An Open64-based Framework for Analyzing
Parallel Applications

Laksono Adhianto!  Barbara Chapman?

"Department of Computer Science
Rice University

2Department of Computer Science
University of Houston

Open64 Workshop, 2008

L. Adhianto and B. Chapman Analyzing Parallel Applications



Outline

0 Introduction
@ Motivation and Objectives

9 Methodology
@ Aproach, implementation and applications

e Conclusion

L. Adhianto and B. Chapman Analyzing Parallel Applications



Introduction

Motivation and Objectives

Motivation: Analyzing Complex Applications

Murphy’s law:

Program complexity grows until it exceeds the
capabilities of the programmer who must maintain it.

Hello World

From a simple
sequential program ...

To a complex large scale application @

2Image courtesy of javaworld

L. Adhianto and B. Chapman Analyzing Parallel Applications



Introduction
Motivation and Objectives

Objectives

We need an infrastructure for

@ Understanding large-scale parallel MP1/OpenMP
applications.

@ Performance modeling and prediction.
@ Program optimization and program correctness verification.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

Approach

@ Extract program skeleton based on compiler analysis.
@ Retrieve information on communication latency and
parallelization overhead from microbenchmarks.

Machine Network

Application
0s RTL

Compiler

A
Application
signature

L. Adhianto and B. Chapman Analyzing Parallel Applications

System profile I




Methodology Aproach, implementation and applications

Methodology

@ Using compiler technology to analyze the source code and
microbenchmarks to probe system profile.

Analysis = Application_Signature & System_Profile

@ Application signature: characterizes the fundamental
aspects of an application independent of the machine
where it executes
(definition borrowed from PERC SciDAC project).

@ System profile: characteristics of the platform where the
application will be executed.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

Application Signature vs. System Profile

System profiles

System 1 System 2 System 3 ...

Application 1 Q,, Q,, Q,,
Application) FNGIIETe1 8 Q, Q,, Q,,
signatures | \RIONTIE €2, Q,; Q,

@ Application signature: independent to system configuration
@ System profile: independent to application programs

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

FOMPI Framework

FOMPI: Framework for analyzing OpenMP and MPI
applications.

Analysis = Application_Signature @ System_Profile
SyeiEm PeilE Application signature
34 o Fourt anaveer |
Database >

OpenUH plug-in
OpenUHCompiler
Executable

>

Microbenchmarks

Load Balancing Library

References:
Parallelization [1, 5], OpenMP tools [7, 6], Compiler [8],
Modeling [4, 3], Autoscoping [2].

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

The OpenUH Compiler

oo I
it cor o [* S M’B|
................... E———
i ¥ @ Rich of analysis: data
oo s Oz :’3""&] dependence, inter-procedural

"""""""""" e analysis, array region analysis,

W* | | @ We have extended OpenUH
= for generating application
o $ signature.
....... (¢J e Containing MPI routines,
v OpenMP, loops, estimated

execution time, cache

access pattern, ...

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

Call Graph

Ge = (Ne, Ec, s¢)

| ot
i

@ Aggregated execution time:

1N
il

n
Ni= N5+ (NG x EY)
i=0

: Inclusive execution time of a unit is the
= sum of exclusive time and the total time of
‘‘‘‘‘ its call sites.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

Control-Flow Graph

mchghe_ | © | 8208

Totzl CoatigBAT1L05

[ en o] |

Gr = (Ny, Ef, s1)
Inclusive cost:
N¥ + 3 1o(E; x Nf),  inside loop;
N; = NX + maXI O(Z -0 NI ) branches;

X, otherwise.

Exclusive cost:

com
X tser P = Ef >< (tmachme + toverhead + tcache)

fi — comp _ comp
tpar Ser Z unpar 1 Z 0O,

L. Adhianto and B. Chapman Analyzing Parallel Applications

serial
parall




Conclusion

Summary

@ FOMPI provides portable and scalable analysis and
modeling with no program execution needed

e Based on application signature from the compiler and
system profile from microbenchmarks.

@ Applications include: performance modeling, program
understanding, OpenMP generation and MPI load
imbalance reduction.

@ Open64’s extensibility is needed: WHIRL, analysis and
transformation

e SUIF, GCC GEM Framework, LLVM ...

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

Contributions

Our contributions:
@ Compiler extension to extract application signature
@ Microbenchmark extensions for more OpenMP coverage

@ Using compiler and microbenchmarks for program
analyses and modeling

@ Scalable call graph and control-flow graph
@ Runtime library for reducing load imbalance

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

Acknowledgments

@ John Mellor-Crummey (Rice University)
@ HPCTools members and alumni

e TLC?

@ PSTL lab

e UH, CS@UH

@ PModels, DOE and NSF

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

For Further Reading |

¥ L. Adhianto, F. Bodin, B. Chapman, L. Hascoet, A. Kneer,
D. Lancaster, |. Wolton, and M. Wirtz.
Tools for OpenMP application development: the POST
project.
Concurrency: Practice and Experience, 12(12):1177-1191,
2000.

¥ Laksono Adhianto and Barbara Chapman.
Autoscoping support for openmp compiler.
In Workshop on Tools and Compilers for Hardware
Acceleration, 2006.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

For Further Reading |l

¥ Laksono Adhianto and Barbara Chapman.
Performance modeling of communication and computation
in hybrid mpi and openmp applications.
International Conferences on Parallel and Distributed
Systems (ICPADS)-Workshop of Performance Modeling
and Analysis of Communication (PMAC), 2:3-8, 2006.

