
 1

Code Size reduction by difference classification and customized
look-up table generation

Subrato K. De, Kun Zhang, Tony Linthicum

Qualcomm Incorporated, San Diego & Austin, USA.

{sde, zhangk, tlinth }@qualcomm.com

ABSTRACT

Code size has become an important constraint for
applications on mobile devices. Not only should the
applications be very responsive and execute fast, they
should also consume low power, and be reasonably compact
in size to fit in the limited memory of the mobile devices. In
this paper we focus on a specific opportunity of code size
optimization that is detected in software for mobile devices
like wireless networking protocols, modems, etc. These
applications have large amount of code-regions across the
control-flow graph that are inherently similar, but with
slight differences that are compile time constants. Examples
of such similar code regions are: case statements labeled by
“jump tables”, tail regions that merge to a common point,
cascaded sequence of similar code-regions with unique
predecessor-successor relationship, etc. This paper presents
a novel approach where similar code-regions across the
control flow graph are classified into disjoint sets based on
their differences, and then replaced by a single
representative code-region with the differences encoded in
customized look-up tables resulting in reduced code size.
The methodology shows remarkable reduction in code size
for large switch-case constructs that have very similar case
statements. Implementation is done in the Open64 compiler,
even though it could be integrated with other compilers
(e.g., GCC). We also provide some results of code size
reduction, which are in the range of 30% to 80% for pure
text (instructions only), and 5% to 60% for total text
(instructions and read only data), achieved by the algorithm
on some of the functions in software applications for mobile
devices.

1. Introduction
Open64 is an open source C/C++/Fortran77/90 compiler that
is currently used in various industry and academic research
projects. It originates from the SGI Pro64(TM) compiler
suite that was released under the GNU General Public
License. Open64 was originally intended to be a compiler
generating high performance code that is extremely focused
on execution speed of the generated code. Optimization for
code size of the generated assembly, to the extent demanded
by application developers for mobile devices, was not the
focus. However, the use of Open64 in Qualcomm as a

compiler for embedded/DSP processors used in mobile
devices created the urgent need for enhancing the code size
optimization infrastructure within Open64. We will briefly
summarize the different features of Open64 and then discuss
some generic improvements for code size optimization. Then
we illustrate the details of code size reduction by difference
classification and customized look-up table generation,
which is the main theme of this paper.

1.1 Open64 as a compiler for generating high
performance code

Open64 uses an intermediate representation (IR) called
WHIRL that has multiple levels of representation and serves
as the common interface for the compiler phases. The
optimizations are mainly geared towards cycle performance,
as evidenced by the exhaustive set of loop optimizations and
transformations, vectorization, aggressive unrolling and
inlining, function cloning, hyperblock scheduling, and
predication. The important phases of Open64 are:

• The very high level optimizer (VHO) lowers
aggregates, flattens nested calls, etc.

• The inter-procedural analysis (IPA) first gathers data
flow analysis information from each procedure locally.
It then generates the call graph, performs inter-
procedural analysis and transformations. It performs
global variable optimization, dead function
elimination, inter-procedural alias analysis, function
cloning, constant propagation, function inlining, etc.

• The loop nest optimization (LNO) phase calculates
dependence graph for array accesses and performs
loop transformations, and automatic vectorization.

• The global optimizer (WOPT) computes the control
flow graph, the dominator tree, dominance frontier,
control dependence set, and then converts the IR to a
hashed SSA form. It performs def-use analysis, alias
classification, pointer analysis, induction variable
recognition/elimination, copy propagation, dead code
elimination, partial redundancy elimination, register
variable identification, bitwise dead-code elimination.

• The code generator (CG) performs target specific
optimizations, instruction selection, scheduling,

 2

software pipelining, hyper-block scheduling, register
allocation and emits the assembly code.

The details of these phases can be found in [7, 8, and 9].

1.2 General modifications to Open64 for generating size
aware assembly code

Our goal is to enhance Open64 to generate assembly code
that gives reasonable cycle performance and is also size
optimized. One of our efforts is to leverage interprocedural
analysis (IPA) using -Os for code size optimization. The
function inlining heuristic is made conservative when
compiling with –Os with IPA. The loop unroller heuristic is
enhanced to estimate the benefit of unrolling the loop by a
certain factor. Unrolling is not performed if the estimated
payoff in cycle gain is below a certain limit. The clustering
algorithm for switch lowering in VHO is tuned to generate
denser clusters, leading to more clusters that could be
differently lowered i.e., by jump-table, by linear if-else, by
binary search if-else, based on a heuristic. Changes are been
done in VHO to facilitate aggregate copies, register
promotion of structures and unions, which reduce both code
size and stack usage [10]. Finally, a novel mechanism for
code size optimization, by creating a customized look-up
table (LUT) for the differences found in similar code regions
across the control flow graph (CFG,) is incorporated in the
Open64 compiler. This is the main focus of this paper and is
discussed in details in sections 2 and 3.

1.3 Organization of this paper

This paper is organized as follows. Section 2 illustrates the
difference classification, the encoding/decoding mechanism,
and the generation of the LUT for differences in similar code
regions found across the CFG. Section 3 compares some of
the existing approaches and describes the generalized
infrastructure that uses the difference classification results
and the encoded LUTs, and replaces the similar code-regions
by a single representative. Section 4 compares the
improvement in code size and the performance impact over
some of our internal applications when using the novel
methodology. Finally, we present our conclusions in section
5, followed by acknowledgements.

