A second class of optimizations aims to

change the layout of the data structures to make the

application more cache-friendly. This second class

of transformations has program-wide effects because

they affect all accesses of the modified data

structure. In this category, one approach is to re-

layout stack variables, global variables, and heap-

allocated objects in a cache-friendly manner.

Another approach is to modify the layout of data

types based on accesses of fields in the structure.

This paper addresses the latter approach of

changing the layout of structure types. Our approach

requires the compiler to perform whole-program

analysis and determine the access patterns of fields

of hot structures. Based on available dynamically

generated profile feedback data, or on statically

estimated frequency counts, our analysis attempts to

detect the data types that are the most beneficial to

transform and then determines their desired layout.

Subsequent compiler transformation changes the

order of data members (or fields) in the structure

according to recommendations from the analysis.

This work is implemented in the PathScale

version of the Open64 compiler for X86 processors.

The main contribution of this work is in

development of the framework to perform this

structure layout optimization within the Open64

compiler infrastructure. This involves separating out

type information summarization into the pre-IPA

phase called IPL. To fit the IPA framework in the

Open64 compiler, we also developed an algorithm

for deciding which structures to transform; this

algorithm is different from techniques presented

previously.

This paper is organized as follows. In

Section 2, we briefly describe the Open64 compiler

infrastructure including the IPA (Inter-procedural

Analysis and Optimization) compilation framework.

Section 3 describes the structure layout

transformations called structure splitting, structure

peeling, and field reordering. Section 4 details the

analysis and transformation for the structure-layout

optimizations. We present our performance results in

Section 5. We discuss related research work in

Section 6. Finally, we conclude and discuss scope

for future work in Section 7.

2. Open64 Compiler Infrastructure

We implemented the structure layout

transformation in the Open64 compiler. This

transformation changes the layout of structure types,

and hence changes the actual definition of such

types. As a result, such an optimization needs to

affect all usage of such types in the whole program.

Hence, we transform such types in the Inter-

Procedural Analysis and Optimizations (IPA) phase

of the Open64 compiler. This phase is enabled by

the -ipa option.

When IPA is enabled, the compiler driver

first invokes the language-specific front-end on each

user source file. The next phase, called IPL, analyzes

its input and stores the results of the analysis in the

form of summary data. This data summarizes all the

information that would be used by inter-procedural

analysis during whole program optimization. At the

end of IPL, it outputs intermediate object files that

contain the WHIRL intermediate representation as

well as summary data.

IPA has an analysis phase and an

optimization phase. During the analysis phase, IPA

works on the summary data and does not open the

WHIRL Intermediate Representation (IR). The

summary data can include all information that is

needed by IPA in the analysis phase. For example,

the summary may include information about all

functions and subroutines presented to the compiler.

As a result, such data enables IPA to easily and

efficiently perform its analysis without needing to

open IR files. In the analysis phase, IPA decides the

transformations that need to be done during the

optimization phase. The optimization phase opens

the IR for each subroutine and performs the

transformations, before writing out the optimized

subroutine. Depending on the size of the application,

IPA outputs the transformed routines in a number of

output files, on which the back-end is run to generate

the assembly output. Hence, the backend

compilation of the output files can be done in

parallel. Figure 1 has an illustration of the

compilation flow during IPA, where “pathcc”

invokes the PathScale™ compiler.

Most of the analysis for performing the

structure layout optimization is done before IPA by

the front-end and IPL. These analyses include

determining what data types can be legally

transformed, as well as estimating the benefits from

transforming a certain data type. IPA's analysis

phase aggregates all summary data and determines

the data types to be optimized, as well as the new

layout of such types. The actual transformation is

performed in IPA's optimization phase. It includes

updating the data structure layout in the symbol

tables, as well as modifying the WHIRL IR.

Figure 1: IPA compilation flow diagram

3. Types of data-layout optimizations

The layout of structures can be modified in several

ways, as presented below. Similar forms of structure

splitting and structure peeling have previously been

proposed by Hagog et al [1] and Hundt et al [2].

 Structure splitting: This optimization splits a

structure into multiple parts, and inserts pointers

in the parent structure to access all the newly

created sub-structures through these pointers. In

the general case, each of these sub-structures

can be recursively split, as shown in [1]. Figure

2(a) shows an example structure. Let us assume

that the first (d1), third (i), fifth (l), and the last

field (next) are hot fields. After splitting, the hot

fields are grouped together into a structure

shown in Figure 2(b). The cold fields are

separated out into a different sub-structure

(Figure 2(c)). The structure with the hot fields is

considered the root of the hierarchy, and

contains a link pointer to point to the sub-

structure with the cold fields. This

transformation introduces a pointer indirection

(through p in the example) and hence, increases

the overhead to access the fields in the child

structure. As a result, the cold fields are laid out

in the child structure, so that no overhead is

added in accessing the hot fields of the

structure. The transformation also increases the

size of the hot structure by a pointer size.

