
Extending Global Optimizations in the OpenUH Compiler for
OpenMP

Lei Huang Deepak Eachempati Marcus W. Hervey Barbara Chapman
Computer Science Department

University of Houston
Houston, Texas 77004, USA

Email: leihuang, dreachem, mwhervey, chapman@cs.uh.edu

Abstract
This paper presents our design and implementation of a
framework for analyzing and optimizing OpenMP programs
within the OpenUH compiler, which is based on Open64.
The paper describes the existing analyses and optimizations
in OpenUH, and explains why the compiler may not ap-
ply classical optimizations to OpenMP programs directly.
It then presents an enhanced compiler framework includ-
ing Parallel Control Flow Graph and Concurrent SSA that
represent both intra-thread and inter-thread data flow. With
this framework, the compiler is able to perform traditional
compiler optimizations on OpenMP programs, and it further
increases the opportunities for more aggressive optimiza-
tions for OpenMP. We describe our current implementation
in the OpenUH compiler and use a code example to demon-
strate the optimizations enabled by the new framework. This
framework may lead to a significant improvement in the per-
formance of the translated code.

1. Introduction
The rapid emergence of multicore and manycore hardware
technology has introduced parallelism into the mainstream
of software development in all areas. This hardware evolu-
tion is a challenge to not only application software vendors,
but also to those engaged in language, compiler and system
software development. OpenMP (19) is a widely accepted
programming model for shared memory systems. One of
the major advantages of using OpenMP over a thread li-
brary such as pthreads is the ease with which it can be used:
a sequential application is parallelized by inserting direc-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

tives, and runtime library routines, usually with moderate
modifications to the program’s overall structure. Its incre-
mental parallelization capability provides great flexibility.
Its portability and memory model guarantees that OpenMP
codes execute correctly on different platforms. The rapid in-
crease in the number of processors/cores in products avail-
able in the marketplace requires that OpenMP codes scale
well. In the soon-to-be-released OpenMP 3.0, language fea-
tures, including explicit tasks, have been included to increase
OpenMP’s applicability and scalability. To ensure the scala-
bility of OpenMP, compiler technology and runtime support
are however critical.

OpenMP directives impose a structured programming
style and a simple means of synchronization that helps to
avoid some types of programming errors. The block struc-
turing of OpenMP code can enable a compiler to analyze
this code better than the corresponding threaded code. How-
ever, to the best of our knowledge, OpenMP research and
commercial compilers do not analyze OpenMP code explic-
itly, and little or no optimization occurs (25; 16) before the
OpenMP code is lowered, when it is translated to threaded
C, C++, or Fortran code. At this point, compilers typically
perform a restricted set of optimizations and then link the
code with a thread library. Some optimizations, such as PRE
and code motion, that are widely performed on a sequen-
tial program may not be carried out at all on an OpenMP
program. This may potentially have a severe impact on the
performance of OpenMP codes.

An OpenMP compiler needs to aggressively optimize an
OpenMP program to fill the gap between the high level
language and increasingly complex parallel architectures.
It must be able to apply classical optimizations in addition
to invoking much more aggressive optimizations specific to
OpenMP. However, some restrictions are required to prevent
the use of classical sequential optimizations from chang-
ing the semantics of OpenMP programs. (18) listed poten-
tial problems caused by conducting classical sequential op-
timizations, if they are not adapted for parallel programs.
Most current OpenMP compilers limit the application of

classical optimizations due to the lack of a framework for
inter-thread data flow analysis of OpenMP code. A frame-
work that can represent and analyze OpenMP code with re-
spect to both intra-thread and inter-thread data flow could
enable the aggressive compiler optimizations that are criti-
cal if we are to further increase OpenMP performance and
applicability.

1.1 Overview of OpenUH
The Open64-based OpenUH compiler includes an imple-
mentation of OpenMP. This compiler is modularized, with
different components that interact via a common IR (WHIRL).
Its major functional parts are the three front ends, and the
back end, which is further subdivided into the global op-
timizer, loop nest optimizer, interprocedural analysis/opti-
mizer, and code generator. There are also components for au-
tomatic parallelization and for generating source code from
the IR, although the resulting source is not guaranteed to
be executable. The WHIRL Optimizer (WOPT) module per-
forms data flow analysis at the procedure level and applies
various SSA-based optimizations, such as copy propagation,
dead code elimination, and partial redundancy elimination
(SSAPRE). WOPT is designed such that it can be invoked as
a stand-alone optimization phase, referred to as the MAIN-
OPT phase, or in conjunction with another compiler phase,
referred to as the PREOPT phase. In the latter mode, WOPT
provides analysis and performs some basic optimizations to
prepare the code for one of the other compiler components,
e.g. the Loop Nest Optimizer (LNO).

In a typical translation of OpenMP code at the O3 opti-
mization level, the compiler front end will generate a high
level IR with the OpenMP constructs still intact. Each pro-
gram unit (e.g. procedure) is then processed by the compiler
in turn. First, it is passed to the WOPT, in PREOPT LNO
mode, which prepares the code for the LNO module. After
LNO, the compiler lowers the OpenMP constructs to corre-
sponding threaded code (via calls to our OpenMP runtime
library). Then, WOPT is again invoked on the translated
code in the MAINOPT phase. Here a complete set of data
flow optimizations are performed, including SSAPRE. Af-
ter MAINOPT, the emitted code is in a low level WHIRL
format, and the code generator (CG) is invoked.