2. Difference classification and customized
look-up table generation
This section discusses core concept of the novel methodology
where similar code-regions spread across the CFG are
grouped into disjoint sets based on their differences. Each set
is then is replaced by a single representative code-region
with the differences encoded in a compact fashion in LUTs.

2.1 Overview of the methodology through a motivating
example

Figure 1(a) shows a motivating C-code where the impact of
code size reduction is phenomenal using the methodology
described in this paper. It shows a switch-case statement that
is commonly found in wireless networking protocol and
modem software [11]. In the example in figure 1(a), the case
statements can be grouped into three distinct clusters, such
that the case statements in a cluster are very similar to each
other except for some differences that are compile time
constants. It is to be noted that some of these redundancies
can be even removed by a suitable strategies while
developing the C-code. However, the importance of this
work is because of the fact that given a not-so well organized
C/C++ source code, a compiler could generate code efficient
enough in terms of size and cycles needed for software on
mobile devices [12]. Also, there exists vast amount of C/C++
source code that isn’t originally written for embedded
systems keeping in mind the stringent memory requirements,
but need to be quickly incorporated into the product. This
makes a strong case for the need of the work described in
this paper.

extern func1(int x, int y);
extern func2(int x, int y);
extern func3(int x, int y);
extern func4(int x, int y);
extern func5(int x, int y);
extern func6(int x, int y);
extern int g_array[];

int test(int i, int x)
{

int a;
switch(i)
{
case 1: a = 27 + x; break;
case 2: a = 55 + x; break;
case 3: a = 1024 + x; break;
case 4: a = 23 + x; break;
case 5: a = 129 + x; break;
case 6: a = 256 + x; break;

case 7: a = g_array[1]; break;
case 8: a = g_array[6]; break;
case 9: a = g_array[2]; break;
case 10: a = g_array[9]; break;
case 11: a = g_array[5]; break;
case 12: a = g_array[4]; break;

case 13: a = func1(x,1); break;
case 14: a = func2(x,1); break;
case 15: a = func3(x,1); break;
case 16: a = func4(x,1); break;
case 17: a = func5(x,1); break;
case 18: a = func6(x,1); break;

default: a = i; break;

}
return(a);

}

Figure 1(a): C-code for the motivating example.

The fundamental idea is to replace a set of similar code
regions (in this example the case statements), by a
representative code region, and encode the difference into a
LUT. While, the idea of similar code identification has been
used in various researches [4, 13], the novelty of the work in
this paper comes from the following:

• Classification based on the types of differences so that
they can be suitably encoded and decoded.

• Increased scope of the similar regions by a compact
encoding of as many difference items as possible.

• Use of heuristics to trade-off between code size
increases due to the overhead (addition read-only data
in LUT, additional decoding instructions) v.s. code

 3

size reduction due to removal of multiple instances of
similar code regions by a single representative.

• Lightweight mechanism to detect similar code-regions
by using the CFG as the guiding factor.

Figure 1(b) shows the code generated by Open64 compiler
using 68 instructions, as well as GNU C/C++ compiler
versions 3.4.6, and 4.3.2, without using the methodology
described in this paper. All three compilers generated a jump
table whose entries are the labels for the case statements.

test:
r8=#(.rodata)
r6=r0
if (r0 >= #19)
jump .Lt_0_2

r8=add(r8,r0<<#2)
r9=loadw(r8+#0)
jumpr r9

.Lt_0_2:
r0=r6
return;

.Lt_0_19:
r0=r1
r1=#1
call func6
r6=r0
jump .Lt_0_2

.Lt_0_18:
r0=r1
r1=#1
call func5
r6=r0
jump .Lt_0_2

.Lt_0_17:
r0=r1
r1=#1
call func4
r6=r0
jump .Lt_0_2

.Lt_0_16:
r0=r1
r1=#1
call func3
r6=r0
jump .Lt_0_2

.Lt_0_15:
r0=r1
r1=#1
call func2
r6=r0
jump .Lt_0_2

.Lt_0_14:
r0=r1
r1=#1
call func1
r6=r0
jump .Lt_0_2

.Lt_0_13:
r6=#(g_array+16)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_12:
r6=#(g_array+20)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_11:
r6=#(g_array+36)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_10:
r6=#(g_array+8)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_9:
r6=#(g_array+24)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_8:
r6=#(g_array+4)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_7:
r6=add(r1,#256)
jump .Lt_0_2

.Lt_0_6:
r6=add(r1,#129)
jump .Lt_0_2

.Lt_0_5:
r6=add(r1,#23)
jump .Lt_0_2

.Lt_0_4:
r6=add(r1,#1024)
jump .Lt_0_2

.Lt_0_3:
r6=add(r1,#55)
jump .Lt_0_2

.Lt_0_1:
r6=add(r1,#27)
jump .Lt_0_2

ORIGINAL
JUMP
TABLE

.section

.rodata

.org 0x0

.word .Lt_0_2

.word .Lt_0_1

.word .Lt_0_3

.word .Lt_0_4

.word .Lt_0_5

.word .Lt_0_6

.word .Lt_0_7

.word .Lt_0_8

.word .Lt_0_9

.word .Lt_0_10

.word .Lt_0_11

.word .Lt_0_12

.word .Lt_0_13

.word .Lt_0_14

.word .Lt_0_15

.word .Lt_0_16

.word .Lt_0_17

.word .Lt_0_18

.word .Lt_0_19

Figure 1(b): Assembly code for the motivating example

without the optimization discussed in this paper

Figure 2 shows the assembly code using 22 instructions
when the methodology described in this paper is used. The
jump table entries are replaced with the difference items that
are compile time constants and the similar case statements
that are replaced by a single representative. The jump table
now partly behaves like a look-up table. However, some
additional code is needed for decoding the LUT entries and
for the conditional jumps that leads the program control to
execute the particular representative case statement. A
reduction of 68 -22 = 46 is achieved, while the read only
data (rodata) size for the jump table remains unchanged.

