Code Size reduction by difference classification and customized
look-up table generation
Subrato K. De, Kun Zhang, Tony Linthicum

Qualcomm Incorporated, San Diego & Austin, USA.

{sde, zhangk, tlinth }@qgualcomm.com

ABSTRACT

Code size has become an important constraint for
applications on mobile devices. Not only should the
applications be very responsive and execute fast, the
should also consume low power, and be reasonably compac
in size to fit in the limited memory of the mobile devices. In
this paper we focus on a specific opportunity of code size
optimization that is detected in software for mobile devices

like wireless networking protocols, modems, etc. Thesel.l Open64 as

compiler for embedded/DSP processors used in mobile
devices created the urgent need for enhancing the cagle siz
optimization infrastructure within Open64. We will bhjef
summarize the different features of Open64 and then discuss
ome generic improvements for code size optimizatibenT

we illustrate the details of code size reduction by difiee
classification and customized look-up table generation,
which is the main theme of this paper.

a compiler for generating high

applications have large amount of code-regions across theerformance code

control-flow graph that are inherently similar, but with
slight differences that are compile time constants. Example§N
of such similar code regions are: case statements labeled b
“jump tables”, tail regions that merge to a common point,
cascaded sequence of similar code-regions with unique
predecessor-successor relationship, etc. This paper present?s
a novel approach where similar code-regions across the.
control flow graph are classified into disjoint sets based on
their differences, and then replaced by a single
representative code-region with the differences encoded in
customized look-up tables resulting in reduced code size.
The methodology shows remarkable reduction in code size
for large switch-case constructs that have very similar case *
statements. Implementation is done in the Open64 compiler,
even though it could be integrated with other compilers
(e.g., GCC). We also provide some results of code size
reduction, which are in the range of 30% to 80% for pure
text (instructions only), and 5% to 60% for total text
(instructions and read only data), achieved by the algorithm
on some of the functions in software applications for mobile .
devices.

1. Introduction

Open64 is an open source C/C++/Fortran77/90 compiler that *
is currently used in various industry and academic research
projects. It originates from the SGI Pro64(TM) compiler
suite that was released under the GNU General Public
License. Open64 was originally intended to be a compiler
generating high performance code that is extremely focused
on execution speed of the generated code. Optimization for
code size of the generated assembly, to the extent deahan
by application developers for mobile devices, was net th
focus. However, the use of Open64 in Qualcomm as a

ransformations, vectorization,

Open64 uses an intermediate representation (IR) called
HIRL that has multiple levels of representation andes

s the common interface for the compiler phases. The
optimizations are mainly geared towards cycle performanc
s evidenced by the exhaustive set of loop optimizatonls

aggressive unrollingd an

inlining, function cloning, hyperblock scheduling, and
predication. The important phases of Open64 are:
The very high level optimizer (VHO) lowers

aggregates, flattens nested calls, etc.

The inter-procedural analysis (IPA) first gathers data
flow analysis information from each procedure locally.
It then generates the call graph, performs inter-
procedural analysis and transformations. It performs
global variable optimization, dead function

elimination, inter-procedural alias analysis, function
cloning, constant propagation, function inlining, etc.

The loop nest optimization (LNO) phase calculates
dependence graph for array accesses and performs
loop transformations, and automatic vectorization.

The global optimizer (WOPT) computes the control
flow graph, the dominator tree, dominance frontier,
control dependence set, and then converts the IR to a
hashed SSA form. It performs def-use analysis, alias
classification, pointer analysis, induction variable
recognition/elimination, copy propagation, dead code
elimination, partial redundancy elimination, register
variable identification, bitwise dead-code elimination.

The code generator (CG) performs target specific
optimizations, instruction selection, scheduling,

software pipelining, hyper-block scheduling, register Figure 1(a) shows a motivating C-code where the impact of
allocation and emits the assembly code. code size reduction is phenomenal using the methodology
described in this paper. It shows a switch-case statetinat

is commonly found in wireless networking protocol and
1.2 General modifications to Open64 for generating size modem software [11]. In the example in figure 1(a), the cas
aware assembly code statements can be grouped into three distinct clustech, s
éhat the case statements in a cluster are veryasintleach
Other except for some differences that are compile time
constants. It is to be noted that some of these redeieta
can be even removed by a suitable strategies while
developing the C-code. However, the importance of this
work is because of the fact that given a not-so welhnized
C/C++ source code, a compiler could generate code efficien
enough in terms of size and cycles needed for software o
mobile devices [12]. Also, there exists vast amount/GHG
source code that isn’'t originally written for embedded
systems keeping in mind the stringent memory requirements,
But need to be quickly incorporated into the product. This
makes a strong case for the need of the work described in
this paper.

The details of these phases can be found in [7, 8, and 9].