 Structure peeling: This is a type of structure

splitting that does not require the insertion of the

extra pointers in the parent structure. The name

structure peeling has been introduced in [1].

Figure 3(a) contains the structure definition

from Figure 2(a), except it does not contain the

field next. As a result, the structure example is

not a recursive data structure, in contrast to the

previous example. This fact indicates to the

compiler that it can perform structure peeling

instead of structure splitting. Thus, it can

prevent inserting an extra pointer and also the

overhead of indirection through that pointer.

Assuming the first (d1), third (i), and fifth (l)

fields of the structure are hot, the compiler peels

the structure to generate a hot structure (Figure

3(b)) and a cold structure (Figure 3(c)). It is to

be noted that the compiler can still peel a

structure that is an indirectly recursive data

structure through multiple structures.

 Field reordering: Based on the hotness of

fields in a structure, this transformation

modifies the order in which the fields in the

structure reside. This optimization is done by

IPA in the Open64 compiler, but is not the

subject of this paper.

We describe the implementation of structure

splitting and structure peeling. We will provide the

performance impact of this transformation in Section

5.

 struct struct_A struct new_struct_A struct cold_sub_struct_A
 { { {
 double d1; double d1; double d2;
 double d2; int i; float f;
 int i; long long l; char c;
 float f; struct new_struct_A * next; };
 long long l; struct cold_sub_struct_A * p;
 char c; };
 struct struct_A * next;
 };

(a) (b) (c)

Figure 2: An example structure definition (a), hot sub-structure after splitting (b), cold sub-structure after splitting (c)

(a) (b) (c)

Figure 3: An example structure definition (a), hot sub-structure after peeling (b), cold sub-structure after peeling (c)

struct struct_A struct hot_struct_A struct cold_struct_A
{ { {
 double d1; double d1; double d2;
 double d2; int i; float f;
 int i; long long l; char c;
 float f; }; };
 long long l;
 char c;
};

4. Performing structure-layout

transformations

It is not always safe to change structure

layout in programs. This is because a programmer

often uses knowledge of data layout in a structure

definition for writing an application. The compiler

has to detect such situations and prevent optimizing

such data types to ensure correct execution of the

application. We present this analysis in Section 4.1.

The compiler also needs to analyze data

structures in a program to determine the structures

that are most profitable to transform. It also needs to

determine the desired layout of the structures that

should be transformed. This analysis is discussed in

Section 4.2.

Section 4.3 describes our implementation in

the Open64 compiler in detail.

4.1. Legality Analysis

The following are the main legality checks

that our implementation in the Open64 compiler

does. For any structure type T:

Type cast: If a cast to a pointer-to-T is found, it

indicates unsafe usage of T, and so T is invalidated.

Similarly, a cast from a pointer-to-T also causes T to

be invalidated.

There is an exception to this rule. During

dynamic memory allocation in C/C++, the library

routines return (void *). As a result, when memory is

allocated to hold objects of type T, it will involve a

type cast from type (void *) to pointer-to-T. In

WHIRL IR, when the return value is loaded from

such a routine, it is given the final type as seen after

the type cast. As a result, such type casts are hidden

and, hence, does not prevent the optimization of the

type.

This type casting restriction is imposed in

IPL. The IPL phase processes each function (also

called PU, short for Program Unit) by traversing its

WHIRL and summarizing the data. During this step,

IPL also scans for type casting that might prevent a

structure type (called TY in Open64) from being

split or peeled. It marks such structure TYs

appropriately, so that the information can be used by

IPA’s analysis phase while determining

transformable types. IPL’s flagging of such TYs is

discussed in more detail in Section 4.3.1.

Address of a field is taken: If the compiler detects

the address of a field of a structure to have been

taken, then it implies the application may have

address arithmetic on the data fields. As a result, the

type needs to be invalidated.

Escaped types: A type cannot be split if it escapes

to code outside the scope of analysis. This is because

the compiler cannot know whether that code outside

its analysis scope accesses the type in any unsafe

manner.

Parameter types: If a type is passed to a routine as

an argument or is returned from a routine, we do not

peel that type. The reason is peeling such a type

would require introducing new parameters to the

function, and hence changing the function prototype.

Currently we prevent such types from being

optimized due to implementation limitations.