2.2 Profitability of doing the transformation

The example in the previous section uses a jump table to
implement the switch-case statements. Entries of the LUT
are formed by replacing the corresponding entry of the jump
table. However, there is some additional control code needed
to make the execution reach the specific case statement that
is a representative for the set of similar case statements.

test:
r8=#(.rodata)
r6=r0

if (r0 >= #19)
jump .Lt_0_2

r8=add(r8,r0<<#2)
r9=loadw(r8+#0)

.Lt_Unchanged:
if (r0 <= #0)

jumpr r9

.Lt_SingleConst:
if (r0 <= #6)

jump .Lt_0_1

.Lt_MemOffset:
if (r0 <= #12)

jump .Lt_0_8

.Lt_SameCallSig:
if (r0 <= #18)

jump .Lt_0_14

JUMP TABLE
NOW PARTLY
BECOMES LUT

.section .rodata

.org 0x0

.word .Lt_0_2

.word 27

.word 55

.word 1024

.word 23

.word 129

.word 256

.word 4

.word 24

.word 8

.word 36

.word 20

.word 16

.word &func1

.word &func2

.word &func3

.word &func4

.word &func5

.word &func6

.Lt_0_2:
r0=r6
return;

.Lt_0_14:
r0=r1
r1=#1
callr r9
r6=r0
jump .Lt_0_2

.Lt_0_8:
r6=#(g_array)
r6=r6+r9
r6=loadw(r6+#0)
jump.Lt_0_2

.Lt_0_1:
r6=add(r1,r9)
jump .Lt_0_2

ASSEMBLY CODE AND LUT
WITH THE NOVEL METHODOLOGY

Figure 2: Assembly code generated for the motivating
example using the optimization discussed in this paper. It

shows much reduced code size.

There is also some additional code in the representative case
statement for decoding and extracting the desired value from
the LUT entry. These give rise to the overhead components
of doing this optimization, both for code size and cycles. If
the code size of the overhead becomes more than the
memory saving obtained by replacing multiple case
statements by a single representative, the optimizing won’t
be beneficial. Hence we use a profitability function to decide
for or against invoking the transformation for code size
benefit:

• CODE SIZE REDUCED = {(SIZE OF A SIMILAR
CODE REGION) * (# OF SIMILAR REGIONS
DETECTED -1) - (SIZE OF CODE TO ACCESS LUT
+ SIZE OF DECODE CODE + SIZE OF GLUE
CONTROL CODE + ADDITIONAL LUT SIZE)}

• % CODE SIZE REDUCED = “CODE SIZE
REDUCED” * 100 / {(SIZE OF A SIMILAR CODE
REGION) * (# OF SIMILAR REGIONS DETECTED)}

The optimization is useful if “CODE SIZE REDUCED” > 0.
However, cycle performance is reduced slightly when
compared to the performance of a pure jump-table based
implementation, particularly if there is some discontinuity in
the case numbers and there are multiple groups of similar
case statements. In the code size optimized example in
Figure 2, there is some additional control flow overhead to
determine the particular representative code region (out of
the three groups) to jump to, based on the switch index.
However, this method can be applied for code size

 4

optimization of non time-critical portions of the application
by using the profitability function discussed in this section.

2.3 Difference types and difference classes

The types of differences that can be considered must be a
compile time constant so that it can be encoded in a LUT. As
an example, we can consider differences in two constant
operands (say 123 v.s. 99), but cannot easily consider two
different operations (say addition v.s. subtraction). If we
really want to incorporate such difference, it will add control
code overhead to decide on between “addition” v.s.
“subtraction” at runtime based on a particular value (say “1”
for addition, and “2” for subtraction) encoded in the LUT
entry. Certainly, capturing such difference might be
profitable under certain conditions, but is considered for
future enhancement.

Based on our analysis of certain mobile software code, the
current scope of this paper considered the following
frequently occurring difference items: (i) constant operands,
(ii) memory offset in the “base+offset” addressing mode for
loads and stores, (iii) constants used in address computation,
and (iv) functions with the same signature. When comparing
two or more similar code regions, different instances of one
or more of the above difference items are actually associated
with distinct operations in the code region making them
uniquely identifiable, and are called difference types. The list
of all the difference types among two or more comparable
code regions forms a “difference class”. When all
instructions of the comparable code regions, except those in
the difference class, are exactly same the code regions can be
replaced by a common representative with the difference
class encoded in a LUT. Thus in Figure 3, the difference
items are “constant operand” and “memory offset”. There
three difference types – constant operand in logical-or
operation, constant operand for the width of extract
operation, and memory offset in the loadw operation. These
three difference types form the difference class that uniquely
clusters the three code regions (basic blocks in this case)
with labels .Lt_10_13, .Lt_10_12, and .Lt_10_11 into a
single group.