¥ Laksono Adhianto and Barbara Chapman.
Performance modeling of communication and computation
in hybrid mpi and openmp applications.
Simulation Modelling Practice and Theory, 15(4):481-491,
2007.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

For Further Reading I

¥ Laksono Adhianto and Michael Leuschel.
Strategy for improving memory locality reuse and exploiting
hidden parallelism.
In Indonesian Students Scientific Meeting (ISSM),
Manchester, UK, August 2001.

¥ Barbara Chapman, Oscar Hernandez, Lei Huang,
Tien-hsiung Weng, Zhenying Liu, Laksono Adhianto, and
Yi Wen.
Dragon: An open64-based interactive program analysis tool
for large applications.
In 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 2003.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

For Further Reading IV

¥ Barbara Chapman, Tien-Hsiung Weng, Oscar Hernandez,
Zhenying Lui, Lei Huang, Yi Wen, and Laksono Adhianto.
Cougar: Interactive tool for cluster computing.
In Proceedings of the 6th World Multi-Conference on
Systemics, Cybernetics and Informatics (SCI'’2002). The
International Institute of Informatics and Systemics, 2002.

¥ OpenUH.
http://www.cs.uh.edu/6penuh.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

Application Signature: Example from NAS FT

Application signature

‘Source code

| <call name="timer_start__" |ine="111"/> !
1</ ki ds> '

</ifthen>
<lit>

OPC_DO_LOCP"_ >

<header >
<i ndex>K</ i ndex>
<I ower bound>1</ | ower bound>
<upper bound>64</ upper bound>
<i ncrement >+1</ i ncr enent >
</ header >

'
'
'
'
'
'
| | <cosf>
'

<iterations>64</iterations> :
<aver age>2. 69514</ aver age> :
<machi ne>4. 9152e+06</ machi ne> '

OpenUH Compiler

<cache>1. 12331e+08</ cache>
<over head>1. 06522e+08</ over head>
<total >2. 23768e+08</total >

<stat us>None</ st at us>

<scope>
<private> K</ private>

' :
1| <reason>Cal| svarztrauber_ on line 122.</reason3
' :
H <shared> X PLANE</ shar ed> |

</ scope>
Ldparallel> ...t
<ki ds>

<cal | name

"swar ztrauber " |ine="122"/>

llel Applications



Conclusion

Application Signature: Scalability

@ Stored in XML file: XML Program Representation.

@ Designed for interoperability and scalability in mind.

LOC loops XML Tags Tags/Loop XML/LOC
ammp 10068 272 11872 6767 24.88 1.18
applu 2555 120 3497 2585 21.54 1.37
apsi 4386 278 9582 6815 24.51 2.18
art 1570 72 2672 1799 24.99 1.70
equake 1121 70 2338 1650 23.57 2.09
gafort 720 72 2450 1748 24.28 3.40
mgrid 1023 48 1338 1009 21.02 1.31
swim 275 24 677 505 21.04 2.46
wupwise 1018 43 2096 1419 33.00 2.06
Average | 2526.22 111.00 4508.00 3257.00 24.31 1.97

L. Adhianto and B. Chapman

Analyzing Parallel Applications




Conclusion

Eclipse

#| @ Eclipse is an open source
j platform based on IBM
2 VisualAge Micro Edition.
~—— @ @ We have developed FOMPI
view plugin as the main
user interface
@ Accessible by any
Eclipse perspective.
e Can generate call graph,
control-flow graph, ...

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

MPI Load Imbalance

=

0O

Y 7 e

Balanced program

Unbalanced program @ Adjust the number of
@ Each MPI process has OpenMP threads
the same number of according to the
OpenMP threads. workload.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

MPI Load Imbalance

@ Assumption: application includes a main iterative loop
containing:
e Large computation
e Significant communication
@ Approach:
@ Statically determine the main iterative loop
@ Insert load balancing library (LBL) at the beginning and at
the end of the loop.

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

MPI Load Imbalance

With Load balancing library

Original code #include <Ibl.h>
. int MainFunction () {
fr"’:c'l\‘,l‘:ﬁFZ'nbc'ti:; 0 LBL_SetSkiplterations (40);
LBL_SetThreshold (30);
o . LBL_Init ();
/x Main iteration x/ /x Main iteration x/

while (iter <MAX_ITER) { while (iter <MAX_ITER) {
Do_Computation (): LBL_LoadDetection ();

Do_Communication ( ) ; Do_Computation ();

} L. o .
/x end of main iteration */} Do_Gommunication () ;

} e /+ end of main iteration x/
LBL_Finalize ( ) ;
}

L. Adhianto and B. Chapman Analyzing Parallel Applications



Conclusion

MPI Load Imbalance

Original code with load imbalance

75 T T T
* ?-(* KKKk ****ﬁ******* R R TRt
. g8 Bege ] =i a a
gk - ; B a8 =}
70 . 7
ul
€ 65} Process 0 —+— b
5 Process 1 -
9 Process 2 ---%---
A2 Process 3 &
o
E 60 b
- o
B
55 D e R T T
]
50 I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000
Number of iterations




Conclusion

MPI Load Imbalance

Using load imbalance library

70 T T T
o8 Process 0 —+—
Keex Process 1 ---x---
65 L X% : Process 2 - |
: Process 3 -
60 - ; 1
z | X,
S 55 H e st
o . —x-
g BT B - A
g R e WE g o
o L TR i
£ 50
=
45 | i
a0 | 4
35 | | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000
Number of iterations




	Introduction
	Motivation and Objectives

	Methodology
	Aproach, implementation and applications

	Conclusion

