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Introduction

Motivation and Objectives

Motivation: Analyzing Complex Applications

Murphy’s law:

Program complexity grows until it exceeds the
capabilities of the programmer who must maintain it.

Hello World

From a simple
sequential program ...

To a complex large scale application @

2Image courtesy of javaworld
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Introduction
Motivation and Objectives

Objectives

We need an infrastructure for

@ Understanding large-scale parallel MP1/OpenMP
applications.

@ Performance modeling and prediction.
@ Program optimization and program correctness verification.
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Methodology Aproach, implementation and applications

Approach

@ Extract program skeleton based on compiler analysis.
@ Retrieve information on communication latency and
parallelization overhead from microbenchmarks.

Machine Network

Application
0s RTL

Compiler

A
Application
signature
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Methodology Aproach, implementation and applications

Methodology

@ Using compiler technology to analyze the source code and
microbenchmarks to probe system profile.

Analysis = Application_Signature & System_Profile

@ Application signature: characterizes the fundamental
aspects of an application independent of the machine
where it executes
(definition borrowed from PERC SciDAC project).

@ System profile: characteristics of the platform where the
application will be executed.
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Methodology Aproach, implementation and applications

Application Signature vs. System Profile

System profiles

System 1 System 2 System 3 ...

Application 1 Q,, Q,, Q,,
Application) FNGIIETe1 8 Q, Q,, Q,,
signatures | \RIONTIE €2, Q,; Q,

@ Application signature: independent to system configuration
@ System profile: independent to application programs
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Methodology Aproach, implementation and applications

FOMPI Framework

FOMPI: Framework for analyzing OpenMP and MPI
applications.

Analysis = Application_Signature @ System_Profile
SyeiEm PeilE Application signature
34 o Fourt anaveer |
Database >

OpenUH plug-in
OpenUHCompiler
Executable

>

Microbenchmarks

Load Balancing Library

References:
Parallelization [1, 5], OpenMP tools [7, 6], Compiler [8],
Modeling [4, 3], Autoscoping [2].

L. Adhianto and B. Chapman Analyzing Parallel Applications



Methodology Aproach, implementation and applications

The OpenUH Compiler
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i ¥ @ Rich of analysis: data
oo s Oz :’3""&] dependence, inter-procedural

"""""""""" e analysis, array region analysis,

W* | | @ We have extended OpenUH
= for generating application
o $ signature.
....... (¢J e Containing MPI routines,
v OpenMP, loops, estimated

execution time, cache

access pattern, ...
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Methodology Aproach, implementation and applications

Call Graph

Ge = (Ne, Ec, s¢)

| ot
i

@ Aggregated execution time:

1N
il

n
Ni= N5+ (NG x EY)
i=0

: Inclusive execution time of a unit is the
= sum of exclusive time and the total time of
‘‘‘‘‘ its call sites.
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Methodology Aproach, implementation and applications

Control-Flow Graph
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Conclusion

Summary

@ FOMPI provides portable and scalable analysis and
modeling with no program execution needed

e Based on application signature from the compiler and
system profile from microbenchmarks.

@ Applications include: performance modeling, program
understanding, OpenMP generation and MPI load
imbalance reduction.

@ Open64’s extensibility is needed: WHIRL, analysis and
transformation

e SUIF, GCC GEM Framework, LLVM ...
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Conclusion

Contributions

Our contributions:
@ Compiler extension to extract application signature
@ Microbenchmark extensions for more OpenMP coverage

@ Using compiler and microbenchmarks for program
analyses and modeling

@ Scalable call graph and control-flow graph
@ Runtime library for reducing load imbalance
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Conclusion

Application Signature: Example from NAS FT

Application signature

‘Source code

| <call name="timer_start__" |ine="111"/> !
1</ ki ds> '

</ifthen>
<lit>

OPC_DO_LOCP"_ >

<header >
<i ndex>K</ i ndex>
<I ower bound>1</ | ower bound>
<upper bound>64</ upper bound>
<i ncrement >+1</ i ncr enent >
</ header >

'
'
'
'
'
'
| | <cosf>
'

<iterations>64</iterations> :
<aver age>2. 69514</ aver age> :
<machi ne>4. 9152e+06</ machi ne> '

OpenUH Compiler

<cache>1. 12331e+08</ cache>
<over head>1. 06522e+08</ over head>
<total >2. 23768e+08</total >

<stat us>None</ st at us>

<scope>
<private> K</ private>

' :
1| <reason>Cal| svarztrauber_ on line 122.</reason3
' :
H <shared> X PLANE</ shar ed> |

</ scope>
Ldparallel> ...t
<ki ds>

<cal | name

"swar ztrauber " |ine="122"/>

llel Applications



Conclusion

Application Signature: Scalability

@ Stored in XML file: XML Program Representation.

@ Designed for interoperability and scalability in mind.

LOC loops XML Tags Tags/Loop XML/LOC
ammp 10068 272 11872 6767 24.88 1.18
applu 2555 120 3497 2585 21.54 1.37
apsi 4386 278 9582 6815 24.51 2.18
art 1570 72 2672 1799 24.99 1.70
equake 1121 70 2338 1650 23.57 2.09
gafort 720 72 2450 1748 24.28 3.40
mgrid 1023 48 1338 1009 21.02 1.31
swim 275 24 677 505 21.04 2.46
wupwise 1018 43 2096 1419 33.00 2.06
Average | 2526.22 111.00 4508.00 3257.00 24.31 1.97
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Conclusion

Eclipse

#| @ Eclipse is an open source
j platform based on IBM
2 VisualAge Micro Edition.
~—— @ @ We have developed FOMPI
view plugin as the main
user interface
@ Accessible by any
Eclipse perspective.
e Can generate call graph,
control-flow graph, ...
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Conclusion

MPI Load Imbalance

=

0O

Y 7 e

Balanced program

Unbalanced program @ Adjust the number of
@ Each MPI process has OpenMP threads
the same number of according to the
OpenMP threads. workload.
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Conclusion

MPI Load Imbalance

@ Assumption: application includes a main iterative loop
containing:
e Large computation
e Significant communication
@ Approach:
@ Statically determine the main iterative loop
@ Insert load balancing library (LBL) at the beginning and at
the end of the loop.
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Conclusion

MPI Load Imbalance

With Load balancing library

Original code #include <Ibl.h>
. int MainFunction () {
fr"’:c'l\‘,l‘:ﬁFZ'nbc'ti:; 0 LBL_SetSkiplterations (40);
LBL_SetThreshold (30);
o . LBL_Init ();
/x Main iteration x/ /x Main iteration x/

while (iter <MAX_ITER) { while (iter <MAX_ITER) {
Do_Computation (): LBL_LoadDetection ();

Do_Communication ( ) ; Do_Computation ();

} L. o .
/x end of main iteration */} Do_Gommunication () ;

} e /+ end of main iteration x/
LBL_Finalize ( ) ;
}
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MPI Load Imbalance

Original code with load imbalance
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Conclusion

MPI Load Imbalance

Using load imbalance library
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