Whole program analysis: Code that is written as

part of a program can freely access the internal

data structures without their passing as parameters

to a function. As a result IPA needs to ensure it is

given the entire application code, so that it can

perform legality checks on the whole program. The

IPA linker (“ipa_link”) can impose this legality

check by ensuring that all object files presented to it

during whole-program compilation are IPA object

files. If the application passes this check, it means

IPA is able to analyze the entire application code.

IPA can exclude some system object files and

libraries that may be passed to it from this

restriction, because such files cannot access the data

structures of the user application.

Alignment restrictions: If the user explicitly

enforces alignment or packing restrictions on a

structure type, then that type is invalidated.

4.2. Profitability Analysis

In order to estimate the application

performance benefit that transforming a data

structure might bring, we mainly perform two types

of analyses in the Open64 compiler: hotness analysis

and affinity analysis. The terms affinity and affinity

group (used later) have been used in [2]. We

estimate the number of accesses to structure fields in

a program. A field that is accessed more frequently

than other fields is hotter. Currently, we only

consider field accesses inside loops to determine

their hotness. In a program, we also analyze accesses

to fields in a structure to determine “closeness”

between the fields. We call two structure fields to

have high affinity when the fields are accessed close

together in time. Fields that are consistently accessed

close to each other are considered to have higher

affinity than others. The affinity is computed at the

loop-level which means that fields accessed inside

the same loop are considered affine to each other.

4.3. Analysis and Transformation

Implementation Details

In the Open64 compiler, the

implementation of the structure layout

transformations is divided into the three phases: type

information summarization, analysis, transformation.

4.3.1. Type information summarization

For each source file, we determine structure

types that fail any of the legality checks and

summarize information about structure field

accesses. The Open64 phase before IPA, called IPL,

is run over all the input files. This phase traverses

the PUs and marks TYs that violate any of the

legality checks. We added a TY flag TY_NO_SPLIT

to mark types that cannot be split, which applies

only to structure TYs. This flag, however, cannot be

set on a TY by a phase before IPA. This is because

when IPL traverses the WHIRL and invalidates

types, a certain type may be marked invalid while

processing one source file. In another file, that type

may not have any usage that fails the legality

restrictions. As a result the type definition present in

that file will not be invalidated. In such a scenario, a

certain type T may have the flag TY_NO_SPLIT set

in one file, but not in another. When IPA merges the

symbol tables from all its input files, it compares the

symbols and types byte-by-byte to determine if any

of them are identical and can be merged. As a result,

it will fail to merge type T from one file with type T

from another file if they have different flags set.

We addressed this issue by introducing a

summary data structure in IPL, called

SUMMARY_TY_INFO. IPL invalidates a TY by

recording the information in the summary for that

TY. IPA reads in the array of

SUMMARY_TY_INFO and updates the merged TY

table based on the flags in this summary data. This

summary data structure may also be used in future

for other information that IPL needs to convey about

a type to IPA.

While traversing a PU, IPL also

summarizes information about structure field

accesses. This access information is used by IPA to

compute hotness of and affinity between fields. We

introduced a summary data structure in IPL, called

SUMMARY_LOOP. IPL maintains a

SUMMARY_LOOP data structure for each loop

(DO_LOOP, WHILE_DO, and DO_WHILE in

WHIRL). For each loop, it tracks up to N structure

TYs, where N is a tuning parameter. For each such

TY, the summary data contains a bit-vector to keep

track of which fields are accessed inside the loop.

For a loop, SUMMARY_LOOP only tracks field

accesses that are contained immediately inside the

loop, and does not count accesses that may be

present in a nested loop. From the example in Figure

4, the summary data for Loop 1 only counts field

accesses in statement 1, statement 2, and statement 4

in Loop 1. The heuristic used here is that fields

accessed inside a nested loop (fields 3 and 4 in the

figure) are considered affine to each other, but are

not considered “close” to fields accessed in a parent

loop (fields 1 and 2 in the figure).

Each SUMMARY_LOOP also has a field

to store the estimated execution count of the

statements immediately contained inside the loop.

When runtime feedback is enabled, this invocation

count is the information obtained from the profile

data. In the Open64 compiler, a feedback run is

obtained by using the compiler options –fb-create

fbdata and –fb-opt fbdata in the two phases

respectively. Without profile data, we developed a

framework that computes static profiles using

heuristics [3] during compile-time. The execution

count for the SUMMARY_LOOP is obtained by

employing these compile-time heuristics. For

example, without profile feedback, loops are

assumed to execute 8 times. As this execution count

is assigned in IPL, the estimate is local to the current

PU, and is independent of how many times the PU

itself is called. Hence, IPA needs to fix up this

estimated execution count, which we discuss below.