Our goal is to enhance Open64 to generate assembly co
that gives reasonable cycle performance and is aig® si
optimized. One of our efforts is to leverage interprocaldur
analysis (IPA) using -Os for code size optimizationeTh
function inlining heuristic is made conservative when
compiling with —Os with IPA. The loop unroller heurisisc
enhanced to estimate the benefit of unrolling the lop@
certain factor. Unrolling is not performed if the estied
payoff in cycle gain is below a certain limit. Theusfering
algorithm for switch lowering in VHO is tuned to generat
denser clusters, leading to more clusters that could b
differently lowered i.e., by jump-table, by linear ie, by
binary search if-else, based on a heuristic. Changebegen
done in VHO to facilitate aggregate copies, register
promotion of structures and unions, which reduce both code

size and stack usage [10]. Finally, a novel mechanism for| extern Iunc;gint X, !nty;; case ;: a=g_array%; l;rea::;
. I . . . extern func2(int x, inty); case 8: a = g_array[6]; break;
code size optlmlzat|_on, by creatmg_a _cugtomlzed_look-up extern funca(int x. int y)- case 9 a =g array[2] break.
table (LUT) for the differences found in similar co@gions extern func4(int x, int y); case 10: a = g_array[9]; break;
across the control flow graph (CFG,) is incorporatedhia extern funcs(int x, int y); case 11:a = g_array[5]; break;
. extern func6(int x, inty); case 12: a = g_array[4]; break;
Qpen64 co_mpller._ Th|s is the main focus of this paper and i | cxern intg_array;
discussed in details in sections 2 and 3. case 13: a = funcl(x,1); break;
int test(int i, int x) case 14: a = func2(x,1); break;
1.3 Organization of this paper { case 15: a = func3(x,1); break;
inta; case 16: a = func4(x,1); break;
This paper is organized as follows. Section 2 illustrétes switch(i) case 17: a = func5(x,1); break;
.) { case 18: a = func6(x,1); break;
difference cIaSS|_f|cat|on, the encodl_ng/decodlr_]g r_ne_clnaa,ms case 1: a = 27 + x; break:
and the generation of the LUT for differences in samdode case 2: a = 55 + x; break]| default: a = i; break;
regions found across the CFG. Section 3 compares some ¢ case ji a= ;22‘”;; bfﬁ k?}
. . . case 4. a= + X; break
Fhe existing approaches anq describes t_h_e _generahze case 5: a = 129 + x: break: return(a):
infrastructure that uses the difference classificatiesults case 6: a = 256 + x; break}
and the encoded LUTs, and replaces the similar code-gegion] -
by a single representative. Section 4 compares the Figure 1(a): C-code for the motivating example.

improvement in code size and the performance impact ovefrhe fundamental idea is to replace a set of similar code
some of our ir_1terna| applications when us_ing t_hg ”0V9|regions (in this example the case statements), by a
methodology. Finally, we present our conclusions iniGeC representative code region, and encode the differenceaint
5, followed by acknowledgements. LUT. While, the idea of similar code identificationshiaeen
used in various researches [4, 13], the novelty of thr& o

2. Difference classification and customized this paper comes from the following:

look-up table generation - _
This section discusses core concept of the novel melhgy + Classification based on the types of differences &b th
where similar code-regions spread across the CFG are theycan be suitably encoded and decoded.

grouped into disjoint sets based on their differencesh Bec « Increased scope of the similar regions by a compact

is then is replaced by a single representative coderregio encoding of as many difference items as possible.
with the differences encoded in a compact fashion ifid.U
* Use of heuristics to trade-off between code size

increases due to the overhead (addition read-only data
example in LUT, additional decoding instructions) v.s. code

2.1 Overview of the methodology through a motivating

size reduction due to removal of multiple instances of

test: Lt 0_2: JUMP TABLE
imi i i i r8=#(.rodata) ro=r6 NOW PARTLY
similar code regions by a single representative. 610 returm: BECOMES LUT
» Lightweight mechanism to detect similar code-regions if (r0 >= #19) Lt 0 14: section .rodata
by using the CFG as the guiding factor. jump .Lt 0_2 ro=ri .org Ox0
rl=#1 .word .Lt O_2
Figure 1(b) shows the code generated by Open64 compile | r8=add(r8,ro=<2) callr ro word 27
7 4 . . r9=loadw(r8+#0) r6=r0 word 55
using 68 instructions, as well as GNU C/C++ compiler jump .Lt_0_2 ord 1024
versions 3.4.6, and 4.3.2, without using the methodology -Li}—(t’c’)“ih:a;gfd: o s word 23
described in this paper. All three compilers generateta j jumpr ro 16=#(g_array) word 129
H ré6=r6+r9 :
table whose entries are the labels for the casensémts. Lt_SingleConst: roclondw(r6+#0) || word 4
if (rO <= #6) jump.Lt_0_2 .word 24
test: Lt 0_16: .Lt_0_10: jump .Lt_0O_1 .word 8
r8=#(.rodata) r0=r1 r6=#(g_array+8) ORIGINAL Lt O_1: .word 36
r6=r0 rl=#1 ré=loadw(r6+#0) JUMP .Lt_MemOffset: r6=add(r1,r9) .word 20
if (r0 >= #19) call func3 jump .Lt 0_2 TABLE if (r0 <=#12) jump .Lt_ 0_2 .word 16
jump .Lt 0_2 16=r0 Lt 0_9: jump .Lt_0_8 d &f 1
r8=add(r8,ro<<#2) jump .Lt 0_2 r6=#(g_array+24) section 'ag: d &fﬂgﬁz
r9=loadw(r8+#0) .Lt_0_15: ré=loadw(r6+#0) .ro data .Lt_SameCallSig: .wor d &func3
jumpr r9 ro=rl jump .Lt 0_2 .or 0%0 if (rO <= #18) .word &funca
r=#1 Lt0_8: 09 jump .Lt_0_14 o Rfunes
Lt 0_2: call func2 r6=#(g_array+4) word Lt 0 2 'ag: d &fﬂzﬁ 6
r0=r6 16=r0 re=loadw(r6+#0) |\ 0T ASSEMBLY CODE AND LUT -
return; LtJUomriAFt_O_Z LtJUomgA-Lt_O_Z word Lt 0.3 WITH THE NOVEL METHODOLOGY
= = word .Lt_0_4 . L
L0 19 r0=r1 r6=add(L#256) | 0 Figure 2: Assembly code generated for the motivating
0=r1 1=#1 j Lto2 : b
sl call funct. Hos - word 11 0.6 example using the optimization discussed in this paper. It
call funcé 16=r0 ré=add(r1#129) ‘word Lt 0 8 shows much reduced code size.
_r6:r0 jump .Lt 0_2 jump .Lt 0_2 :wor d :Lt_0_9
[Jamp .02 Lo e dL#29) word Lt 0_10 There is also some additional code in the represeatedise
T0=r1 16#(g_array+16) | jump.Lt 0_2 mﬂ e statement for decoding and extracting the desired value from
ri=il r6loadw(r6+#0) | .LL0_4: word .Lt_0_13 the LUT entry. These give rise to the overhead compisne
call funcs jump .Lt 0_2 ré=add(r1,#1024) d Lt 0 14 R . L. . A
16=10 Lt 0_12: jump .Lt 0_2 m S0 of doing this optimization, both for code size and cg/cldf
Jump Lt 02 r6=#(g_array+20) | L1 03 word Lt 0_16 the code size of the overhead becomes more than the
Lt 0_17: ré=loadw(r6+#0) ré=add(r1,#55) d Lt 017 A) . .
r0=rl jump .Lt_0_2 jump .Lt 0_2 m o8 memory saving obtained by replacing multiple case
ri=#1 Lt 0_11: : e i i imivi
call funca oo amay+36) | Lt0.1: word Lt 0_19 statemer_nt; by a single representa_tlve_,_the opt_lmlzmgtw
16=10 16=loadw(r6+#0) r6=add(r1 #27) be beneficial. Hence we use a profitability functiordecide
Jump L1 0_2 Jump Lt 0_2 Jump Lt 0_2 for or against invoking the transformation for codeesiz