1.2 OpenMP Programming and Memory Model
OpenMP provides a set of high level directives and runtime
interfaces to allow users to easily express the parallelism in
their C, C++ and Fortran applications without the need to ex-
plicitly create and manage threads. The directives enable the
user to specify that a structured block of code (that may span
multiple procedures) is to be executed by multiple threads,
and to describe how the work inside that parallel region is to
be shared among the executing threads. Its directives for ex-
pressing worksharing, including omp for, omp sections, omp
single, omp master are also applied to structured blocks of
code. The synchronization directives provided by OpenMP

include omp critical, omp barrier, omp atomic, omp flush,
omp ordered; they are used to protect data and order the ex-
ecution of operations among threads as required by an al-
gorithm. Data in a parallel region can be set to be shared,
private (where each thread has its own copy), firstprivate or
lastprivate. The runtime library can be used to dynamically
control and query the parallel execution environment. The
addition of tasking directives in OpenMP 3.0 will further
extend the expressibility and applicability of OpenMP, es-
pecially to non-HPC applications.

OpenMP is based on a relaxed consistency memory
model that allows each thread to have its own local view of
shared data (8) at times during execution: when a synchro-
nization point is reached in the code, consistency is enforced
by flushing the values of modified shared data to memory.
Most OpenMP worksharing constructs include implicit bar-
riers that ensure the synchronization of thread execution and
therefore also serve to keep the data consistent between
them. However, the local value of a shared object may or
may not be consistent before such a barrier, and OpenMP
provides a unique feature with the explicit omp flush con-
struct to force the value of one or more shared objects to
be written back to memory at an arbitrary point during ex-
ecution1. This allows an aggressive optimizing compiler to
safely assume that there are no inter-thread data interac-
tions until a flush operation has been reached. The OpenMP
memory model simplifies the compiler analysis for paral-
lel programs because the compiler can perform traditional
analysis and optimizations safely between two synchroniza-
tion operations. However, most compilers perform optimiza-
tions after OpenMP has been translated to a threaded code,
thereby limiting the sequential analysis and optimizations to
code between two synchronizations.

An omp flush directive may specify a list of variables that
need to be flushed to memory or read from the memory. If
the list is empty, all shared variables are flushed. A flush op-
eration executed by a thread means that data associated with
the thread is consistent with memory at the point, but the
flush operation does not other threads. If two threads need
to make their data consistent, then two flush operations must
be executed by them: one is to write data to memory, and the
other is to read data from memory. The order of the two flush
operations needs to be ensured by additional synchroniza-
tions. Although most hardware today provides cache coher-
ence mechanisms, flush operations are still necessary to en-
sure the data coherence with memory. Moreover, OpenMP is
a portable programming model, and OpenMP codes should
work on machines without cache coherence mechanisms,
or potentially even on clusters with a virtual global mem-
ory support. In this paper, we assume that OpenMP codes
are compliant with the memory model, and are written us-

1 From the OpenMP 2.5 specification, “This operation makes a thread’s
temporary view of memory consistent with memory, and enforces an order
of the memory operations of the variables explicitly specified or implied.”

ing directives to express the parallelism. (In other words, we
will assume that the application developer has not relied on
thread IDs as a means of distributing work.) The compiler
analysis and optimizations described in the paper are based
on the OpenMP memory model as described in the current
specification, and exploits the structured nature of OpenMP
constructs.

1.3 OpenMP Translation
Most OpenMP compilers translate OpenMP into multi-
threaded code via calls to a custom runtime library either
via outlining (2), inlining (16) or an SPMD scheme (9)
for clusters. OpenUH/Open64 uses the inlining approach
to generate a nested procedure for each parallel region in the
original procedure. The advantage of the inlining approach
is that the shared variables are visible to the nested proce-
dure by default. A pre-translation phase is carried out first
to standardize the use of OpenMP constructs and reduce the
number of them that must be subsequently handled by con-
verting OMP sections to OMP do/for. Then, the compiler
translates OpenMP directives to a mixture of suitably mod-
ified code and invocations of threaded runtime functions.
Since many details of execution, such as the number of iter-
ations in a loop nest that is to be distributed to the threads,
and the number of threads that will participate in the work
of a parallel region, are often not known in advance, much
of the actual work of assigning computations must be per-
formed dynamically. An efficient runtime library to manage
program execution is essential.

There are two execution paths in the generated code: one
preserves the sequential program, for use when only one
thread is used at runtime, and the other is the translated
multithreaded code. The rationale for maintaining these two
paths is to minimize the potential overhead of translated
threaded code when the code is executed sequentially. As
we have seen, this does not work out.

Although a precise synchronization-sensitive data flow
analysis is undecidable (20) for parallel programs, we be-
lieve that a pragmatic approach to analyzing OpenMP pro-
grams can be very worthwhile. We have designed and imple-
mented such an analysis in the OpenUH compiler and report
upon it in this paper.

We motivate our work in Section 2, where we describe the
current OpenUH compiler optimizations and the restrictive
manner in which they are applied for parallel program opti-
mizations. We then consider how to enable classical global
optimizations to OpenMP programs and describe a data flow
analysis framework for OpenMP, along with a pragmatic
approach to its implementation. Our Parallel Control Flow
Graph and Concurrent SSA is introduced in Section 3. We
provide details of our modified Parallel Static Single Assign-
ment analysis in Section 4 and explain our implementation
in Section 5. Finally, we discuss related work in Section 6
and give conclusions in Section 7.

2. Motivation for This Work
In order to compare how Open64 performs compiler opti-
mizations for seqential and OpenMP programs, we created
a simple test case called pre-example to test copy propaga-
tion and PRE using the OpenUH/Open64 compiler. Fig. 1(a)
shows an OpenMP code fragment that includes a parallel
loop. We expected that the performance of this OpenMP
code would be comparable to that of the corresponding se-
quential code when it is executed by only one thread. How-
ever, the OpenMP code performed very poorly. The sec-
ond column of Table 1 shows the execution time when we
used the -O3 flag only: in this case, the compiler ignores the
OpenMP directives, and compiles and optimizes it as a se-
quential program. The third column is the execution time ob-
tained when we enabled OpenMP compilation. The perfor-
mance of pre-example is about 7 times slower than the corre-
sponding sequential code on one thread. In other words, the
OpenMP code version exhibited a remarkably poor baseline
performance using one thread, when compared with its cor-
responding sequential code. A performance difference can
be seen from some of NAS benchmarks too, especially FT,
and UA. Something is wrong here.

