
  

Implementing an Open64-based 
tool for improving the performance 

of MPI programs

University of DelawareUniversity of Delaware

Lori Pollock Martin SwanyAnthony Danalis John Cavazos



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Problem:
Communication Overhead in Cluster Computing



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Problem:
Communication Overhead in Cluster Computing

● Inherent to the Application
● Hard or impossible to change



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Problem:
Communication Overhead in Cluster Computing

● Communication Library & Developer Expertise dependent
● Amendable



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Overall Research GoalOverall Research Goal

Requirements:
✔  Achieve high-performance communication
✔  Simplify the MPI code developers write

Have your cake
+

Eat your cake



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Overall Research GoalOverall Research Goal

Requirements:
✔  Achieve high-performance communication
✔  Simplify the MPI code developers write

Have your cake
+

Eat your cake

Automatic cake 
making machine



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Overall Research GoalOverall Research Goal

Proposed Solution:
An automaticautomatic  system that transformstransforms  simple 
communication code into efficient code.

Requirements:
✔  Achieve high-performance communication
✔  Simplify the MPI code developers write

Have your cake
+

Eat your cake

Automatic cake 
making machine



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Overall Research GoalOverall Research Goal

Proposed Solution:
An automaticautomatic  system that transformstransforms  simple 
communication code into efficient code.

Requirements:
✔  Achieve high-performance communication
✔  Simplify the MPI code developers write

Side-effect:
Enables legacy parallel MPI applicationslegacy parallel MPI applications to perform better, even if 
written without any knowledgewithout any knowledge of this system

Have your cake
+

Eat your cake

Automatic cake 
making machine



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Our Framework : ASPhALT*

*Automated System for Parallel AppLication Transformation



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Our Framework : ASPhALT*

*Automated System for Parallel AppLication Transformation



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Integration with Open64

Pros:
✔ Portability

✔ Rapid Prototyping

Cons:

Underutilization of existing:

✔ Program analysis 

✔ Program transformations



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Challenges & Opportunities

➢ Memory Registration Location
✔ Smart placement can reduce registration cost

✗ Choosing location requires inter-procedural analysis

➢ Rendezvous Protocol Choice
✔ Early handshake initiation can overlap the control messages

✔ Advanced rendezvous can reduce control messages & increase overlap

✗ Control flow analysis required to map MPI code to Gravel protocol

GravelGravel enables explicit memory registration & 
rendezvous handshaking at the application layer



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Memory Registration:
context awareness matters

Library Function: Not context aware Compiler Tool: Fully context aware

mpi_isend()

handshake()
register_msg_buffer()
init_data_transfer()
...

mpi_wait()
block_until_completion()
unregister_msg_buffer() ??
...

foo(){
    register_msg_buffer()
    do i=1, N
        bar()
    enddo
    unregister_msg_buffer()
}

bar(){
    ...
    isend()
    ...
    wait()
    ...
}

Frequent registering & unregistering message buffers induces significant cost



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Gravel rendezvous protocols
Use of wrong rendezvous protocol would lead to deadlock



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Mapping MPI to Gravel rendezvous

mpi_irecv()

do i=1,N
    sbuf[ i ] = ...
enddo

mpi_isend( sbuf )
mpi_waitall()

do i=1,N
    if( i > 1 ) then
        mpi_irecv()
        ...
        mpi_waitall()
    endif

    do j=1,N
        sbuf[ i ][ j ] = ...
    enddo

    if( i < N ) then
        mpi_isend( sbuf )
    endif

enddo

Trivial:Trivial:
execution order = textual order

More complex:More complex:
execution order = reverse textual order

Example: NAS SP {x,y,z}_solve.f



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Further Optimizations (future work)

mpi_irecv()

do i=1,N
    sBuf[ i ] = ...
enddo

mpi_isend()
mpi_waitall()

gravel_post_recv_buffer_rdma()
do T=1, N, K
    do i=T, min(T+K-1, N)
        sBuf[ i ] = ...
    enddo
    if( T == 1 ) then
        gravel_wait_recv_buffer_rdma()
    endif
    gravel_post_os_put()
enddo
gravel_send_fin(next, ierr)
gravel_waitall()

Before After



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Current & Future Directions

➢ Break MPI collectives into loops of send()/recv()

➢ Use Loop Nest Optimizations to increase overlap

➢ Integrate code into Open64 backend (be)



University of Delaware

Motivation          Overview          Open64 Integration          Memory Registration          Protocol Selection          Future Work

Anthony Danalis

Questions ?



Appendix

University of DelawareAnthony Danalis

  

Gravel:  Performance graphs (1)



Appendix

University of DelawareAnthony Danalis

  

Gravel:  Performance graphs (2)