2.4 Encoding and decoding the differences

Encoding and decoding are needed when a difference class
has multiple differences types. Compact encoding of the
differences types are needed for efficient memory usage. A
greedy approach for compaction is currently used, where the
maximum bit requirement to represent the particular
difference, among all the code-regions being compared, is
determined. The difference types are then arranged in
ascending order of “maximum bit requirements” per type.
Figure 3 shows three code-regions (basic blocks with labels
.Lt_10_13, .Lt_10_12, and .Lt_10_11) that are similar with
three difference types: constant operand for the logical-or

operation (the 3 values in order are: 16, 8, and 4), constant
representing the bit-width of the extract operation (the 3
values in order are: 10, 12 and 14), and the memory offset
for the “loadw” operation (the 3 values in order are: 600,
680 and 720). The maximum bits required to represent the
three difference types are:

• constant operand for the logical-or operation =
BinaryBits(MAX[16, 8,4]) + 1 = 6 bits,

• constant for the bit-width of the extract operation =
BinaryBits (MAX[10, 12,14]) + 1 = 5 bits,

• memory offset for the “loadw” operation = BinaryBits
(MAX[600, 680,720]) + 1 = 11 bits.

Where, BinaryBits() is a function that computes the number
of bits in the binary representation of the magnitude of the
number, e.g., 16 decimal = 10000 binary (needs 5-bits), 14
decimal = 1110 binary (needs 4-bits). Thus the difference
class for the code regions can be implemented using 6 + 5 +
11 = 22 bits. Since there is already 32 bits available (1 word)
from the existing jump table, we have a relaxed constraint.
Hence, the encoding done is: 0th to 7th bits for representing
“bit-width” for the extract operation, 8th to 15th bit for
representing the constant operand for the logical-or
operation, 16th to 31st bit for representing the memory offset
of the “loadw” operation.

.Lt_10_13:
r17=loaduh(r30+#-584)
r17=or(r17,#16)
r17=extract(r17,#10,#6)
storeh(r30+#-584)=r17
r9=loaduh(r29+#16)
r10=loadw(r29+#600)
jump .Lt_10_294

.Lt_10_12:
r20=loaduh(r30+#-584)
r20=or(r20,#8)
r20=extract(r20,#12,#6)
storeh(r30+#-584)=r20
r9=loaduh(r29+#16)
r10=loadw(r29+#680)
jump .Lt_10_294

.Lt_10_11:
r21=loaduh(r30+#-584)
r21=or(r21,#4)

r21=extract(r21,#14,#6)
storeh(r30+#-584)=r21
r9=loaduh(r29+#16)
r10=loadw(r29+#720)
jump .Lt_10_294

EXAMPLE ENCODING:

Memory offset Logical-or operand Extract bit-width

0 bit7th bit15th bit31st bit

Difference Item2: Memory Offset
• Difference Type 3: memory offsets

in load word, i.e., loadw

Difference Item1: Constant Operand
• Difference Type 1: constant operand

in “logical-or operation”
• Difference Type 2: bit width in

extract operation

DIFFERENCE CLASS

Figure 3: An example showing three similar BBs with
multiple classes of difference that can be successfully

encoded into the look-up table without increasing its size.

Figure 4 shows an example where the number of difference
types is large enough to require additional LUT. In this
example the code-regions being compared are three basic
blocks with labels .Lt_30_1, .Lt_30_3, and .Lt_30_7. There
are four differences types of difference item “constant

 5

operand”, each of which would require at least 8 bits. There
are two difference types of difference item “memory offset”,
requiring 10 and 15 bits respectively. Finally the last
difference type is of difference item “function with same
signature”, requiring 32 bits for 4-byte addresses. This
example needs 12 bytes to encode the difference class, thus
requiring extra 8 bytes per existing jump-table entry.

.Lt_30_1:
r0=loadub(r25+#124)
r1=#33
r2=loadw(r24+#1020)
r3=#125
r4=#75
r5=#85
call Callee1
jump .Lt_30_2

EXAMPLE ENCODING REQUIRES AT LEAST THREE WORDS (12 bytes):

Callee Function Address

0 bit31st bit

.Lt_30_7:
r0=loadub(r25+#492)
r1=#55
r2=loadw(r24+#4088)
r3=#114
r4=#15
r5=#49
call Callee3
jump .Lt_30_2

Constant for “r3” Constant for “r1”

0 bit7th bit15th bit31st bit

.Lt_30_3:
r0=loadub(r25+#248)
r1=#66
r2=loadw(r24+#2040)
r3=#10
r4=#95
r5=#51
call Callee2
jump .Lt_30_2

offset for “loadw to r2”

0 bit9th bit24th bit

offset for “loadub to r0”

Constant for “r5” Constant for “r4”

23rd bit

unused

31st bit

Item: Memory Offset
• Types: memory offsets

for loadub and loadw

Item: Constant Operands
• Types: constants loaded

in r1, r3, r4, r5

Item: function with same signature
• Types: the function called

Difference Class

Figure 4: An example showing multiple similar BBs with
multiple classes of difference that can only be encoded into

the look-up table by increasing its size, or adding a new
look-up table.