We used the source-to-source capability provided by
OpenUH/Open64 to view the compiler-translated codes. We
found that the compiler performed classical optimizations
very well when it ignored the OpenMP directives. The ex-
pression x ∗ y/f1 is repeatedly executed in the loop and can
be hoisted out of it by conducting Partial Redundant Elim-
ination(PRE) and copy propagation optimizations as shown
in Fig. 1(b). In this case, the optimized code after PRE is
very efficient. However, PRE was simply not applied when
the compiler translation of OpenMP directives was enabled.
Fig. 1(c) shows the code after this translation: in this case,
no optimizations were applied to the code. As a result, the
performance was quite different.

The main reason why these optimizations were not ap-
plied to the OpenMP code is that the compiler does not
have any means to analyze inter-thread data flow. It there-
fore has to conservatively assume that any shared data may
be changed in the parallel region by other threads at any
time. A consequence of this is that almost all aggressive opti-
mizations are disabled. Moreover, the optimizations were at-
tempted after the compiler translated the structured OpenMP
directives into threaded code, which creates another obsta-
cle for applying these optimizations. Some information pro-
vided by OpenMP semantics and structures may be lost after
this translation.

Fig. 2 shows an OpenMP code and the compiler-generated
threaded code after this translation. Based on OpenMP se-
mantics, it is known in this case that variable k has the value
1 after the OpenMP single construct. However, in the trans-
lated code, a compiler will not be sure if k is equal to 1 or not
at the if(k==1) statement, since the value of mpsp status is
unknown at compile time. The real problem here is that com-

i n t main ()
{

double a [N] ;
double x = 3 . 1 4 1 5 ;
double y =3 . 14 1 59 2 6 ;
double f1 = 2 . 3 1 3 2 ;. . .

#pragma omp p a r a l l e l
{
pragma omp s i n g l e
{

x = x ∗ y / f1 ∗ k ;
}

#pragma omp f o r r e d u c t i o n (+ : z)
f o r (j =0 ; j <1000; j ++)

f o r (i =0 ; i<N; i ++)
{

a [i]= a [i] ∗ x∗y / f1 ;
z = z + a [i] + x∗y / f1 ;

}
p r i n t f (” r e s u l t s : z =%d\n ” , z) ;

}

}

(a) An OpenMP program

i n t main ()
{

double a [N] ;
double x = 3 . 1 4 1 5 ;
double y =3 . 14 1 59 2 6 ;
double f1 = 2 . 3 1 3 2 ;

p r e c s t = 4 . 2 6 6 5 1 9 6 ; / / x∗y / f 1

x = k ∗ p r e c s t ;
p reg1 = x∗3.1415926 / 2 . 3 1 3 2 ;

f o r (j 0 = 0U; j 0 <= (INT32) (9 9 9U) ;
j 0 = j 0 + (INT32) (1U))

{
z = 0 . 0 ;
f o r (i 0 = 0U; i 0 <= 999999;

i 0 = i 0 + (INT32) (2U))
{

a [i 0] = (IEEE64 [2]) (a [i 0]) ∗ preg1 ;
z = ((IEEE64 [2]) (a [i 0]) + z) + preg1 ;

}
z = z + z ;

}
p r i n t f (” r e s u l t s : z =%d\n ” , z) ;

}

(b) The compiler-optimized code when OpenMP
directives are ignored

i n t main ()
{
. . . .

o m p c s e r i a l i z e d p a r a l l e l () ;
x = k ∗ ((x ∗ y) / f1) ;
f o r (j = 0U; j <= (INT32) (9 9 9U) ;

j = j + (INT32) (1U))
{

i = 0U;
i 0 = 0U;
i 1 = i 0 ;
whi le (i 0 <= (INT32) (9 9 9 9 9 9U))
{

a [i 0] = a [i 0] ∗ ((x ∗ y) / f1) ;
z = (a [i 0] + z) + ((x ∗ y) / f1) ;
i 2 = i 0 + (INT32) (1U) ;
i 0 = i 0 + (INT32) (1U) ;
i 3 = i 0 ;

}
i 4 = 1000000U;

}
p r i n t f (” r e s u l t s : z =%d\n ” , z) ;

}

(c) The non-optimized code when OpenMP direc-
tives are translated

Figure 1. An OpenMP code compiled with/without -mp flag

compiler flags used / execution time (seconds) -O3 -O3 -mp -gnu3
pre-example 7.42 46.8

NAS benchmark FT: CLASS=A 18.45 26.17
NAS benchmark UA: CALSS=A 130.31 220.15

Table 1. Performance comparison: sequential vs. OpenMP program on one thread

piler optimizations for OpenMP programs are performed af-
ter the OpenMP code has been translated into threaded code;
further, the subsequent optimizations are still based on the
standard sequential control flow graph, which does not pro-
vide sufficient information to enable them. Note, too, that
the translation has introduced many “if” conditions along
with the runtime functions, which will typically force the
compiler to make conservative assumptions.

Another challenge to the optimization of OpenMP is that
the translation process introduces additional pointers. Dur-
ing lowering, a parallel region will be converted into a proce-
dure and shared variables are passed to it by providing their
addresses as parameters. Inside the procedure, the shared
variables are accessed by pointers, rather than via explicit
references. Without an accurate pointer analysis, this will
further limit the compiler’s ability to conduct optimizations.

This overall behavior is unfortunately typical of commer-
cial compilers, whose translation of OpenMP is fairly similar
to our own. The Intel compiler is able to conduct some opti-
mizations for translated OpenMP code, but the optimizations
are limited to T-regions only (25), which is an OpenMP par-
allel construct. We believe that an OpenMP compiler should
attempt to apply optimizations to OpenMP code before its
constructs are translated. In order to do so, the compiler will
require a framework that represents the control flow of the
OpenMP program. In the following sections, we describe
how we have worked to provide just such a framework in
OpenUH.

