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ABSTRACT 

Code size has become an important constraint for 
applications on mobile devices. Not only should the 
applications be very responsive and execute fast, they 
should also consume low power, and be reasonably compact 
in size to fit in the limited memory of the mobile devices. In 
this paper we focus on a specific opportunity of code size 
optimization that is detected in software for mobile devices 
like wireless networking protocols, modems, etc. These 
applications have large amount of code-regions across the 
control-flow graph that are inherently similar, but with 
slight differences that are compile time constants. Examples 
of such similar code regions are: case statements labeled by 
“jump tables”, tail regions that merge to a common point, 
cascaded sequence of similar code-regions with unique 
predecessor-successor relationship, etc. This paper presents 
a novel approach where similar code-regions across the 
control flow graph are classified into disjoint sets based on 
their differences, and then replaced by a single 
representative code-region with the differences encoded in 
customized look-up tables resulting in reduced code size. 
The methodology shows remarkable reduction in code size 
for large switch-case constructs that have very similar case 
statements. Implementation is done in the Open64 compiler, 
even though it could be integrated with other compilers 
(e.g., GCC). We also provide some results of code size 
reduction, which are in the range of 30% to 80% for pure 
text (instructions only), and 5% to 60% for total text 
(instructions and read only data), achieved by the algorithm 
on some of the functions in software applications for mobile 
devices. 

1. Introduction 
Open64 is an open source C/C++/Fortran77/90 compiler that 
is currently used in various industry and academic research 
projects. It originates from the SGI Pro64(TM) compiler 
suite that was released under the GNU General Public 
License. Open64 was originally intended to be a compiler 
generating high performance code that is extremely focused 
on execution speed of the generated code. Optimization for 
code size of the generated assembly, to the extent demanded 
by application developers for mobile devices, was not the 
focus. However, the use of Open64 in Qualcomm as a 

compiler for embedded/DSP processors used in mobile 
devices created the urgent need for enhancing the code size 
optimization infrastructure within Open64.  We will briefly 
summarize the different features of Open64 and then discuss 
some generic improvements for code size optimization. Then 
we illustrate the details of code size reduction by difference 
classification and customized look-up table generation, 
which is the main theme of this paper. 

1.1 Open64 as a compiler for generating high 
performance code 

Open64 uses an intermediate representation (IR) called 
WHIRL that has multiple levels of representation and serves 
as the common interface for the compiler phases. The 
optimizations are mainly geared towards cycle performance, 
as evidenced by the exhaustive set of loop optimizations and 
transformations, vectorization, aggressive unrolling and 
inlining, function cloning, hyperblock scheduling, and 
predication. The important phases of Open64 are: 

• The very high level optimizer (VHO) lowers 
aggregates, flattens nested calls, etc. 

• The inter-procedural analysis (IPA) first gathers data 
flow analysis information from each procedure locally. 
It then generates the call graph, performs inter-
procedural analysis and transformations. It performs 
global variable optimization, dead function 
elimination, inter-procedural alias analysis, function 
cloning, constant propagation, function inlining, etc. 

• The loop nest optimization (LNO) phase calculates 
dependence graph for array accesses and performs 
loop transformations, and automatic vectorization. 

• The global optimizer (WOPT) computes the control 
flow graph, the dominator tree, dominance frontier, 
control dependence set, and then converts the IR to a 
hashed SSA form. It performs def-use analysis, alias 
classification, pointer analysis, induction variable 
recognition/elimination, copy propagation, dead code 
elimination, partial redundancy elimination, register 
variable identification, bitwise dead-code elimination. 

• The code generator (CG) performs target specific 
optimizations, instruction selection, scheduling, 
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software pipelining, hyper-block scheduling, register 
allocation and emits the assembly code. 

The details of these phases can be found in [7, 8, and 9].  

1.2 General modifications to Open64 for generating size 
aware assembly code   

Our goal is to enhance Open64 to generate assembly code 
that gives reasonable cycle performance and is also size 
optimized. One of our efforts is to leverage interprocedural 
analysis (IPA) using -Os for code size optimization. The 
function inlining heuristic is made conservative when 
compiling with –Os with IPA. The loop unroller heuristic is 
enhanced to estimate the benefit of unrolling the loop by a 
certain factor. Unrolling is not performed if the estimated 
payoff in cycle gain is below a certain limit. The clustering 
algorithm for switch lowering in VHO is tuned to generate 
denser clusters, leading to more clusters that could be 
differently lowered i.e., by jump-table, by linear if-else, by 
binary search if-else, based on a heuristic. Changes are been 
done in VHO to facilitate aggregate copies, register 
promotion of structures and unions, which reduce both code 
size and stack usage [10]. Finally, a novel mechanism for 
code size optimization, by creating a customized look-up 
table (LUT) for the differences found in similar code regions 
across the control flow graph (CFG,) is incorporated in the 
Open64 compiler. This is the main focus of this paper and is 
discussed in details in sections 2 and 3. 

1.3 Organization of this paper 

This paper is organized as follows. Section 2 illustrates the 
difference classification, the encoding/decoding mechanism, 
and the generation of the LUT for differences in similar code 
regions found across the CFG. Section 3 compares some of 
the existing approaches and describes the generalized 
infrastructure that uses the difference classification results 
and the encoded LUTs, and replaces the similar code-regions 
by a single representative. Section 4 compares the 
improvement in code size and the performance impact over 
some of our internal applications when using the novel 
methodology. Finally, we present our conclusions in section 
5, followed by acknowledgements. 