4.3.2. IPA Analysis

After building the IPA call graph early in

the analysis phase, we added a pass in which IPA

traverses the call graph to update the statically

estimated execution count of the PUs. In a top-down

traversal over the call graph, IPA scales up the

for (i = 0; i < N; i++) // Loop 1
{ // Field accesses below are to struct S
 // Loop 1 statement 1 accesses field 1
 // Loop 1 statement 2 accesses field 2
 for (j = 0; j < M; j++) // Loop 2,
 // Loop 1 statement 3
 {
 …
 for (k = 0; k < L; k++) // Loop 3
 {
 // Loop 3 accesses fields 3 and 4
 }
 }
 // Loop 1 statement 4
}

 Figure 4: A triply-nested loop accessing fields of struct S

invocation count of a PU based on the invocation

count of its callers, and the number of times the PU

is called from each invocation of the callers. This

pass is similar to the approach mentioned in [3]. It

then uses this scaling factor to also update the

statically estimated loop frequencies obtained from

the SUMMARY_LOOP data structure.

In the analysis phase, IPA scans through the

TY table to determine structure TYs that are

candidates for the structure-layout optimization. The

decision of whether to split or peel a structure and

the choice of its new layout depends on a number of

factors including the type definition of the structure,

and on the objects of that type that the program has.

As seen from Figure 2, if a structure type is a

recursive data structure that contains a pointer to

itself, then the type may only be split. In such a

scenario, the compiler does not have the lower-

overhead option of peeling it.

 F4 F3 F2 F1 BV

L1 22 22 0101

L2 14 0010

L3 12 12 0101

L4 8 8 1100

L5 6 6 0101

Table 1: Count of field accesses in loops L1 to L5

 F4 F3 F2 F1

AG1 40 40

AG2 14

AG3 8 8

Table 2: Aggregated field access pattern for field

affinity computation

In order to determine the new layout of a

structure type T that has not been invalidated, we

analyze the structure field accesses from the loop

summary data of the hottest P PUs, where P is a

configurable parameter. For structure type T, we

maintain a list of fields that are accessed in each of

the hottest loops considered. Let us consider the

example shown in Table 1 for a structure type T that

is a candidate for structure peeling. Let us assume

that T has 4 fields F1-F4. We are analyzing the

accesses of these fields in the 5 hottest loops

numbered L1-L5 shown in order of decreasing

hotness in the rows of the table. The right-most

column marked BV is a bit-vector that gives the field

accesses of the structure for the corresponding loop.

We list the fields F1-F4 in reverse order in the

columns of the table to make it easier to match them

with the corresponding bit-vector. The numbers in

the columns F4-F1 indicate the access count for the

corresponding field. Fields that we consider “close”

to each other belong to the same affinity group. In

order to compute the affinity between the fields, we

begin scanning the loops starting with the hottest

loop. For two loops that have the same access

pattern for the fields of the structure, we aggregate

the field access counts and merge them into a single

affinity group. Two loops Li and Lj have same access

pattern for a structure type T when the fields of T

accessed in Li are exactly the same as those accessed

in Lj. From our example in Table 1, we find that

loops L1, L3, and L5 have the same bit-vector

signifying the same access pattern. We aggregate

them and form affinity group AG1 (Table 2). Hence,

the analysis of the loops in Table 1 results in the

affinity groups in Table 2. As the affinity groups

AG2 and AG3 have a very low hotness factor

compared to AG1, and have a hotness factor less

than the hotness threshold Th, AG1 takes priority and

we aggregate all the remaining fields into another

affinity group. Th is a tunable parameter. If there are

multiple non-disjoint hot affinity groups (example: if

both AG1 and AG3 were hot), we scan the affinity

groups in decreasing order of hotness, and form

affinity groups using fields that have not already

been assigned to a group. In general, if there are

multiple affinity groups that have hot fields, then the

compiler will peel the original structure T to create

multiple sub-structures. Each sub-structure will

correspond to one affinity group. However, if an

object of type pointer-to-T exists as a field in another

structure S, then we peel T into at most 2 sub-

structures. The reason is the transformation

necessitates the compiler to insert fields in S. If T is

peeled into N sub-structures, then the compiler must

insert (N – 1) new fields in structure S, thus

increasing the size of S by (N – 1) times the pointer

size. To reduce this overhead to a minimum, we

enforce N=2. In this case, the compiler inserts one

new field in structure S.