3. OpenUH Optimizations
OpenUH uses the WHIRL Optimizer (WOPT) at one or
more phases during the compilation process (depending
on the level of optimization) to globally analyze and opti-
mize the code at a procedural level. Fig.3(a) illustrates how
WOPT can be invoked in various contexts. In addition to
restructuring the code in preparation for subsequent com-
piler phases, it can also compute and export def-use and
alias information. In a typical compilation of an OpenMP
program at the -O3 optimization level, the compiler will in-
voke WOPT just before LNO for def-use information as
well as to canonicalize loop induction variables. This is
called the PREOPT phase of the Optimizer. The presence
of parallel regions hinders some optimizations in PREOPT.
Specifically, because the optimizer lacks parallel data flow
analyses, it conservatively restricts optimizations involving
potentially shared variables. Before PREOPT, the compiler
performs a OpenMP pre-lowering phase that inserts memory
barrier function calls around OpenMP synchronization con-
structs. These memory barriers also restrict optimizations to
be performed across them.

Subsequently, after OpenMP translation WOPT is again
invoked on the program unit in what is called the MAINOPT
phase. MAINOPT will also be used for microtasks gener-
ated during OpenMP translation, but as we will see there is
typically very limited scope for optimization. In addition to
repeating the analyses and optimizations carried out earlier
in PREOPT, MAINOPT will also perform IR lowering, ex-
ecute a comprehensive set of optimizations via SSA Partial

#pragma omp s i n g l e
{

k = 1 ;
}

i f (k ==1) . . .

(a) An OpenMP program with single
construct

m p s p s t a t u s = o m p c s i n g l e (o m p v t e m p g t i d) ;
i f (m p s p s t a t u s == 1)
{

k = 1 ;
}

o m p c e n d s i n g l e (o m p v t e m p g t i d) ;

i f (k ==1) . . .

(b) The corresponding compiler translated threaded code

Figure 2. A compiler translated OpenMP code

(a) OpenMP Compilation (b) PREOPT Phase

Figure 3. OpenUH WOPT

Redundancy Elimination (SSAPRE) (10), and export alias
information for CG. We will now detail the specific analyses
and optimizations provided by WOPT and discuss how the
presence of OpenMP is taken into account during PREOPT.

3.1 Control Flow and Flow-Free Alias Analysis
The major functionality provided by WOPT in PREOPT
phase is depicted in Fig. 3(b). WOPT traverses the input tree
and creates a special auxiliary symbol table for its own use.
This pass also entails certain optimizations such as folding
of indirect loads, but parallel regions are left intact. It then
traverses the input WHIRL tree and performs alias classifi-
cation for memory operations based on a nearly linear time
points-to-analysis (24). A control flow graph (CFG) is cre-
ated from the input tree, upon which various preliminary
control flow analyses are performed. While constructing the
CFG WOPT will make note of the various parallel region
constructs it encounters, including standard parallel regions
($omp parallel) and parallel loops ($omp parallel do). The
control flow analyses include the creation of the dominator

and postdominator tree, calculating the dominance frontiers
for each node of the CFG, and analyzing the loop structures.
WOPT will then performs a flow free alias analysis (FFA)
on the CFG, where the code is annotated with aliasing in-
formation in the form of µ and χ lists. µ- and χ-functions
are used to represent hidden defs and uses of scalars, where
µ-functions represent MayUses and χ-functions represent
MayDefs. For a given statement, these describe any poten-
tially implicit uses or definitions of variables. A first pass
will generate µ and χ lists for scalar variables and map oc-
currences of indirect loads and stores to virtual variables. A
second pass will then insert the virtual variables into the µ
and χ lists.

3.2 HSSA
The control flow analysis and FFA are used to construct a
Hashed Static Single Assignment (HSSA) form for the code.
HSSA is an extension of the standard SSA form and enables
the SSA representation of both scalar variables and indirect
memory operations. In the standard SSA form, φ-functions

are inserted to represent scalar variables that could poten-
tially have more than one value. HSSA extends this concept
by also considering the µ- and χ-functions described above,
aliasing results in many more potential reaching definitions
at a given node in the CFG. A flow sensitive alias analysis
is carried out on the CFG in reverse dominator tree order,
followed by dead store elimination. In codes where aliasing
is prevalent,“zero versioning” is used to reduce the number
of versions for variables. A unique value number is assigned
to live scalar and virtual variable versions using a hash table
(only one number needed for zero versions of a given vari-
able). Then, WOPT will carry out a preorder traversal of the
dominator tree and assign value numbers to expressions as
well. This will allow WOPT to determine the equivalence of
two expressions as well as scalars and virtual variables (5).
During this process, if a parallel region exists in the program
unit, then any LHS variables that are not private inside an
enclosing parallel region will be marked as shared.

3.3 PREOPT Optimizations
WOPT then carries out various optimizations, most no-
tably induction variable recognition (IVR), copy propaga-
tion (CP), and dead code elimination (DCE). In IVR, in-
duction variables are identified for all loops, where one IV
that is incremented by 1 for each iteration is designated as
primary, and the rest as secondary. Then, all secondary IVs
are redefined in terms of the primary IV at the start of the
loop body. Further, an assignment statment for each IV and
its respective exit value is inserted after the loop. IVR to-
gether with the code restructuring provided by subsequent
optimizations steps will effectively canonicalize the loop in-
duction variables and prepare the code for LNO (17). When
processing loops in IVR, loops that in turn contain parallel
loops are skipped. Parallel loops that are not enclosed by an
outer loop can optionally be processed, however, though re-
duction variables will not be recognized as an IV. When pro-
cessing parallel loops, IVR will first preprocess the OpenMP
pragma list (e.g. shared, private, reduction, etc.), perform
the conversion of induction variables, and then update the
pragma list.