Figure 1(b): Assembly code for the motivating example

without the optimization discussed in this paper

Figure 2 shows the assembly code using 22 instructions
when the methodology described in this paper is used. The
jump table entries are replaced with the differencedtdmt

are compile time constants and the similar casenseatts

that are replaced by a single representative. The jabip t .
now partly behaves like a look-up table. However, some’ %
additional code is needed for decoding the LUT entries and
for the conditional jumps that leads the program corttvol

benefit:

» CODE SIZE REDUCED =
CODE REGION) * (# OF SIMILAR REGIONS
DETECTED -1) - (SIZE OF CODE TO ACCESS LUT
+ SIZE OF DECODE CODE + SIZE OF GLUE
CONTROL CODE + ADDITIONAL LUT SIZE)}

CODE SIZE REDUCED = “CODE SIZE
REDUCED” * 100 / {(SIZE OF A SIMILAR CODE
REGION) * (# OF SIMILAR REGIONS DETECTED)}

{(SIZE OF A SIMILAR

execute the particular representative case statement. Ahe optimization is useful if “CODE SIZE REDUCED” > 0.
reduction of 68 -22 = 46 is achieved, while the read On|yHowever' Cyc|e performance is reduced S||ght|y when

data (rodata) size for the jump table remains unchanged.

2.2 Profitability of doing the transformation

compared to the performance of a pure jump-table based
implementation, particularly if there is some discouitiyin

the case numbers and there are multiple groups of similar

The example in the previous section uses a jump table t@ase statements. In the code size optimized example in

implement the switch-case statements. Entries ofLth&

Figure 2, there is some additional control flow overh&ad

are formed by replacing the corresponding entry of th@jum determine the particular representative code region (out o

table. However, there is some additional control cuekded
to make the execution reach the specific case statetimaint

is a representative for the set of similar casestants.

the three groups) to jump to, based on the switch index.

However, this method can be applied for code size

optimization of non time-critical portions of the ajmaliion
by using the profitability function discussed in this sett

operation (the 3 values in order are: 16, 8, and 4), aunsta
representing the bit-width of the extract operation (&he
values in order are: 10, 12 and 14), and the memory offset
for the “loadw” operation (the 3 values in order are: 600,
The types of differences that can be considered must be 680 and 720). The maximum bits required to represent the
compile time constant so that it can be encoded iR IAs three difference types are:

an example, we can consider differences in two constant
operands (say 123 v.s. 99), but cannot easily consider two ®
different operations (say addition v.s. subtraction)wé#
really want to incorporate such difference, it will agtohtrol .
code overhead to decide on between *“addition” v.s.
“subtraction” at runtime based on a particular value (&ay . ., . . _
for addition, and “2” for subtraction) encoded in the LUT ° Mmemory offset for the “loadw” operation = BinaryBits
entry. Certainly, capturing such difference might be (MAX[600, 680,720]) + 1 = 11 bits.

profitable under certain conditions, but is considered forwnhere, BinaryBits() is a function that computes the beim
future enhancement. of bits in the binary representation of the magnitutithe
number, e.g., 16 decimal = 10000 binary (needs 5-bits), 14
decimal = 1110 binary (needs 4-bits). Thus the difference
class for the code regions can be implemented using 6 + 5 +
11 = 22 bhits. Since there is already 32 bits availableoft)v
from the existing jump table, we have a relaxed congdtrain
Hence, the encoding done is" @ 7" bits for representing
“pit-width” for the extract operation, "8to 15" bit for
representing the constant operand for the logical-or
operation, 18 to 3 bit for representing the memory offset

of the “loadw” operation.