As a special case, if all or most of the

hottest loops access only one field Fi in T, then Fi

becomes the only member of the hottest affinity

group. If all the other fields of T are relatively cold,

then they all form another single affinity group. In

this scenario, the compiler will peel the structure into

two sub-structures T1 and T2 such that T1 contains

the lone field Fi, and T2 contains the remaining

fields. As T1 is a structure containing only one field,

it can be simplified into the type of Fi. Figure 5(a)

shows an example of such a structure. Figure 5(b)

shows the result of peeling out the lone hot field of

type “double”. The object of type pointer-to-T, p, is

replicated to give p_1 and p_2. The object p_1 is a

pointer to the hot field, while object p_2 is a pointer

to the newly created structure type.

 If we are analyzing structure type T that is a

candidate for structure splitting, we analyze the field

accesses in the hottest loops from Table 1 and divide

them into two categories: hot fields and cold fields.

As shown in the example in Figure 2, we create two

structures, one of which is made the parent or root

structure. The fields that are hotter than a

configurable hotness threshold Th constitute the

parent structure. The child structure is formed from

the remaining cold fields. A new field pointing to the

cold structure is added to the end of the root

structure. As a result, this new field increases the

size of the parent structure. To be beneficial, the

total size of fields in the cold structure should be

greater than a pointer size. It also requires one extra

level of pointer traversal to access the cold fields. In

order to minimize these overheads, we keep the

layout simple and form a hot structure and a cold

structure. We feel that in general the benefits of

splitting a structure into many sub-structures based

on affinity and hotness criteria are offset by the

overhead introduced by the transformation.

4.3.3. Transformation

Once IPA’s analysis phase determines the

structure-layout transformation to be done on a

structure type, IPA’s optimization phase is ready to

perform the actual transformation. This

transformation process involves updating the

WHIRL symbol tables, as well as the WHIRL IR.

The following are the main steps:

Adding new type definitions: IPA traverses the

layout suggested by the analysis phase and forms

new structure types based on the recommendations.

For each field in the structure being transformed, it

keeps track of the new type that the field will be a

part of. If the field is to stay alone, then IPA maps

this field to its base type.

Field table update: The WHIRL symbol tables

include a field table that contains all fields of all

structure types in the program. For a structure type,

the TY structure contains a field which is an index

into the field table. This index gives the fields

belonging to that type. In some cases, the

transformation may need to add new fields to

existing structure type definitions. One such scenario

is when the compiler is peeling type T and structure

type S contains a field that is a pointer-to-T (Figure

6). As explained earlier, the analysis phase divides

T’s fields into two affinity groups AG1 and AG2. We

peel such a structure type T into two sub-structures

T1 and T2. This part of the transformation updates the

fields for S by modifying the type of field p and then

adding a new field pointing to structure T2.

Updating WHIRL IR: This stage forms the major

part of the transformation process. Once the new

types have been created and all required type

struct T
{
 double hot_field;
 int cold_field1;
 float cold_field2;
};
struct T * p;

struct T2
{
 int cold_field1;
 float cold_field2;
};
double * p_1;
struct T2 * p_2;

(a) (b)

Figure 5: Original structure example (a) and result of peeling out the first field in (b)

struct S struct T
{ {
 // N fields // AG1 fields
 struct T * p; // AG2 fields
 // M fields };
};

struct S struct T1 struct T2
{ { {
 // N fields // AG1 fields // AG2 fields
 struct T1 * p1; }; };
 struct T2 * p2;
 // M fields
};

(a) Before peeling (b) After peeling

Figure 6: Structure peeling of T when S contains a field of type pointer-to-T

definitions have been updated, IPA needs to traverse

all PUs and update the WHIRL IR. Let us consider T

to be the type IPA is transforming. The following are

the main updates that need to take place:

 Statements containing field accesses: IPA

traverses the PUs and updates all statements

that access a field in the peeled or split

structure. We call the field number in a

WHIRL statement a field_id. In statements

with field accesses, IPA updates the

field_id as well as the field offset. The

offset is obtained by traversing the new

structure TY to find the field with the

proper field_id. The field data structure

contains its offset. IPA may also need to

update the structure TY being accessed.

When structure type S contains a field

which is a pointer to peeled type T (Figure

6), accesses to fields in S may also need to

change. The type definition of S contains

fields before and after p in Figure 6. For

such a type S, accesses to all the M fields

after p need to be updated with their new

field_id and offset.

 New symbols for program variables: IPA

creates new local and global variables to

update statements where variables of the

transformed type occur. It maintains a map

from old ST_IDX (symbol table index) to

the new ST_IDX of the corresponding

variables. According to this map, it updates

statements as it processes the different PUs.

 Assignment statements: Statements that

assign objects of type pointer-to-T need to

be replicated to ensure assignment for all

the newly created sub-structures. These

assignment statements need to be updated

with proper type information and new

variable names. Assignment statements that

need to be handled include both direct

assignments (involving STID) and indirect

assignments through pointer indirection

(involving ISTORE).