CP is a generalized form of constnat propagation which
includes the propagation of constants and expressions, as
well as expression simplification. WOPT conservatively re-
stricts the propagation of values defined by variables with
the shared attribute due to a lack of data flow analysis for
shared variables. By propagating the calculation of expres-
sions, there is the risk of a performance hit. This issue can
be dealt with during the following DCE step, where both un-
reachable code and dead stores are eliminated. A further re-
strict during DCE is that scalar stores in parallel regions are
not eligible for elimination. WOPT will next perform a flow
free copy propagation where the above optimizations are re-
peated multiple times until it determines that it can not elim-
inate any more dead code. The same restrictions when deal
with parallel regions and shared variables continue to apply.

This is the extent of the optimizations carried out by WOPT
during PREOPT. PREOPT concludes by generating the new
optimized WHIRL tree from the optimized SSA form and
exporting def-use information that the LNO needs to con-
struct its dependence graph.

3.4 MAINOPT Optimizations
During MAINOPT, WOPT will have to prepare the code
for code generation. Before constructing the auxiliary sym-
bol table, it will perform IR lowering on several types of
WHIRL nodes, including complex numbers, arrays, region
exits, and more. Then, WOPT will behave much as it did dur-
ing PREOPT, except that in the absence of OpenMP parallel
regions, it can more aggressively optimize variables in se-
quential regions that were previously considered shared. Af-
ter flow free copy propagation, MAINOPT will remove crit-
ical edges from the CFG and then perform SSAPRE. Within
the SSAPRE framework (10), MAINOPT can perform many
of important optimizations including common subexpres-
sion, strength reduction, code hoisting, linear function test
replacement, and register promotion. It performs a full re-
dundancy elimination based on value numbering (VNFRE),
followed by PRE for expressions (EPRE) and partial DSE.
Next it will execute local register promotion and PRE for
loads and stores (LPRE and SPRE), within which WOPT
can perform the first phase of its register promotion. Next
WOPT will execute a bit-wise variant of DCE. To finalize, it
emits a lower level, optimized WHIRL tree, and analyzes
this tree to promote scalar variables to registers (RVI) in
preparation for CG.

4. Parallel Data Flow Analysis Framework
4.1 Parallel Control Flow Graph
We have designed a Parallel Control Flow Graph (PCFG)
for representing OpenMP programs in order to enable ag-
gressive optimizations such as those described in the previ-
ous section, while guaranteeing correctness. The PCFG is
not unlike the Program Execution Graph (1) and the Syn-
chronized Control Flow Graph (4), proposed by other re-
searchers. The distinction between our PCFG and their flow-
graphs is that our PCFG is based upon the relaxed mem-
ory model of OpenMP, and its barrier and flush synchro-
nizations, instead of event-based synchronizations (such as
signal-wait).

4.1.1 A Definition of The Parallel Control Flow Graph
The PCFG is a directed graph (N, E, s, e), where the set
of nodes, N, includes basic nodes, composite nodes, super
nodes, and barrier nodes as defined below; E is a set of
directed edges including sequential edges, parallel edges and
conflict edges; s and e represent the entry and exit of a
parallel region, respectively.

Definition 1. Basic node: a basic node is a basic block, i.e.
a code segment with only one entry point and one exit point;
an omp flush directive is considered to be a basic node.

Many OpenMP constructs contain implicit flush opera-
tions. These operations are made explicit before the PCFG
creation.

Definition 2. Composite node: a composite node is com-
posed of an OpenMP worksharing or synchronization con-
struct and the basic nodes associated with it, or of con-
secutive basic nodes executed by all threads in a parallel
region that neither contain nor are immediately enclosed
in an OpenMP construct (other than a parallel construct).
These OpenMP constructs are omp master, omp single, omp
sections, omp for, omp worksharing (Fortran), omp critical,
omp atomic.

A composite node may contain nested OpenMP con-
structs following OpenMP semantics. For example, there
may be an omp critical inside an omp for construct. In this
case, the composite node for omp critical is nested inside the
composite node of omp for.

Definition 3. Supernode: a super node consists of all com-
posite nodes between two barriers.

Supernodes are separated by barriers, and they are exe-
cuted in the order of “happens before”. All shared variables
and control flow are synchronized at the barriers. The data
flow between supernodes follows sequential order, and can
be analyzed safely by traditional algorithms. The parallel
data flow analysis is performed within each supernode.

Definition 4. Barrier node: a barrier node contains an omp
barrier directive only. It is used to synchronize data and
threads’ execution. In our PCFG, it specifies the sequential
order in which supernodes are executed, and reflects the
data synchronizations. Both explicit and implicit barriers
are represented by a barrier node.

To represent the intra-thread and inter-thread data flow in
OpenMP programs, we need to define the following three
kinds of edges.

Definition 5. Sequential edge: a sequential edge indicates
a control flow path that is executed by a single thread or by
all threads. If a path is executed by all threads, the path is
connected by sequential edges too. It is used to represent the
data flow propagation order among different nodes for an
individual thread.

A control flow edge in the sequential part of an OpenMP
program, which includes the code outside a parallel region,
is a sequential edge. Control flow edges representing flow
of code within worksharing and synchronization constructs
(except flush) inside a parallel region are also sequential
edges. In the latter case, this is because the code is executed
by either one thread, or all threads.

Definition 6. Parallel edge: a parallel edge is used to rep-
resent a conditional branch where different threads may take
different paths based on the value evaluated on the branch.

Parallel edges are used at a conditional branch to connect
to different composite nodes inside a supernode. When the
corresponding condition is evaluated, the results obtained by
individual threads may differ. In this case, different threads
will execute different composite nodes. OpenMP constructs
such as OMP sections, OMP single and OMP master have
implicit conditional branches to allow different threads to
take different paths. These constructs are connected in our
PCFG with parallel edges. The difference between a branch
represented by sequential edges and a branch represented by
parallel edges is that a parallel edge must be executed by at
least one thread, and the sequential edge may or may not be
executed depending on the condition of the branch.