2.3 Difference types and difference classes

constant operand for the logical-or operation
BinaryBits(MAX[16, 8,4]) + 1 = 6 bits,

constant for the bit-width of the extract operation
BinaryBits (MAX[10, 12,14]) + 1 = 5 bits,

Based on our analysis of certain mobile software ctue,
current scope of this paper considered the following
frequently occurring difference items: (i) constant opdsa

(i) memory offset in the “base+offset” addressing mémte
loads and stores, (iii) constants used in address congytati
and (iv) functions with the same signature. When compari
two or more similar code regions, different instancesne

or more of the above difference items are actuabpaated
with distinct operations in the code region making them
uniquely identifiable, and are called difference types. lidte

of all the difference types among two or more comparabl

. o " .Lt_10_13: .Lt_10_11:
code regions forms a “difference class”. When all r17=loaduh(r30+#-584) r21=loaduh(r30+#-584)
instructions of the comparable code regions, except tinose ri7=or(rl7,#16 r21=or(r21,#4)

. : rl7=extract(rl17,#10#6)
the difference class, are exactly same the code regamnbe storeh(r30+#-584)=r17 r21=extract(r21 #14#6)

replaced by a common representative with the difference
class encoded in a LUT. Thus in Figure 3, the difference
items are “constant operand” and “memory offset”. €her

r9=loaduh(r29+#16)
r10=Hoadw(r29+#600
jump .Lt_10_ 294

storeh(r30+#-584)=r21
r9=loaduh(r29+#16)
r1l0=goadw(r29+#720
jump .Lt_10_294

three difference types — constant operand in logical-or | .Lt_10_12:

. : r20=loaduh(r30+#-584)
operation, constant operand_ for the width qf extract | 5o 208 DIFFERENGE GLASS
operation, and memory offset in the loadw operatioreséh r20=extract(r20,#12#6)

Difference Iteml: Constant Operand

« Difference Type 1: constant operal
in “logical-or operation”

« Difference Type 2: bit width in
extract operation

storeh(r30+#-584)=r20
r9=loaduh(r29+#16)
r10=Hoadw(r29+#680
jump .Lt_10_ 294

three difference types form the difference class tingguely
clusters the three code regions (basic blocks in thase)c
with labels .Lt 10 13, .Lt 10 12, and .Lt 10 11 into a
single group.

[}

Difference Item2: Memory Offset
» Difference Type 3: memory offsets
in load word, i.e., loadw

2.4 Encoding and decoding the differences

EXAMPLE ENCODING:

Encoding and decoding are needed when a difference clas
has multiple differences types. Compact encoding of the’
differences types are needed for efficient memory us#ge.
greedy approach for compaction is currently used, where th ~ Figure 3: An example showing three similar BBs with
maximum bit requirement to represent the particular multiple classes of difference that can be successfully
difference, among all the code-regions being compared, is encoded into the look-up table without increasing its. size
determined. The difference types are then arranged ifkjg e 4 shows an example where the number of difference
ascending order of “maximum bit requirements” per type.y g s Jarge enough to require additional LUT. In this
Figure 3 shows three code-regions (basic blocks witHdabe example the code-regions being compared are three basic

Lt 10_13, .Lt 10_12, and .Lt_10_11) that are similar with j,;, .o with labels .Lt 30 1, .Lt 30 3, and .Lt 30 7. There
three difference types: constant operand for the logical are four differences types of difference item “constant

Memory offset Logical-or operan| Extract bit-width

31st bit 15th bit 7th bit 0 bit

operand”, each of which would require at least 8 bitsr&he regions (example for two different code regions giverway t
are two difference types of difference item “memorfgef, different case statements), similarity is determined
requiring 10 and 15 bits respectively. Finally the last hierarchically, i.e., first the control flow patteisicompared,
difference type is of difference item “function withnsa then the individual basic blocks, finally the operatiomghe
signature”, requiring 32 bits for 4-byte addresses. Thisbasic-blocks and their operands. The differences thdtl co
example needs 12 bytes to encode the difference class, thibe encoded in the LUT are at the operand level. Thus two

requiring extra 8 bytes per existing jump-table entry.

regions are similar if they have the same contool fbattern
and their basic blocks have the same operations Wwih t

Lt 301 Lt 30 3; Lt 30_7: i ;
r0=loadub(r25+#124) r0=loadub(r25+#248) r0=loadub(r25+#492) same de_pendency graph, but the deVIduaI. operations could
11=#33 11=#66 =455 have different constant values as their operands, as
r2=loadw(r24+#1020) r2=loadw(r24+#2040) r2=loadw(r24+#4088) mentioned in section 2.3.
13=#125 13=#10 r3=#114
r4=#75 r4=#95 r4=#15 A pair of code-regions is rejected if there is any diffece
r5=#85 r5=#51 r5=#49 item that can’t be handled by the scope of this payree.|ist
call Calleel call Callee2 call Callee3 R . . R . X .
jump .Lt_30_2 jump Lt _30_2 jump Lt 30_2 of pair-wise code regions, with each pair having its dis