 Function calls to memory management

routines: IPA needs to update calls to

memory management routines that allocate

or free up memory holding objects of type

T. For a memory allocation function like

malloc, the call statement does not tell IPA

what type it is allocating. The statement

that follows this function call is a store

(STID in WHIRL) of a special symbol

called the return value pseudo register (also

called Return_Val_Preg). This special

symbol holds the value returned by the

previous function call. The type of the load

of the Return_Val_Preg tells IPA the data

type being allocated. When this data type is

the transformed type T, IPA updates the

allocation statement as well as the store of

the function return value. This update

includes replicating the memory allocation

statement as well as the STID statement for

each sub-structure type created by the

transformation. IPA also needs to update

the total size of memory being allocated.

Typically, allocation function calls use the

sizeof operator to tell the function how

much memory to allocate. An example

function call to allocate memory for

holding N objects of type T and assigning

the memory pointer to p is:

p = (T *) malloc (N * sizeof (T));

WHIRL does not have a sizeof operator.

Hence, the IR will have the sizeof operator

replaced by the original size of type T. IPA

updates this with the size of the new

structure type being allocated. On the other

hand, if N is a compile-time constant, then

the entire expression will be replaced by the

result of the multiplication. In this case,

IPA divides the total size (which is the

result of the expression N * sizeof (T)) by

the original size of T to determine the

number of elements N being allocated. IPA

then multiplies N by the size of the new

type to compute the memory that needs to

be allocated.

Very often, a memory allocation statement

as above is followed by a check to ensure

that the function call actually returned

usable memory. A typical example is:

if (p == NULL)
 exit (1);

Once IPA replicates the allocation function

call, it also needs to update this conditional

check to use all the new variables holding

the return values from the memory

allocation function calls. Pointer

comparisons in other contexts can be

adjusted by only comparing pointers to one

of the peeled sub-structs. For structure

splitting, when the hot root structure is

allocated, the compiler also needs to

generate code to allocate the cold structure.

5. Performance Results

In this section, we present performance

measurements on the CPU2000 and the CPU2006

benchmarks from SPEC [4]. We provide results for

the SPEC benchmarks using 64-bit ABI and -Ofast

option without the use of profile feedback data. The

results are from the following system configurations:

 2.8 GHz AMD Opteron
TM

, with 4 GB of

memory and 1 MB of L2 cache

 3.0 GHz Intel® Xeon® with Core
TM

microarchitecture, with 4 GB of memory

and 4 MB of L2 cache

 2.0 GHz AMD Barcelona with 8 GB of

memory and 512 KB of L2 cache

 3.4 GHz Intel® Xeon® with EM64T, with

4 GB of memory and 1 MB of L2 cache

 500 MHz MIPS®-based SiCortex processor

with 4 GB of memory and 256 KB of L2

cache

Out of all the CPU2000 and CPU2006

benchmarks, we observe benefits in three

benchmarks. They are the CPU2000 FP benchmark

179.art, INT benchmark 181.mcf, and the CPU2006

INT benchmark 462.libquantum. We have not

observed any noticeable impact on other

benchmarks. The compile-time overhead for the

optimizations is negligible. The performance

speedups for the three benchmarks on the different

sytems are presented in Table 3. If a benchmark

takes time T1 to run without the structure layout

optimization, and time T2 to run with the

transformation, we calculate the speedup as

(1/T2 – 1/T1) / (1/T1)
We note that out of the three improvements, the

AMD Opteron
TM

 system gets the highest speedup on

two of them, while the AMD Barcelona system gets

the highest speedup on 181.mcf. 181.mcf shows the

smallest improvement among the three benchmarks

for all five systems. From our experience, we have

observed that the structure layout transformations

achieve relatively less improvement while compiling

for the 32-bit ABI. This is expected, since the

smaller pointer size in the 32-bit ABI enables

structures containing pointers to be smaller resulting

in more cache-friendly behavior.

179.art has a hot structure that is pointed to

by a global variable. The benchmark uses a

dynamically allocated array of this structure type.

The compiler peels the structure type into individual

types for the fields of the structure. 181.mcf has a

hot structure that is pointed to by several fields in

other structures. In addition, the hot structure is a

recursive data structure. IPA splits this structure into

a hot root structure and a cold child structure that is

pointed to by a field in the root. The benchmark

462.libquantum has a hot structure, say T, with two

fields. The hottest loops of the benchmark access

only one of the fields of T making it beneficial to

peel the hot field out of the structure. This structure

T is pointed to by a field in another structure, say, S.

Type S uses a dynamically allocated array of objects

of type T. As a result, the compiler also needs to

update the type definition of S after peeling type T.