Decoding involves extracting the value for the particular
difference type from the entries of the LUT. However, unlike
encoding, where the encoded values are compile time
constants, decoding involves introduction of assembly
instructions that extracts a consecutive sequence of bits
starting from a certain offset, at runtime. As an example, to
extract the value for the logical-or operand in figure 3, a
signed extract operation with the semantics
“Rx=signed_extract(Ry=LUT_entry, width=8, offset=8)” is
used. This operation extracts a contiguous set of 8 bits, at an
offset of 8 bits from the least significant bit of the register Ry
containing the LUT entry. The extracted value is signed
extended and saved in register Rx. In most processors signed
extract is implemented using an arithmetic shift-left by X,
followed by arithmetic shift-right by Y, where, X and Y are:

• X = Right shift value = “no. of bits in register –
(width+offset)”, and

• Y = Left shift value = “no. of bits in register – width”

2.5 Description of the algorithm

The input to the algorithm is a pair of code-regions that are
to be compared for similarity. For a particular pair of code-

regions (example for two different code regions given by two
different case statements), similarity is determined
hierarchically, i.e., first the control flow pattern is compared,
then the individual basic blocks, finally the operations in the
basic-blocks and their operands. The differences that could
be encoded in the LUT are at the operand level. Thus two
regions are similar if they have the same control flow pattern
and their basic blocks have the same operations with the
same dependency graph, but the individual operations could
have different constant values as their operands, as
mentioned in section 2.3.

A pair of code-regions is rejected if there is any difference
item that can’t be handled by the scope of this paper. The list
of pair-wise code regions, with each pair having its list of
difference types, is then used to form disjoint sets of code-
regions of a particular “difference class”. As described in
section 2.3, a “difference class” uniquely clusters a group of
similar code regions. Each difference class contains a group
of code-regions, whose difference items can be exactly
encoded in the same way in the LUT and decoded with
exactly the same set of operations. This makes the set of code
regions replaceable by a single representative code region,
with the difference class encoded in a LUT and difference
types read back using the decoding instructions that are
added in the representative code region. The original switch
index becomes the LUT index, similar to the indexing
mechanism of a jump table. The list of pair-wise code
regions are first arranged in descending order of number of
difference types found in the pair. Thus if a particular code
region Z occurs multiple times in the list with other code
regions W, X, Y, with each pair (Z,W), (Z,X), and (Z, Y)
having different number of difference types, the pair with the
higher number of difference types gets priority. Example, if
the difference types in (Z, W) > difference types in (Z,X) >
difference types in (Z Y) , the pair (Z, W) is first considered
as a difference class. The pairs (Z,X) and (Z,Y) can also be
included if the difference types present in them are a subset
of the difference types found in (Z,W). However, if any of the
difference types in (Z,X) and/or (Z,Y) is not a subset then X
and/or Y cannot be included in the difference class that
includes Z and W.

The disjoint sets of code-regions of specific difference classes
can be pictorially represented as a Venn diagram, as shown
in figure 5, which represents different code regions as
numbers. The following disjoint sets representing different
difference classes of code region are present: {1,2,3,4},
{5,6,7}, {8,9}, {13, 14}, {15,16,17}, {18,19,20}, {21,22},
{23,24,25,26}, {27,28,29,30,31,32}. Each set A, B, C, D, E,
F represents a difference type (as discussed in section 2.3).
Example: the set {1, 2, 3, 4} represents code regions whose
difference class is composed of only a single difference type
A, the set {5, 6, 7,} represents code regions whose difference
class is composed of a combination of two difference types A

 6

and B, while the set {8, 9} represents code regions whose
difference class is composed of a combination of three
difference types A, B, and C. In each of the disjoint region,
the set of code regions can be replaced by a representative
code-region and a LUT with number of entries equal to the
number of similar code-regions in that set. Some additional
control code is needed to allow control to jump to the
representative code region, when the corresponding case
statements are invoked.

A

B

C

D

E

F
1

2

3

4

5

6

7

8

9

10 11
12

13

14

15

16

17

18
19

20

21
22

23
24

25
26

27

29 30

28

31
32

Figure 5: The disjoint sets of code-regions pictorially
represented as a Venn diagram

3. Code size optimization across control-flow
regions using LUT for differences
In this section we first briefly compare the different
approaches of code size reduction for similar code regions
that has been tried out in research. Many previous
approaches of similarity extraction and replacement [1, 2, 5,
and 6] for reducing the code size operated after register
allocation and scheduling, where the code representation is
very close to the final assembly. These approaches suffered
from some serious problems. First, these approaches needed
to extract the control flow information after the similar
sequences are detected, and then decide if the two similar
sequences are indeed equivalent w.r.t program control flow.
As an example two otherwise similar sequences, one of
which has an incoming control flow edge in between and the
other doesn’t, cannot be replaced by a single representative
code region since it will break the control flow. The
implementation in this paper is in the control flow
optimization (CFLOW) sub-phase in the code generation
(CG) phase of Open64 and uses the CFG. Second, many of
the previous techniques are limited to the textual
representation of a program, where the algorithms are
sensitive to the use of different registers. Some works used

register renaming to solve the problem. However, due to the
limited number of registers, not all registers could be
renamed with spare registers and some additional register to
register move instructions have to be inserted. Thus, register
renaming could not solve the problem completely. Third,
working with a special order of instructions hinders the
identification of similar basic blocks, or code regions. The
CFLOW sub-phase in the CG-phase of Open64 occurs before
register allocation and instruction scheduling. Hence the
methodology described in this paper could avoid the register
reuse and renaming problem, and also avoided the difficulty
in determining similarity due to the reordering of the
instruction sequence that comes with scheduling. However,
the original source code ordering could still hamper
similarity extraction. Hence the methodology in this paper is
augmented to incorporate the associative, commutative and
distributive nature of the operations. Also, use-def chains are
created and used in conjunction to the dependency graph to
determine the similarity of two code regions to expand the
scope to cases where the original source code ordering can be
different for the same functionality.