Definition 7. Conflict edge: there is a conflict if two differ-
ent threads access the same memory location and at least
one of them updates it. A conflict edge indicates inter-thread
data propagation; it connects two flush operations inside a
supernode that have at least one common variable in their
flush variables list.

The OpenMP memory model permits data to be commu-
nicated between different threads via flush operations. The
conflict edge can be bidirectional and unidirectional based
on a read or write of a memory access (DU/UD/DD) be-
tween different threads along with the edge. If one thread
writes a variable and another thread reads the same variable,
then the conflict edge is a unidirectional edge pointing from
the write flush to the read flush operation. If both threads
perform reads and writes to different variables, then the con-
flict edge becomes bidirectional. Please note that the conflict
edge only indicates the data flow between different threads;
due to the nondeterministism of parallel programs, such a
data transfer may or may not happen. A compiler, however,
has to conservatively assume that data may flow between dif-
ferent threads along all of the conflict edges.

4.1.2 Parallel Control Flow Graph Creation
Fig. 4 shows how composite nodes representing work-
sharing constructs are connected by parallel and sequential
edges. In Fig. 4 A and B, different threads may take differ-
ent paths, so that parallel edges represent the branches for
different threads. In Fig. 4 C, the omp for loop will be exe-
cuted by all threads, and we use a sequential edge to connect
it. Based on the omp for directive’s semantics, the enclosed
loop should not have any data dependence. We treat the loop
as a sequential loop in the PCFG. Fig. 4 D presents the PCFG
for the omp critical construct. A critical section is executed
by multiple threads one by one, but never at the same time.
A flush operation exists at the entry to and exit from a criti-
cal region. We create a conflict edge that connects the flush
operation at the exit to the one at the entry of the critical

Figure 4. OpenMP Worksharing Constructs in PCFG

Barrier

a=1; b=1;

Flush(a,b) Flush(a,b)

Else…

a=0;

b=0;

#pragma omp parallel sections

{
#pragma omp section

{

a=1;

#pragma omp flush(a,b)

IF (b == 0){

Critical1;

a:= 0;

#pragma omp flush(a)

}ELSE
else1;

#pragma omp section

{

b=1;

#pragma omp flush(a,b)

IF (a == 0){

Critical2;

b= 0;

#pragma omp flush(b)

}ELSE
else2;

}

}

A: an OpenMP section example

B: The corresponding PCFG

Super node: Composite
node:

Basic
Node:

Parallel edge:

Sequential edge:

Entry

Conflict edge:

If (a ==0)

Flush(b)

b=0
Else…

If (b ==0)

Flush(a)

a=0

Figure 5. An OpenMP Section example and its PCFG

region to represent the fact that data may propagate to the
next thread that executes the critical region.

4.2 An Example of a Parallel Control Flow Graph
Fig. 5 gives a code fragment that is similar to code used by
Vollmer in (26), and converted into an OpenMP code. It is
intended to implement a simple synchronization scheme us-

ing a and b to prevent critical1 and critical2 from executing
at same time. Vollmer claims that a compiler may generate
incorrect code by applying sequential data flow analysis to
this. However, it is legal to perform optimizations on the two
omp sections in the OpenMP code if there is no omp flush in-
cluded in either of the two sections, since the definitions of
shared variables a and b may or may not be visible by the
other thread until the barrier is reached.

We modified the code by adding four omp flush opera-
tions to it: it is then no longer legal to perform sequential
optimizations, since the definitions are required to be visible
to other threads at the flush point. Note that the flush(a,b)
operation is necessary and compliant with the OpenMP stan-
dard to flush variables both a and b, since it prevents any
out of order execution of the writes to a and b and the fol-
lowing if condition in a single thread. Conflict edges rep-
resent the possible data propagation between threads. We
connect flushes based on the write and read (DU/UD/DD)
for the flushed variables. This inter-thread data flow is not
represented by a sequential control flow graph. Our PCFG
represents multiple threads’ execution paths that provides a
framework for compiler to conduct optimizations correctly
for OpenMP programs.

The OpenMP flush operation implies that the program
writes and reads the shared data into and from the main
memory. However, the operation does not guarantee that
data is consistent at the flush point. In our PCFG, we use
the conflict edge to represent data communications, but these
communications are not guaranteed in general.

4.3 Concurrent Static Single Assignment
The existing OpenUH HSSA cannot be used with the previ-
ously introduced PCFG. It also does not take into account
possible conflicts that may result from inappropriate syn-
chronization. We introduce a new modified SSA form, called
Concurrent Static Single Assignment (CSSA) to comple-
ment the PCFG that we propose for OpenUH. In addition
to the φ functions used in HSSA, CSSA will include ψ-
and π-functions that are similar to those proposed by Lee
et al. (15). In CSSA, the φ-functions φ(v1, v2, ..., vn) are
placed at the end of joins following the control flow graph
where multiple values of the same variable are possible.
In parallel programs, the ψ-functions ψ(v1, v2, ..., vn) are
placed, instead of φ-functions, at the end of parallel regions
where multiple values of the same variable are possible. π-
functions π(v1, v2, ..., vn) are placed in the PCFG where
multiple values of a shared variable may have different val-
ues from multiple threads, potentially causing a conflict.

Fig. 6 shows the PCFG and CSSA for the example in Fig
5. The CSSA is created by first computing the execution or-
der of basic blocks with synchronizations. Next, φ-functions
are inserted at each joined point to represent the creation
of a new variable based on one of the possible definitions
reach that point. The ψ-functions are inserted at the end of
each supernode to represent one of the definitions in differ-

ent threads for a shared variable in the supernode. Variables
are then renamed to ensure single assignment. Finally, the
conflict edges of the PCFG are used to determine where π-
functions are placed to represent the possible definitions of
a variable from multiple threads.