The AMD Barcelona system we mentioned

above has two quad-core Barcelona chips. Each

Barcelona chip has a 2 MB L3 cache shared among

the four cores. We ran multiple copies of

462.libquantum simultaneously and measured the

performance speedup. The increase in the number of

simultaneous runs increases the pressure on the

memory system. In addition, the shared L3 cache

results in smaller effective cache size for each copy

of the run. Hence, as we run more simultaneous

copies of the benchmark, we notice increased

speedup from the structure peeling transformation.

We experimented with 1, 2, and 4 copies of the

benchmark, and observed +51% (from Table 3),

+69%, and +123% speedup respectively.

6. Related Work

There have been a variety of approaches

taken to reduce cache misses by improving data

locality. One approach uses loop nest optimizations

to modify the access patterns of data arrays [5] and

[6]. The work in [7] changes the layout of stack

variables, global variables and heap objects to

reduce data cache misses. The approach in [8] uses

generational garbage collection to ensure that objects

affine to each other are placed close to each other.

Chilimbi et al [9] describe techniques to improve the

locality of dynamically allocated objects. They

present two semi-automatic tools called ccmorph

and ccmalloc that aid in a cache-conscious

allocation. Lattner et al describe automatic pool

allocation [10] that uses a context-sensitive pointer

analysis to partition heap objects and improve cache

performance. Related work on memory allocation

and garbage collection to improve memory hierarchy

performance has been reported in [11] and [12]. The

approach in [13] improves cache performance of

dynamically allocated data structures in type-safe

programming languages by reordering its data

members based on profile feedback. Rubin et al

present a profile-based technique that searches the

space of possible data layouts [14]. The search

proceeds by prototyping candidate data layouts and

simulating its performance on a trace of memory

accesses.

Benchmarks AMD Opteron
TM

 AMD Barcelona Intel® EM64T Intel® Core™ SiCortex MIPS®

179.art +169% +66% +53% +60% +45%

181.mcf +25% +35% +12% +30% +7%

462.libquantum +82% +51% +75% +70% +69%

Table 3: Performance impact on SPEC benchmarks with structure splitting and structure peeling

Chilimbi et al describe the application of

structure splitting and field reordering for Java

programs [15]. Truong et al present a field

reordering technique called instance interleaving

[16]. Zhong et al present reference affinity [17] to

measure the “closeness” of data in a reference

program trace. Then they use this affinity parameter

for array transformation and structure splitting.

Hagog et al in [1] present an

implementation of the structure splitting

transformation in GCC [18]. Hundt et al [2] describe

a framework for structure layout transformations in

the HP-UX compiler for Intel® Itanium®. Both

these approaches are similar to our framework for

the Open64 compiler. While many of the earlier

techniques apply only to type-safe languages, these

approaches can apply the structure layout

transformations even on non-type-safe languages

like C and C++. The GCC implementation depends

on profile feedback, while our framework works

with either statically estimated profiles or dynamic

runtime-generated profiles. Hagog et al use a close

proximity graph and a field reference graph to

analyze the “closeness” between fields. Affinity

graphs are used in [2]. While they perform much of

the legality and performance analysis in the front-

end (FE), we do these tasks in phase IPL which is

invoked after the Open64 front-end, and before IPA.

By not performing these analyses in the front-end,

we only need to implement the analysis once and are

able to apply it to all supported languages. Our

analysis in IPL can also utilize results of other

optimizations that have been done by the Open64

pre-optimizer. We also differ in how the information

is analyzed by IPA in assigning “closeness”

relationships to structure members.

In addition to a framework for structure

layout optimization, Hundt et al present an advisory

tool that can reuse compiler analysis data and

performance data from runtime to provide advice on

improving structure layout. For multi-threaded

applications, Raman et al [19] propose a technique

for structure layout optimizations for multithreaded

applications that reduces false sharing as well as

improves spatial locality.

We believe that to maximize the

effectiveness of cache locality optimizations, the

approaches of loop nest transformations, re-layout of

statically and dynamically allocated objects, the

structure layout optimizations, as well as techniques

to reduce false sharing in multithreaded programs,

can be combined without affecting the effectiveness

of each other, because they address non-overlapping

aspects of this larger problem.

7. Conclusions and Future Work

We have implemented structure layout

optimization in the Open64 compiler. The

substantial performance improvements that we

observe on three benchmarks out of CPU2000 and

CPU2006 show that our implementation is highly

effective in exploiting the opportunities for structure

optimization whenever they arise. Our results also

show that the opportunities for structure

optimization do not exist in most programs, but

when they do, the performance improvement can be

quite substantial. Thus, this is an indispensible

optimization in modern compilers.