Difference Class difference types, is then used to form disjoint setsoole-

Item: Constant Operands Item: Memory Offset Item:functionwit_h&mw regions of a particular “difference class”. As descrilied
« Types: constants loaded * Types: memory offsets + Types: the function called . g ” .
inrl. 13, i, 15 for loadub and loadw section 2.3, a “difference class” uniquely clusters a grdup o

similar code regions. Each difference class contaigmoap
of code-regions, whose difference items can be exactly
encoded in the same way in the LUT and decoded with

EXAMPLE ENCODING REQUIRES AT LEAST THREE WORDS (12 bytes):

‘ Constant for “r5” ‘ Constant for “r4” ‘Constant for “r3” ‘ Constant for “r1” ‘

31st bit 23rd bit 15th bit 7th bit 0 bit exactly the same set of operations. This makes th#f setle
‘ unused ‘ offset for “loadw to r2” ‘offsetfor “loadub to rO"‘ re_glons re_placeable by a Smgle representatlve Coqenfegm
3STstbit 24t bit ot bit obit with the difference class encoded in a LUT and diffeeenc

types read back using the decoding instructions that are
added in the representative code region. The originattswit
index becomes the LUT index, similar to the indexing
mechanism of a jump table. The list of pair-wise code
regions are first arranged in descending order of number of
difference types found in the pair. Thus if a particuladeco
region Z occurs multiple times in the list with otherde

Decoding involves extracting the value for the particular '€9ions W, X, Y, with each pair (Z,W), (Z,X), and (Z)
difference type from the entries of the LUT. Howevertlike ~ having different number of difference types, the paihwite
encoding, where the encoded values are compile timdligher number of difference types gets priority. Example, i
constants, decoding involves introduction of assemblythe difference types in (Z, W) > difference types inX(z>
instructions that extracts a consecutive sequence ef bitdifference typesin (2'Y) , the pair (Z, W) is fiesinsidered
starting from a certain offset, at runtime. As an epegto ~ @s & difference class. The pairs (Z,X) and (Z,Y) &iso be
extract the value for the logical-or operand in figure 3, aincluded if the difference types present in them are aesub
signed extract operation with the semantics Of the difference types found in (Z,W). However, if ariyhe
“Rx=signed_extract(Ry=LUT _entry, width=8, offset=8)" is difference types in (Z,X) and/or (Z,Y) is not a sultben X
used. This operation extracts a contiguous set of 8 bits) a _and/or Y cannot be included in the difference class that
offset of 8 bits from the least significant bit ottregister Ry ~ includes Z and W.

containing the LUT entry. The extracted value is signedThe disjoint sets of code-regions of specific differeciesses
extended and saved in register Rx. In most processors signe@n pe pictorially represented as a Venn diagram, asnsho
extract is implemented using an arithmetic shift-leftXy in figure 5, which represents different code regions as
followed by arithmetic shift-right by Y, where, X aivdare: numbers. The following disjoint sets representing differe
difference classes of code region are present: {1,2,3,4},
{5,6,7}, {8,9}, {13, 14}, {15,16,17}, {18,19,20}, {21,22},
{23,24,25,26}, {27,28,29,30,31,32}. Each set A, B, C, D, E,
F represents a difference type (as discussed in secBpn 2.
Example: the set {1, 2, 3, 4} represents code regions whose
difference class is composed of only a single differayge

A, the set {5, 6, 7,} represents code regions whose diffax
class is composed of a combination of two differegpes A

‘ Callee Function Address ‘
31st bit 0 bit
Figure 4: An example showing multiple similar BBs with
multiple classes of difference that can only be encoded
the look-up table by increasing its size, or adding a new
look-up table.

« X = Right shift value = “no. of bits in register —
(width+offset)”, and

e Y = Left shift value = “no. of bits in register — width
2.5 Description of the algorithm

The input to the algorithm is a pair of code-regions Hrat
to be compared for similarity. For a particular paircodle-

and B, while the set {8, 9} represents code regions whoseegister renaming to solve the problem. However, dubdo
difference class is composed of a combination of thredimited number of registers, not all registers could be
difference types A, B, and C. In each of the disjoegion, renamed with spare registers and some additional retgster
the set of code regions can be replaced by a reprasentat register move instructions have to be inserted. Thaggster
code-region and a LUT with number of entries equal to therenaming could not solve the problem completely. Third,
number of similar code-regions in that set. Some additio working with a special order of instructions hinders the
control code is needed to allow control to jump to theidentification of similar basic blocks, or code regionEhe
representative code region, when the corresponding caseFLOW sub-phase in the CG-phase of Open64 occurs before
statements are invoked. register allocation andnstruction scheduling. Hence the
methodology described in this paper could avoid the register
A c E N reuse and renaming problem, and also avoided the difficulty

18 in determining similarity due to the reordering of the
20

instruction sequence that comes with scheduling. However
Q the original source code ordering could still hamper

similarity extraction. Hence the methodology in thipgrais
augmented to incorporate the associative, commutatige an
distributive nature of the operations. Also, use-defrthare
created and used in conjunction to the dependency graph to
B . determine the similarity of two code regions to exparel th

28 scope to cases where the original source code ordeninigeca
D| 2 30 different for the same functionality.