Figure 6 illustrates the overall infrastructure that uses the
difference classification results and the encoded LUTs, for
replacing code-regions by a single representative code-region
across different types of control flow regions. First, the
different control flow regions are identified according to the
control flow features. Second, the common interface
classifies the difference among the basic blocks in one region
and generates the necessary LUTs, as discussed in Section 2.
Finally, the control flow regions are processed, and
transformed according to the needs of the specific control
flow region type. Figure 6 illustrates three specific control
flow region types to perform searching for similar among
code regions: (i) case statements regions indicated by labels
in a jump table, (ii) tail regions that merge at a common
point, (iii) basic block (or code regions with limited control
flow) that form a cascaded chain. The module for
performing difference classification and LUT generation
have generic APIs that enable plugging of newer control
flow region types easy. However, there is a default
procedural extraction phase that also uses the module for
difference classification and LUT generation, when no
specific control flow region type is determined. The
transformation for the case-statement regions with jump
tables have already been discussed in section 2. The
following paragraphs briefly describe the application of the
methodology to control flow regions of different types.

 7

Determine similar
tail regions that merge

at the same point

Cascaded
sequence of
similar BBs

Similar case
statements determined

from Jump table

Merge similar tail
regions that merge
at the same point

Generate loop using
a similar BB as it’s body,

count = #of BBs

Replace multiple
similar case statements

by a single
representative

Difference Classification
and

Lookup Table Generation

Similar
Instances of
a particular
control flow
region type

Post
Processing

Common
Interface

Similar regions
without specific control

flow type

Procedural
Extraction

Figure 6: Overall infrastructure of code size optimization using difference classification and LUT generation.

3.1 Tail merging with LUT generation for differences

BB4
r12=#0
r13= #1
jump .LBB7_agc_init

BB5
r12=#0
r13= #1
jump .LBB7_agc_init

BB6
r13= #1
jump .LBB7_agc_init

BB1
r13=add(r25,r26)
r14=r26
r15=r13+r14
r0=loadw(r6+#0)
r1=r10
r2=r11>>#2
r3=r2
r4 =r13-r14
r5=#11
r6=r15+1
call msg_send_3

BB2
r13=sub(r25,r26)
r14=r26
r15=r13+r14
r0=loadw(r6+#8)
r1=r10
r2=r11>>#2
r3=r2
r4=r13-r14
r5=#91
r6=r15+1
call msg_send_3

BB7
.LBB7_agc_init:

Figure 7(a) CFG before code size optimization across tail regions
that merge at a common point.

Figure 7 (a) gives an example of tail regions that could
potentially be merged. In this example, the basic blocks BB1
and BB2 are similar; BB4, BB5 are exactly same, while BB6
has one less operation than in BB4/BB5. The algorithm
starts from the basic blocks (i.e. BB4, BB5, and BB6) with
the same successor (i.e. BB7), and first determines the
number of instructions in them. If two basic blocks are not

completely the same (i.e. BB4 and BB6); then one basic
block (i.e. BB4) is split. Next, the algorithm merges the
similar basic blocks (i.e. BB4, BB5, and BB6). The
algorithm optimizes the control flow graph by optimizing the
branches and removing the unreachable basic blocks (i.e.
BB5), making BB4 as the successor of both BB1 and BB2.

BB4
r12=#0

BB6
jump .LBB9_agc_init

BB7
.LBB7_agc_init:

BB9
.LBB9_agc_init:

r13= #1

918

110

Look Up Table

new BB
r14=r26
r15=r13+r14
Ry=#LUT_base_address;
Ry=Ry+Rz
Rx=loadh(Ry+#0)
r0=extract(Rx,8,8);
r0=r0+r6
r0=loadw(r0+0)
r1=r10
r2=r11>>#2
r3=r2
r4=r13-r14
r5=extract(Rx,8,0)
r6=r15+1
call msg_send_3

BB1
Rz=#0
r13=add(r25,r26)

BB2
Rz=#2
R13=sub(r25,r26)

Figure 7(b) CFG after code size optimization across tail
regions that merge at a common point.

 8

The algorithm is further applied to BB1 and BB2. The
algorithm detects instructions that have differences
conforming to the acceptable difference categories, as
discussed in section 2. The instructions (i.e.
r0=loadw(r6+#0) in BB1 compares with r0=loadw(r6+#8) in
BB2 with the memory offset difference. Similarly, the
instruction r5=#11 in BB1, compares with instruction
r5=#91 in BB2 with the difference in the constant operand.
Representing these two difference sets in the LUT thus
increases the scope of the code-region that could be tail-
merged.