In the process of implementing structure

layout optimization in the Open64 compiler, we

found that the superior infrastructure of this compiler

has allowed our extensions to its data structures to be

implemented cleanly and with less effort than we

have expected. The entire project took only two

man-months. As the compiler is open-sourced, our

efforts will benefit the Open64 community as a

whole. This work also allows other Open64

developers to build on top of this work and to further

improve this optimization.

Several areas hold potential for more

interesting work. Our current implementation of

static profile estimates can be tuned further. We can

relax some restrictions and make the analysis and

transformation more general, so that more types can

be transformed. This will allow us to apply the

transformation to more applications, and analyze the

effects. We can also make the existing field-

reordering framework and our new structure layout

optimization framework collaborate with each other

so as to maximize their combined effects.

8. Acknowledgements

We would like to thank the members of the

PathScale compiler group for all their help and

encouragement for this project. We would also like

to thank the anonymous reviewers for their valuable

comments.

References

1. Cache aware data layout reorganization
optimization in gcc. Hagog, M and Tice, C. 2005.
Proceedings of the 2005 GCC Developers Summit.
pp. 69-92.
2. Practical structure layout optimization and
advice. Hundt, Robert, Mannarswamy, Sandya and
Chakrabarti, Dhruva. s.l. : IEEE Computer Society,
2006. Proceedings of the International Symposium
on Code Generation and Optimization. pp. 233-244.
3. Static branch frequency and program profile
analysis. Wu, Youfeng and Larus, James. San Jose :
ACM, 1994. Proceedings of the 27th annual
international symposium on Microarchitecture. pp.
1-11.
4. SPEC. Standard performance evaluation
corporation. [Online] http://www.spec.org.
5. Improving effective bandwidth through compiler
enhancement of global cache. Ding, Chen and
Kennedy, Ken. 1, s.l. : Academic Press, Inc., 2004,
Vol. 64. ISSN:0743-7315.
6. A data locality optimizing algorithm. Wolf, M and
Lam, M. Toronto : ACM, 1991. Proceedings of the
ACM SIGPLAN 1991 conference on Programming
language design and implementation. pp. 30-44.
7. Cache-conscious data placement. Calder, B, et al.
San Jose : s.n., 1998. Proceedings of the Eightth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-VIII).
8. Using generational garbage collection to
implement cache-conscious data placement.
Chilimbi, Trishul and Larus, James. 1998.
Proceedings of the 1st International Symposium on
Memory Management. pp. 37-48.
9. Cache-conscious structure layout. Chilimbi,
Trishul, Hill, Mark and Larus, James. s.l. : ACM

Press, 1999. Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and
implementation. pp. 1-12.
10. Automatic pool allocation: improving
performance by controlling data structure layout in
the heap. Lattner, C and Adve, V. s.l. : ACM, 2005.
Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and
implementation. pp. 129-142.
11. Improving the cache locality of memory
allocation. Grunwald, D, Zorn, B and Henderson, R.
s.l. : ACM Press, 1993. Proceedings of the ACM
SIGPLAN Conference on Programming language
design and implementation. pp. 177-186.
12. Cache performance of garbage-collected
programs. Reinhold, M. s.l. : ACM Press, 1994.
Proceedings of the ACM SIGPLAN conference on
Programming language design and implementation.
pp. 206-217.
13. Automated data-member layout of heap objects
to improve memory-hierarchy performance. Kistler,
T and Franz, M. 2000, ACM Transactions on
Programming Languages and Systems, pp. 490-505.
14. An efficient profile-analysis framework for data-
layout optimizations. Rubin, S, Bodik, R and
Chilimbi, T. s.l. : ACM Press, 2002. Proceedings of
the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. pp. 140-153.
15. Cache-conscious structure definition. Chilimbi,
Trishul, Davidson, Bob and Larus, James. 1999.
SIGPLAN Conference on Programming Language
Design and Implementation. pp. 13-24.
16. Improving cache behavior of dynamically
allocated data structures. Truong, D, N, Bodin, F
and Seznec, A. Washington, DC. : s.n., 1998.
Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques.
17. Array regrouping and structure splitting using
whole-program reference affinity. Zhong, Y, et al.
2004. Proceedings of the ACM SIGPLAN conference
on Programming language design and
implementation.
18. GNU. GNU compiler collection. [Online]
http://gcc.gnu.org.
19. Structure layout optimization for multithreaded
programs. Raman, E, Hundt, R and Mannarswamy,
S. s.l. : IEEE Computer Society, 2007. Proceedings of
the International Symposium on Code Generation
and Optimization. pp. 271-282.