F

a # Figure 6 illustrates the overall infrastructure that ubes

difference classification results and the encoded LUdrs,
i o) o replacing code-regions by a single representative coderregi
Figure 5: The disjoint sets of code-r_eglons pictorially across different types of control flow regions. Firtig
represented as a Venn diagram different control flow regions are identified accordirmgttie
. T control flow features. Second, the common interface
3. .COde SI.Ze OptlmflzatI(_)fP across control-flow classifies the difference among the basic blocks ®ion
reglo_ns USII_’lg LUT _Or di _erences) and generates the necessary LUTS, as discussed innS&ctio
In this section we first briefly compare the differen ringjly the control flow regions are processed, and
approaches of code size reduction for similar code regiongansformed according to the needs of the specific aontr
that has been tried out in research. Many previousioy region type. Figure 6 illustrates three specifictoain
approaches of similarity extraction and replacement [5, 2, 4y region types to perform searching for similar agon

and 6] for reducing the code size operated after registegqge regions: (i) case statements regions indicatedbays!
allocation and scheduling, where the code representetion j, g jump table, (i) tail regions that merge at a canm

very close to the final assembly. These approacftsred it (jii) basic block (or code regions with limitedntrol

from some serious problems. First, these approachegdee flow) that form a cascaded chain. The module for
to extract the control flow information after themsiar — herforming difference classification and LUT generation
sequences are _detected, e_md then decide if the two simila{,e generic APIs that enable plugging of newer control
sequences are indeed equivalent w.r.t program control flow,,, region types easy. However, there is a default
As an example two otherwise similar sequences, oneé Ofrocedural extraction phase that also uses the module for
which has an incoming control flow edge in betweentard gfference classification and LUT generation, when no
other doesn't, cannot be replaced by a single représenta gpecific control flow region type is determined. The
code region since it will break the control flow. The yansformation for the case-statement regions witmpj
implementation in this paper is in the control flow (ahies have already been discussed in section 2. The
optimization (CFLOW) sub-phase in the code generationgs|iowing paragraphs briefly describe the application s t

(CG) phase of Open64 and uses the CFG. Second, many gfethodology to control flow regions of different types.
the previous techniques are limited to the textual

representation of a program, where the algorithms are
sensitive to the use of different registers. Some wodesd

Similar
Instances of
a particular
control flow
region type

Similar case
statements determined
from Jump table

Common
Interface

Replace multiple
similar case statements
by a single
Post representative

Processing

Determine similar
tail regions that merge
at the same point

T Difference Classification
' and .
Lookup Table Geheration

Merge similar tail
regions that merge
at the same point

Cascaded
sequence of
_ similar BBs

Similar regions
without specific control
flow type

Procedural
Extraction

Generate loop using
a similar BB as it’s body,
count = #of BBs

Figure 6: Overall infrastructure of code size optimizatising difference classification and LUT generation.

3.1 Tail merging with LUT generation for differences

BB1 BB2
r13=add(r25,r26) r13=sub(r25,r26)
r14=r26 r14=r26

r15=r13+rl4
r0=loadw(r6+#8)

r15=r13+rl4
r0=loadw(r6+#0)

r1=r10 r1=r10
r2=r11>>#2 r2=r11>>#2
r3=r2 r3=r2

r4 =r13-r14 r4=r13-rl4
r5=#11 r5=#91
r6=r15+1 r6=r15+1

call msg_send_3 call msg_send_3

l }

BB4 BB5
r12=#0 r12=#0
r13=#1 r13=#1
jump .LBB7_agc_init jump .LBB7_agc_init

T~

BB7
.LBB7_agc_init:

BB6
r13=#1
jump .LBB7_agc_init

Figure 7(a) CFG before code size optimizagatoss tail regions
that merge at a common point.

Figure 7 (a) gives an example of tail regions that could

potentially be merged. In this example, the basic bl@tks
and BB2 are similar; BB4, BB5 are exactly same, whil& BB

completely the same (i.e. BB4 and BB6); then one basic

block (i.e. BB4) is split. Next, the algorithm merges the

similar basic blocks (i.e. BB4, BB5, and BB6). The

algorithm optimizes the control flow graph by optimizitig
branches and removing the unreachable basic blocks (i.e
BB5), making BB4 as the successor of both BB1 and BB2.

BB1
Rz=#0
r13=add(r25,r26)

new BB
r14=r26
r15=r13+r14
Ry=#LUT_base_address;
Ry=Ry+Rz
Rx=loadh(Ry+#0)
rO=extract(Rx,8,8);
ro=r0+r6
rO=loadw(r0+0)
r1=r10
r2=r11>>#2
r3=r2
r4=r13-r14
r5=extract(Rx,8,0)
r6=r15+1
call msg_send_3

l

\ —
Rz=#2

R13=sub(r25,r26)

BB4 BB6
r12=#0 jump .LBB9_agc_init
BB9
.LBB9_agc_init:
r13=#1
l Look Up Table
0 11
BB7
.LBB7_agc_init: 8 91

has one less operation than in BB4/BB5. The algorithm Figure 7(b) CFG after code size optimization across tail

starts from the basic blocks (i.e. BB4, BB5, and BB@&hwi

regions that merge at a common point.

the same successor (i.e. BB7), and first determines the

number of instructions in them. If two basic blocks aot

The algorithm is further applied to BB1 and BB2. The The call site initializes the LUT index and passessitaa
algorithm detects instructions that have differencesargument to the abstracted procedure (as shown by register
conforming to the acceptable difference categories, as0 before the call to “NewProcedure” in Figure 9).

discussed in section 2. The instructions (i.e.