The final control flow graph after tail-merging the code-
regions is shown in Figure 7 (b). The associated LUT is also
shown. The operation Rz=#0 and Rz=#2 sets the LUT offset
to be used for accessing the LUT entry for the two original
basic blocks, BB1 and BB2 respectively. In this example
each LUT entry is 2 bytes, using a byte each for the two
difference categories.

3.2 Loop conversion for a sequence of cascaded code
regions with LUT generation for the differences

Figure 8(a) shows a sequence of code regions (basic blocks
BB1, BB2, BB3, BB4, and BB5) forming a cascaded chain.
The sequences of similar code–regions have a unique
predecessor and successor relationship and could be replaced
by a loop. Figure 8(b) shows the transformed loop body. The
loop body is a single representative code-region (shown as
New BB 7), and the loop header (shows as New BB 6). A set
of additional decoding operations on the LUT entry, which is
indexed by the loop induction variable, is present in the loop
body (i.e., New BB 7).

3.3 Procedural abstraction with LUT generation for the
differences

Procedural abstraction can be augmented with difference
classification and LUT generation, when no specific control
flow region type can be determined. The methodology in this
paper can improve the traditional procedural abstraction
technique. In the traditional procedural abstraction
technique, the different instructions between the two basic
blocks are left in the original code region. While the
approach in this paper can include the operations involved
with the differences in the abstracted procedure by
incorporating the differences in the LUT. The abstracted
procedure has some additional instructions to load the
particular LUT entry and operations to decode and generate
the difference values. Figure 9 shows an example of
procedure abstraction with LUT generation. Two similar
code regions that are replaced by two calls to the abstracted
procedure, named “NewProcedure”, are shown in Figure 9.

The call site initializes the LUT index and passes it as an
argument to the abstracted procedure (as shown by register
r0 before the call to “NewProcedure” in Figure 9).

BB1
r0=loadw(r6+#0)

r1=r10
r2=#106
r3=r11
call msg_send_3

New BB 7
LoopStart:

Rx=loadw(Ry++)
Rz=extract(Rx,16,16)
Rz=r6+Rz;
r0=loadw(Rz);
r1=r10
r2=extract(Rx,16,0)
r3=r11
call msg_send_3

LoopEnd

BB2
r0=loadw(r6+#48)

r1=r10
r2=#135
r3=r11
call msg_send_3

BB3
r0=loadw(r6+#36)
r1=r10
r2=#224
r3=r11
call msg_send_3

LOOK UP TABLE:

Upper half-word is for the load
offset.
Lower half-word is for the
constant loaded in r2

BB4
r0=loadw(r6+#64)
r1=r10
r2=#298
r3=r11
call msg_send_3

BB5
r0=loadw(r6+#72)
r1=r10
r2=#234
r3=r11
call msg_send_3 23472

29864

22436

13548

1060

New BB 6
Ry = #LUT_base_address
LoopCounter=#5

(a) CFG before (b) CFG after
code size optimization code size optimization

Figure 8: Code size optimization for a cascaded chain of similar
BBs

4. Results
This section provides some of the results of using the new
code size optimization method discussed in this paper.
Implementation is done in Open64, but other compilers (e.g.,
GCC 3.4.6 and GCC 4.3.2) would also benefit by
implementing this optimization. This is a work in progress.
The current implementation focuses on the similar case
statements in switch-case constructs. Additional LUTs are
not added; hence the total size of the encoded value is
limited to the address size in the target processor. Table 1
shows the comparison in text size (pure text and read only
sections) with original Open64 (i.e., without the
optimization), GCC 3.4.6 and GCC 4.3.2, all compiled using
–Os optimization level.

 9

r0=#0
call NewProcedure

r0=#4
call NewProcedure

1451

1012

Look Up Table

r4=add(r5,#14)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,#51)

<OTHER
INSTRUCTIONS
EXACTLY SAME>

r4=add(r5,#10)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,#12)

<OTHER
INSTRUCTIONS
EXACTLY SAME>

NewProcedure:

Rx=
#LUT_base_address

Rx=Rx+r0
r0=loadw(Rx+#0)
r0=extract(r0 ,#8,#0)
r1=extract(r0 ,#8,#8)

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,r1)

<OTHER
INSTRUCTIONS
EXACTLY SAME>

RETURN

r0=#10
r1=#12

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,r1)

<OTHER
INSTRUCTIONS
EXACTLY
SAME>

r0=#14
r1=#51

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,r1)

<OTHER
INSTRUCTIONS
EXACTLY
SAME>

Figure 9: Procedural abstraction with difference encoding.

The test cases in table 1 are obtained from Qualcomm’s
software applications on mobile devices and contain one or
more functions. It is seen that the methodology in this paper
consistently reduces code size: for pure text (assembly
instructions) in the range of 30% to 80%, while the total text
(pure text and read only data) in the range of 5% to 60%.
For an entire application the total code size reduction would
depend on how frequently functions with largely similar case
statements are present in them.