5. Extending Global Optimizer for OpenMP
Analysis

In this section, we discuss how we have integrated the par-
allel data flow framework described above into Open64’s
global optimizer (WOPT). We have extended the PREOPT
phase of WOPT that is performed before LNO to analyze
and optimize OpenMP codes. This entails extending the ex-
isting control flow analysis to take into account parallel and
conflict edges in the PCFG described above and reformulat-
ing the HSSA representation to take into account the new
use-def information. From this point, we can enable opti-
mizations that were previously restricted to non-shared vari-
ables such as copy propagation, as well as enable more ag-
gressive optimizations within parallel regions, such as dead
store elimination (DSE) and expression PRE (EPRE).

5.1 PCFG Construction
We have extended the CFG created in PREOPT to include
extra control flow and data flow information for parallel re-
gions. As before, PREOPT will create CFG so that basic
blocks connected by control dependence edges are formed
over a given procedure. At this point, we add a parallel con-
trol flow analysis step which converts the existing CFG into
a PCFG. Instead of fundamentally restructuring the CFG,
our approach is to add annotations to parallel regions which
will allow the optimizer to group basic blocks into composite
nodes, and in turn group composite nodes into supernodes.
We must also add sequential, parallel, and conflict edges, as
appropriate, to the parallel regions. Whereas originally the
CFG connects basic blocks together, parallel edges are used
to connect composite nodes.

In order to create a PCFG, the following steps are fol-
lowed. The approach our algorithm uses is to first identify
OpenMP constructs, as well as explicit and implicit barriers
and flushes. These are then used to construct both supern-
odes and composite nodes. Basic nodes are

1. Construction of the PCFG begins by making barriers
explicit. To accomplish this, all OpenMP worksharing
directives without a nowait clause are replaced by the
same OpenMP construct with a nowait clause followed
by an explicit barrier. (Note that this does not apply to an
omp master, which does not imply a barrier.)

2. We then make implicit flush operations explicit. For ex-
ample, omp critical and omp order have a flush operation
at both the beginning and the end of the construct.

Barrier

a1=1;
b1=1;

Flush(a,b)

b2 = π (b1, b0, b3)

Else…

Entry

If (a2 ==0)

Flush(b3)

b3=0
Else…

If (b2 ==0)

Flush(a3)

a3=0

a0 = 0; b0 = 0;

Flush(a,b)

a2 =π(a1,a0, a3)

a4 = φ(a3,a1) b4 = φ(b3,b1)

a5 = ψ(a4,a2); b5 = ψ (b4,b2)

Figure 6. An example of PCFG and CSSA

3. We then start creating the PCFG from the entry to a
parallel region, by forming the basic nodes. Basic nodes
are connected via sequential edges.

4. All basic nodes are included in a composite node until
an OpenMP construct is reached. The OpenMP construct
and its enclosed basic nodes also form a composite node.
If a worksharing directive including omp single, omp
master, and omp sections is reached, parallel edges are
used to connect the composite node and its successor
composite node.

5. When a barrier is encountered, a supernode is created
to include all composite nodes between two consecutive
barriers. A barrier node contains only the barrier. A su-
pernode is connected to a barrier node via a sequential
edge.

Once this has been created, we are able to perform control
flow analyses over the new PCFG. This requires modifying
the existing algorithms for calculating dominator and post-
dominator trees and dominance frontier to take into account
parallel edges. CSSA can be implemented within OpenUH
by modifying the existing φ-function algorithm to allow the
representation of ψ- and π-functions. These operators can be
easily added to existing φ nodes, while preserving the sin-
gle assignment property. We are exploring how to represent
ψ- and π-functions in terms of φ-functions, thereby simpli-

fying our implementation and enabling the use of existing
OpenUH optimization algorithms that are currently based on
φ-functions.

5.2 Results
With the PDFA framework introduced in this paper, a com-
piler can perform optimizations before OpenMP constructs
are lowered to threaded code, and remove the conservative
restrictions on optimizating in the presence of shared data.
Although the implementation of our PDFA framework is still
ongoing, an early evaluation showed that the pre-example
code of Fig.1 has achieved a performance similar to its cor-
responding sequential version. The translation from IR to
source indicates that the translated code is optimized with
copy propagation and PRE as we would expect in a sequen-
tial code.

6. Related Work
There have been a number of efforts that develop parallel
dataflow analysis. Shasha and Snir (22) showed that a par-
allel program may violate sequential consistency if E

⋃
P

contains a cycle, where E is the execution order and P is
the order of variable accesses. Based on Shash and Snir’s
work, Krishnamurthy and Yelick (12) proposed a compiler
framework to analyze parallel programs with explicit barri-
ers, post-wait and lock synchronization. Knoop et. al (11)

has developed a theory of Parallel Data Flow Analysis and
proved that it is possible to perform it for parallel pro-
grams (26). Grunwald et. al (7) presents data flow equations
for explicit parallel programs, but this work analyzes par-
allel sections only. Other work (23; 15) use the SSA form
to solve data flow problems for parallel programs. However,
this research does not target OpenMP programs.

To the best of our knowledge, OpenMP compiler opti-
mization is constrained to the code within an OpenMP paral-
lel construct. Global optimizations and code motions are not
performed across parallel constructs (25). Satoh et. al (21)
has presented a Parallel Flow Graph and compiler analysis
for OpenMP programs. However, the paper does not cover
all OpenMP constructs and does not consider the impact of
flush operations. Yet the flush operation is key to ensuring
that any optimizations performed do not violate OpenMP
memory consistency rules, while it also prevents aggressive
global optimizations. Zhang et al. (27) presented a concur-
rency analysis for OpenMP, but the work was focused on
matching barrier synchronizations, instead of optimizations.
Our early ideas on the design of a parallel dataflow frame-
work for OpenMP were described in (13).