rO=loadw(r6+#0) in BB1 compares with rO=loadw(r6+#8) in ro:loi?j&v(r& 40) !
BB2 with the memory offset difference. Similarly, the ri=r10 Ry=#TEV'I\{ BbBasee address
instruction r5=#11 in BB1, compares with instruction ra7rL06 LoopCounter=#5
r5=#91 in BB2 with the difference in the constant operand. call msg_send_3
Representing these two difference sets in the LUT thus l '
increases the scope of the code-region that could be tai BB2 L oonSta New BB 7
meraed. rO=loadw(r6+#48) 0op: a_:
> o faih e e

The final control flow graph after tail-merging the cede r3=r11 Rz=r6+Rz;
regions is shown in Figure 7 (b). The associated LUAISs call msg_send_3 :gz'rigdW(Rz)?
shown. The operation Rz=#0 and Rz=#2 sets the LUT offse l r2=extract(Rx,16,0)
to be used for accessing the LUT entry for the twgioail BB3 ﬁ%lsg cond 3
basic blocks, BB1 and BB2 respectively. In this example r0l0adu(16+#30) LoopEnd
each LUT entry is 2 bytes, using a byte each for e t r2=#224
difference categories. ool msg_send_3
3.2 Loop conversion for a sequence of cascaded code l LOOK UP TABLE:
regions with LUT generation for the differences r0=|o§dBvc(r6+#64) Upper half-word is for the load
Figure 8(a) shows a sequence of code regions (basic blocl [;112%8 fgjveetr half-word is for the
BB1, BB2, BB3, BB4, and BB5) forming a cascaded chain. r3=r11 constant loaded in r2
The sequences of similar code-regions have a uniqu callmsg_send 3 0 106
predecessor and successor relationship and could be replac 48 135
by a loop. Figure 8(b) shows the transformed loop bodg. Th O=lontn(6+#72) P
loop body is a single representative code-region (shawvn a ri=rio
New BB 7), and the loop header (shows as New BB 6)tA se romresa o |
of additional decoding operations on the LUT entry, whsch call msg_send_3 72 234
indexed by the loop induction variable, is present inlabp
body (i.e., New BB 7).

(a) CFG before (b) CFG after

3.3 Procedural abstraction with LUT generation for the

: code size optimization code size optimization
differences

Figure 8: Code size optimization for a cascaded chaimlasi
Procedural abstraction can be augmented with difference BBs
classification and LUT generation, when no specificton
flow region type can be determined. The methodologyig th 4. Results
paper can improve the traditional procedural abstractionThis section provides some of the results of using #we n
technique. In the traditional procedural abstractioncode size optimization method discussed in this paper.
technique, the different instructions between the tasido Implementation is done in Open64, but other compilers, (e.g.
blocks are left in the original code region. While the GCC 3.4.6 and GCC 4.3.2) would also benefit by
approach in this paper can include the operations involvedmplementing this optimization. This is a work in progtes
with the differences in the abstracted procedure byThe current implementation focuses on the similar case
incorporating the differences in the LUT. The abstdct statements in switch-case constructs. Additional Lldfe
procedure has some additional instructions to load thenot added; hence the total size of the encoded value is
particular LUT entry and operations to decode and generatémited to the address size in the target processobleTh
the difference values. Figure 9 shows an example ofshows the comparison in text size (pure text and read only
procedure abstraction with LUT generation. Two similar sections) with original Open64 (i.e., without the
code regions that are replaced by two calls to theaadbstl optimization), GCC 3.4.6 and GCC 4.3.2, all compiled using
procedure, named “NewProcedure”, are shown in Figure 9-Os optimization level.

r4=add(r5,#10)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
rd4=or(r4,#12)

<OTHER
INSTRUCTIONS
EXACTLY SAME>

i <

ro=#10
rl=#12

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,rl1)

<OTHER
INSTRUCTIONS
EXACTLY
SAME>

1 <

rO=#0
call NewProcedure

NewProcedure:

Rx=
#LUT_base_address

Rx=Rx+r0

rO=load w(Rx+#0)
rO=extract(rO ,#8,#0)
rl=extract(rO ,#8,#8)

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;

r4=and(r4, r2)
r4=loadw(r4)

r4=or(r4,r1)

ro=#14
r1=#51

<OTHER
INSTRUCTIONS
EXACTLY SAME>

r4=add(r5,#14)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)

ro=#4
call NewProcedure

r4=add(r5,r0) "= t
r4=mul(r4,r3)
r4=r4<<2;

e <

r4=loadw(r4) r4=and(r4, r2) RETURN
ra=or(r4#51) r4=loadw(r4)
r4=or(r4,rl1)
<OTHER Look Up Table
INSTRUCTIONS <OTHER
EXACTLY SAME> INSTRUCTIONS 12 10
EXACTLY 51 14
SAME>

Figure 9: Procedural abstraction with difference encoding.

The test cases in table 1 are obtained from Qualcomm’sery small performance reduction in most cases. Tigatsl
software applications on mobile devices and containasne performance reduction (for tests 9, 10, and 11) is attributed
more functions. It is seen that the methodology is gaper to the overhead for decoding the LUT and the contraV flo
consistently reduces code size: for pure text (assemblypverhead to select the particular representative cagiene
instructions) in the range of 30% to 80%, while the tteat when compared to a pure jump table based implementation.
(pure text and read only data) in the range of 5% to 60%In some cases, like test example 8, cycles can degrade
For an entire application the total code size reduatiounld noticeably when there are multiple difference classabe
depend on how frequently functions with largely similageca switch-case construct, or frequent gaps in the casesyalue
statements are present in them. leading to large control flow overhead for selecting the
representative code regions. Test example 7 actually shows

. remarkable improvement in performance because the
impact on cycle performance of the new methodology on

Open64. It compares the original Open64 and the modifieqorlglnal Openb4 d|d_nt use jump table to lower the SW't_Ch'
. ' o . case statement, while the modified Open64 lowered to jump
Open64 (i.e., with the novel methodology in it). It ees

that code size consistently reduces (as large as 38%), wi :;b;irand then performed the optimization described s th

Table 2 illustrates the total text size improvement #red

Table 1: Code size when using the methodology in Open64dacompared with other compilers, using —Os optimizatiorievel.

