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Overall Research GoalOverall Research Goal

Proposed Solution:
An automaticautomatic  system that transformstransforms  simple 
communication code into efficient code.

Requirements:
✔  Achieve high-performance communication
✔  Simplify the MPI code developers write

Side-effect:
Enables legacy parallel MPI applicationslegacy parallel MPI applications to perform better, even if 
written without any knowledgewithout any knowledge of this system

Have your cake
+

Eat your cake

Automatic cake 
making machine
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Integration with Open64

Pros:
✔ Portability

✔ Rapid Prototyping

Cons:

Underutilization of existing:

✔ Program analysis 

✔ Program transformations
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Challenges & Opportunities

➢ Memory Registration Location
✔ Smart placement can reduce registration cost

✗ Choosing location requires inter-procedural analysis

➢ Rendezvous Protocol Choice
✔ Early handshake initiation can overlap the control messages

✔ Advanced rendezvous can reduce control messages & increase overlap

✗ Control flow analysis required to map MPI code to Gravel protocol

GravelGravel enables explicit memory registration & 
rendezvous handshaking at the application layer
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Memory Registration:
context awareness matters

Library Function: Not context aware Compiler Tool: Fully context aware

mpi_isend()

handshake()
register_msg_buffer()
init_data_transfer()
...

mpi_wait()
block_until_completion()
unregister_msg_buffer() ??
...

foo(){
    register_msg_buffer()
    do i=1, N
        bar()
    enddo
    unregister_msg_buffer()
}

bar(){
    ...
    isend()
    ...
    wait()
    ...
}

Frequent registering & unregistering message buffers induces significant cost
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Gravel rendezvous protocols
Use of wrong rendezvous protocol would lead to deadlock
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Mapping MPI to Gravel rendezvous

mpi_irecv()

do i=1,N
    sbuf[ i ] = ...
enddo

mpi_isend( sbuf )
mpi_waitall()

do i=1,N
    if( i > 1 ) then
        mpi_irecv()
        ...
        mpi_waitall()
    endif

    do j=1,N
        sbuf[ i ][ j ] = ...
    enddo

    if( i < N ) then
        mpi_isend( sbuf )
    endif

enddo

Trivial:Trivial:
execution order = textual order

More complex:More complex:
execution order = reverse textual order

Example: NAS SP {x,y,z}_solve.f
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Further Optimizations (future work)

mpi_irecv()

do i=1,N
    sBuf[ i ] = ...
enddo

mpi_isend()
mpi_waitall()

gravel_post_recv_buffer_rdma()
do T=1, N, K
    do i=T, min(T+K-1, N)
        sBuf[ i ] = ...
    enddo
    if( T == 1 ) then
        gravel_wait_recv_buffer_rdma()
    endif
    gravel_post_os_put()
enddo
gravel_send_fin(next, ierr)
gravel_waitall()

Before After
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Current & Future Directions

➢ Break MPI collectives into loops of send()/recv()

➢ Use Loop Nest Optimizations to increase overlap

➢ Integrate code into Open64 backend (be)
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Questions ?
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Gravel:  Performance graphs (1)
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Gravel:  Performance graphs (2)