Table 2 illustrates the total text size improvement and the
impact on cycle performance of the new methodology on
Open64. It compares the original Open64 and the modified
Open64 (i.e., with the novel methodology in it). It is seen
that code size consistently reduces (as large as 38%), with

very small performance reduction in most cases. The slight
performance reduction (for tests 9, 10, and 11) is attributed
to the overhead for decoding the LUT and the control flow
overhead to select the particular representative code region,
when compared to a pure jump table based implementation.
In some cases, like test example 8, cycles can degrade
noticeably when there are multiple difference classes in the
switch-case construct, or frequent gaps in the case values,
leading to large control flow overhead for selecting the
representative code regions. Test example 7 actually shows a
remarkable improvement in performance because the
original Open64 didn’t use jump table to lower the switch-
case statement, while the modified Open64 lowered to jump
table and then performed the optimization described in this
paper.

Table 1: Code size when using the methodology in Open64 and compared with other compilers, using –Os optimization level.

Test
cases

GCC 4.3.2 (size in bytes) GCC 3.4.6 (size in bytes) Original Open64

(size in bytes)

Methodology in Open64

 (size in bytes)

 Pure
text

rodata Total
text

Pure
text

rodata Total
text

Pure
text

rodat
a

Total
text

Pure
text

rodata Total
text

1 3368 6164 9532 3364 6164 9528 4040 7512 11552 1676 6568 8244

2 1152 308 1460 1224 312 1536 1352 352 1704 916 476 1392

3 1032 352 1384 1036 352 1388 1336 352 1688 572 416 988

4 896 0 896 876 0 876 1352 0 1352 116 224 340

5 2204 9204 11408 2204 9204 11408 2220 9208 11428 524 9208 9732

6 1052 1128 2180 1088 1128 2216 728 1952 2680 724 1392 2116

 10

Table 2: Comparing total text size and cycle performance of
original and modified Open64 using –Os optimization level.

5. Summary and conclusion
In this paper we described a code size optimization
methodology based on difference classification and look-up
table generation. The methodology can be consistently used
for code size optimization of the non time-critical portions of
the applications. The side benefits are improved instruction
cache performance and increased availability of instruction
bus bandwidth. The optimization has been implemented in
the Open64 compiler, but could also be implemented in other
compilers, e.g., GCC (versions 3.4.6. or 4.3.2).

The work to enhance Open64 for code size is ongoing,
further enhancements are being looked into, as mentioned in
section 1.2. We compared the enhanced Open64 compiler
with the GNU 3.4.6 and 4.3.2 compiler versions for memory
usage (i.e., code size) of the generated assembly code and
compared the impact on cycle performance with and without
the novel methodology in Open64. The results are promising
and we are further enhancing the methodology for various
types of control flow regions.

6. Acknowledgements
Thanks to other members of Qualcomm’s DSP compiler
team: Anshuman Dasgupta, Raja Venkateswaran, Sundeep
Kushwaha, and Sergei Larin, for some of their valuable
feedback on this work. Special thanks to Taylor Simpson,
director of Qualcomm’s DSP system software group, for
supporting this work.

REFERENCES

[1] Saumya Debray, William Evans, Robert Muth,
“Compiler Techniques for Code Compression”.
[2] Keith D. Cooper and Nathaniel McIntosh, “Enhanced
code compression for embedded RISC processors”, Proc.
SIGPLAN ’99 Conference on Programming Language
Design and Implementation, May 1999.

[3] Wen-Ke Chen, Bengu Li, Rajiv Gupta, “Code
Compaction of Matching Single-entry Multiple-exit
regions”.
[4] J. Krinke, “Identifying similar code with program
dependence graphs”, WCRE, pages 301-309, Stuttgart,
Germany, October 2001.
[5] John Gilbert, David M. Abrahamson. Adaptive object
code compression. In proceedings of the 2006 international
conference on compilers, architectures and synthesis for
embedded systems. 2006.
[6] Warren Cheung, William Evans, Jeremy Moses.
Predicated instructions for code compaction. Lecture Notes
in Computer Science: Software and Compilers for Embedded
Systems, 7th International 2826, 17-32. 2003.
[7] Open64, http://open64.sourceforge.net/
[8] WHIRL Intermediate Language Specification,
whirl.pdf. http://open64.sourceforge.net
[9] WHIRL Symbol Table Specification,
symtab_Pro64_SGI.pdf. http://open64.sourceforge.net
[10] Subrato De, Anshuman Dasgupta, Sundeep
Kushwaha, Tony Linthicum, Susan Brownhill, Sergei Larin,
Taylor Simpson, “Development of an efficient DSP compiler
based on Open64,” Open64 Workshop, 2008.
[11] Miroslav Popovic, “Communication Protocol
Engineering”, Edition: illustrated, Published by CRC Press,
2006 ISBN 0849398142, 9780849398148.
[12] Gábor Lóki, Ákos Kiss, Judit Jász, Árpád Beszédes,
“Code Factoring in GCC”, Proceedings of the GCC
Developer Summit, June 2nd–4th, 2004, Ottawa, Ontario,
Canada
[13] Brenda S. Baker, Udi Manber, “Deducing similarities
in Java sources from bytecodes, “ USENIX Technical
Conference, 1998.

Test Original
Open64

Methodology
in Open64

Percentage
improvement

 Text
size

Kilo
cycles

Text
size

Kilo
cycles

Text
size

Cycle
Perf.

7 1884 3.89 1168 2.76 +38 +27

8 2448 34.1 1896 39.0 +22 -14.3

9 3744 1161 3672 1162 +2 -0.09

10 11860 17358 8372 17360 +29 -0.05

11 7392 20996 4580 21329 +38 -1.5

http://open64.sourceforge.net/