Test | GCC 4.3.2 (size in byteg) GCC 3.4.6 (size in bytes) OaigDpen64 Methodology in Open64
cases (size in bytes) (size in bytes)
Pure | rodata | Total | Pure rodata | Total | Pure | rodat | Total Pure rodata | Total
text text text text text a text text text
1 3368 6164 9532 3364 6164 9524 4040 7512 1158576 6568 8244
2 1152 308 1460 1224 312 1536 1352 352 1704916 476 1392
3 1032 352 1384 1036 352 1388 1336 352 1688572 416 988
4 896 0 896 876 0 876 1352 O 1352 116 224 340
5 2204 | 9204 11408 2204 9204 11408 2220 9208 114324 9208 9732
6 1052 1128 2180 1088 1128 2216 724 1952 2680724 1392 2116

] . . [3] Wen-Ke Chen, Bengu Li, Rajiv Gupta, “Code
Table 2: Comparing total text size and cycle performance of . f hi inal ltiol .
original and modified Open64 using —Os optimization level. Compaft'on of Matching Single-entry Multiple-exit

regions”.
Test | Original Methodology | Percentage [4] J. Krinke, “ldentifying similar code with program

Open64 in Open64 improvement dependence graphs”, WCRE, pages 301-309, Stuttgart,

Text | Kilo Text | Kilo Text | Cycle Germany, Oc_tober 2001_‘ _)

size cycles | size | cycles | size | Perf. [5] John Gilbert, David M. Abrahamson. Adaptive object

code compression. In proceedings of the 2006 international
1884 | 3.89 1168 2.76 +38 427 conference on compilers, architectures and synthesis f
2448 | 34.1 1896 39.0 +22 -14.83 embedded systems. 2006.

3744 | 1161 | 3672 1162 +2 0.0o [6] Warren Cheung, William Evans, Jeremy Moses.

Predicated instructions for code compaction. Lecture dNote
10 11860 1735 8372 17360 +29 -0.05 Computer Science: Software and Compilers for Embedded
11 7392 | 20996 4580 21329 +34 -1.5 Systems, 7th International 2826, 17-32. 2003.

[71 Open64, http://open64.sourceforge.net/

) [8] WHIRL Intermediate Language Specification,
5. Summary and conclusion whirl.pdf. http://open64.sourceforge.net
In this paper we described a code size optimization[g] WHIRL Symbol Table Specification

methodology based on difference classification and Iook-upSymtab Pro64_SGl.pdf. http:/open64.sourceforge.net
table generation. The methodology can be consistesty - - ' ' '

for code size optimization of the non time-criticatfpans of
the applications. The side benefits are improved instruct : u - .
cache performance and increased availability of ingtmc g;z;odr (?rllmop Sg:é 4?%/eleonp6m4€\7vto(:lf<:hnoeﬁ§(')%'g DSP cderpi
bus bandwidth. The optimization has been implemented in P P P. '

the Open64 compiler, but could also be implemented in otheftl] Miroslav. Popovic, “Communication Protocol
compilers, e.g., GCC (versions 3.4.6. or 4.3.2). Engineering”, Edition: illustrated, Published by CRC Press

2006 ISBN 0849398142, 9780849398148.

The work to enhance Open64 for code size is ONgOING151 Ganor Loki, Akos Kiss, Judit Jasz, Arpad Beszédes,
further enhancements are being looked into, as meutione «~g4e Factoring in GCC”, Proceedings of the GCC

section 1.2. We compared the enhanced Open64 compilghe,eigner Summit, June 2nd—4th, 2004, Ottawa, Ontario,
with the GNU 3.4.6 and 4.3.2 compiler versions for memory ~,n44a

usage (i.e., code size) of the generated assembly cade al
compared the impact on cycle performance with and withou u .
the novel methodology in Open64. The results are progisin I(rj]on‘:‘ee“r/:ncseoulrggg from bytecodes, USENIX" Technical
and we are further enhancing the methodology for various ' '
types of control flow regions.

[10] Subrato De, Anshuman Dasgupta, Sundeep
Kushwaha, Tony Linthicum, Susan Brownhill, Sergei Larin

{[]13] Brenda S. Baker, Udi Manber, “Deducing similarities

6. Acknowledgements

Thanks to other members of Qualcomm’s DSP compiler
team: Anshuman Dasgupta, Raja Venkateswaran, Sundeep
Kushwaha, and Sergei Larin, for some of their valuable
feedback on this work. Special thanks to Taylor Simpson,
director of Qualcomm’s DSP system software group, for
supporting this work.

REFERENCES

[1] Saumya Debray, Wiliam Evans, Robert Muth,
“Compiler Techniques for Code Compression”.

[21 Keith D. Cooper and Nathaniel Mcintosh, “Enhanced
code compression for embedded RISC processors”, Proc.
SIGPLAN '99 Conference on Programming Language
Design and Implementation, May 1999.

10

http://open64.sourceforge.net/