7. Conclusions and Future Work
This paper describes a compiler framework that enables
high-level data flow analysis and optimizations for OpenMP.
The framework represents the intra- and inter-thread data
flow in OpenMP programs based on the relaxed mem-
ory model. It creates and/or increases the opportunities for
performing a range of traditional global optimizations on
OpenMP code before it is lowered to explicitly threaded
code. By taking OpenMP semantics into consideration, it
also enables more aggressive optimizations that are specific
to this programming interface. We are currently implement-
ing this framework in the OpenUH compiler (16). We plan to
evaluate our work using more sophisticated benchmarks and
also intend to investigate how it may support the implemen-
tation of OpenMP on clusters (9), as well as to help statically
detect race conditions in an OpenMP program. We believe
that this framework will improve overall OpenMP program
performance and support our long-term goal of providing a
highly productive, effective parallel programming model for
a wide range of shared memory platforms.

References
[1] V. Balasundaram and K. Kennedy. Compile-time detection of

race conditions in a parallel program. In ICS ’89: Proceedings
of the 3rd international conference on Supercomputing, pages
175–185, Crete, Greece, June 1989. ACM Press.

[2] C. Brunschen and M. Brorsson. OdinMP/CCp - a portable
implementation of OpenMP for C. Concurrency - Practice
and Experience, 12(12):1193–1203, 2000.

[3] D. Buttlar, B. Nichols, and J. P. Farrell. Pthreads Program-
ming. O’Reilly & Associates, Inc., 1996.

[4] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event
synchronization in a parallel programming tool. In PPOPP
’90: Proceedings of the second ACM SIGPLAN symposium on
Principles & practice of parallel programming, pages 21–30,
Seattle, Washington, United States, March 1990. ACM Press.

[5] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effec-
tive representation of aliases and indirect memory operations
in SSA form. In Computational Complexity, pages 253–267,
1996.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13(4):451–
490, 1991.

[7] D. Grunwald and H. Srinivasan. Data flow equations for
explicitly parallel programs. In PPOPP ’93: Proceedings
of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 159–168, San Diego,
California, United States, July 1993. ACM Press.

[8] J. P. Hoeflinger and B. R. de Supinski. The openmp mem-
ory model. In the 1st International Workshop on OpenMP
(IWOMP 2005), Eugene, Oregon, United States, June 2005.

[9] L. Huang, B. Chapman, and Z. Liu. Towards a more effi-
cient implementation of OpenMP for clusters via translation
to Global Arrays. Parallel Computing, 31(10-12), 2005.

[10] R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, and F. Chow.
Partial redundancy elimination in SSA form. ACM Trans.
Program. Lang. Syst., 21(3):627–676, 1999.

[11] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free:
efficient and optimal bitvector analyses for parallel programs.
ACM Trans. Program. Lang. Syst., 18(3):268–299, 1996.

[12] A. Krishnamurthy and K. A. Yelick. Optimizing parallel pro-
grams with explicit synchronization. In SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 196–204, La Jolla, California, United States, June 1995.

[13] G. S. L. Huang and B. Chapman. Parallel data flow analysis
for openmp programs. In International Workshop on OpenMP
(IWOMP 2007), Beijing, China, June 2007.

[14] J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent static sin-
gle assignment form and constant propagation for explicitly
parallel programs. In Languages and Compilers for Parallel
Computing, pages 114–130, 1997.

[15] J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler al-
gorithms for parallel programs. In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP’99), pages 1–12, Atlanta, Georgia,
United States, August 1999. ACM SIGPLAN.

[16] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng.
OpenUH: An optimizing, portable OpenMP compiler. Con-
currency and Computation: Practice and Experience, Special
Issue on CPC’2006 selected papers, pages 2317–2332, De-
cember 2006.

[17] S.-M. Liu, R. Lo, and F. Chow. Loop induction variable
canonicalization in parallelizing compilers. In PACT ’96: Pro-
ceedings of the 1996 Conference on Parallel Architectures and

Compilation Techniques, page 228, Washington, DC, USA,
1996. IEEE Computer Society.

[18] S. P. Midkiff and D. A. Padua. Issues in the optimization
of parallel programs. In 1990 International Conference on
Parallel Processing, volume II, pages 105–113, St. Charles,
Ill., 1990.

[19] OpenMP: Simple, portable, scalable SMP programming.
http://www.openmp.org, 2006.

[20] G. Ramalingam. Context-sensitive synchronization-sensitive
analysis is undecidable. ACM Trans. Program. Lang. Syst.,
22(2):416–430, 2000.

[21] S. Satoh, K. Kusano, and M. Sato. Compiler optimization
techniques for OpenMP programs. Scientific Programming,
Special Issue: OpenMP, 9(2,3):131–142, 2001.

[22] D. Shasha and M. Snir. Efficient and correct execution of
parallel programs that share memory. ACM Trans. Program.
Lang. Syst., 10(2):282–312, 1988.

[23] H. Srinivasan, J. Hook, and M. Wolfe. Static single as-
signment for explicitly parallel programs. In POPL ’93:
Proceedings of the 20th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 260–
272, Charleston, South Carolina, United States, January 1993.
ACM Press.

[24] B. Steensgaard. Points-to analysis in almost linear time. In
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
32–41, New York, NY, USA, 1996. ACM.

[25] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and E. Su. In-
tel OpenMP C++/Fortran compiler for hyper-threading tech-
nology: Implementation and performance. Intel Technology
Journal, 6:36–46, 2002.

[26] J. Vollmer. Data flow analysis of parallel programs. In PACT
’95: Proceedings of the IFIP WG10.3 working conference
on Parallel architectures and compilation techniques, pages
168–177, Manchester, United Kingdom, 1995. IFIP Working
Group on Algol.

[27] Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency anal-
ysis for shared memory programs with textually unaligned
barriers. In the 20th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2007), Illinois,
USA, October 2007.