2. Difference classification and customized 
look-up table generation  
This section discusses core concept of the novel methodology 
where similar code-regions spread across the CFG are 
grouped into disjoint sets based on their differences. Each set 
is then is replaced by a single representative code-region 
with the differences encoded in a compact fashion in LUTs.  

2.1 Overview of the methodology through a motivating 
example 

Figure 1(a) shows a motivating C-code where the impact of 
code size reduction is phenomenal using the methodology 
described in this paper. It shows a switch-case statement that 
is commonly found in wireless networking protocol and 
modem software [11]. In the example in figure 1(a), the case 
statements can be grouped into three distinct clusters, such 
that the case statements in a cluster are very similar to each 
other except for some differences that are compile time 
constants. It is to be noted that some of these redundancies 
can be even removed by a suitable strategies while 
developing the C-code. However, the importance of this 
work is because of the fact that given a not-so well organized 
C/C++ source code, a compiler could generate code efficient 
enough in terms of size and cycles needed for software on 
mobile devices [12]. Also, there exists vast amount of C/C++ 
source code that isn’t originally written for embedded 
systems keeping in mind the stringent memory requirements, 
but need to be quickly incorporated into the product. This 
makes a strong case for the need of the work described in 
this paper.    

extern func1(int x, int y);
extern func2(int x, int y);
extern func3(int x, int y);
extern func4(int x, int y);
extern func5(int x, int y);
extern func6(int x, int y);
extern int g_array[];

int test(int i, int x)
{

int a;
switch(i)
{
case 1: a = 27 + x; break;
case 2: a = 55 + x; break;
case 3: a = 1024 + x; break;
case 4: a = 23 + x; break;
case 5: a = 129 + x; break;
case 6: a = 256 + x; break;

case 7: a = g_array[1]; break;
case 8: a = g_array[6]; break;
case 9: a = g_array[2]; break;
case 10: a = g_array[9]; break;
case 11: a = g_array[5]; break;
case 12: a = g_array[4]; break;

case 13: a = func1(x,1); break;
case 14: a = func2(x,1); break;
case 15: a = func3(x,1); break;
case 16: a = func4(x,1); break;
case 17: a = func5(x,1); break;
case 18: a = func6(x,1); break;

default: a = i; break;

}
return(a);

}

        
Figure 1(a):  C-code for the motivating example. 

The fundamental idea is to replace a set of similar code 
regions (in this example the case statements), by a 
representative code region, and encode the difference into a 
LUT. While, the idea of similar code identification has been 
used in various researches [4, 13], the novelty of the work in 
this paper comes from the following: 

• Classification based on the types of differences so that 
they can be suitably encoded and decoded. 

• Increased scope of the similar regions by a compact 
encoding of as many difference items as possible.  

• Use of heuristics to trade-off between code size 
increases due to the overhead (addition read-only data 
in LUT, additional decoding instructions) v.s. code 
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size reduction due to removal of multiple instances of 
similar code regions by a single representative. 

• Lightweight mechanism to detect similar code-regions 
by using the CFG as the guiding factor. 

Figure 1(b) shows the code generated by Open64 compiler 
using 68 instructions, as well as GNU C/C++ compiler 
versions 3.4.6, and 4.3.2, without using the methodology 
described in this paper. All three compilers generated a jump 
table whose entries are the labels for the case statements.  

test:
r8=#(.rodata)
r6=r0
if (r0 >= #19) 
jump .Lt_0_2

r8=add(r8,r0<<#2)
r9=loadw(r8+#0)
jumpr r9

.Lt_0_2:
r0=r6
return;

.Lt_0_19:
r0=r1
r1=#1
call func6
r6=r0
jump .Lt_0_2

.Lt_0_18:
r0=r1
r1=#1
call func5
r6=r0
jump .Lt_0_2 

.Lt_0_17:
r0=r1
r1=#1
call func4
r6=r0
jump .Lt_0_2 

.Lt_0_16:
r0=r1
r1=#1
call func3
r6=r0
jump .Lt_0_2 

.Lt_0_15:
r0=r1
r1=#1
call func2
r6=r0
jump .Lt_0_2 

.Lt_0_14:
r0=r1
r1=#1
call func1
r6=r0
jump .Lt_0_2 

.Lt_0_13:
r6=#(g_array+16)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_12:
r6=#(g_array+20)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_11:
r6=#(g_array+36)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_10:
r6=#(g_array+8)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_9:
r6=#(g_array+24)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_8:
r6=#(g_array+4)
r6=loadw(r6+#0)
jump .Lt_0_2

.Lt_0_7:
r6=add(r1,#256)
jump .Lt_0_2

.Lt_0_6:
r6=add(r1,#129)
jump .Lt_0_2

.Lt_0_5:
r6=add(r1,#23)
jump .Lt_0_2

.Lt_0_4:
r6=add(r1,#1024)
jump .Lt_0_2

.Lt_0_3:
r6=add(r1,#55)
jump .Lt_0_2

.Lt_0_1:
r6=add(r1,#27)
jump .Lt_0_2

ORIGINAL
JUMP 
TABLE

.section 

.rodata

.org 0x0

.word .Lt_0_2

.word .Lt_0_1

.word .Lt_0_3

.word .Lt_0_4

.word .Lt_0_5

.word .Lt_0_6

.word .Lt_0_7

.word .Lt_0_8

.word .Lt_0_9

.word .Lt_0_10

.word .Lt_0_11

.word .Lt_0_12

.word .Lt_0_13

.word .Lt_0_14

.word .Lt_0_15

.word .Lt_0_16

.word .Lt_0_17

.word .Lt_0_18

.word .Lt_0_19

 
Figure 1(b):  Assembly code for the motivating example 

without the optimization discussed in this paper 

Figure 2 shows the assembly code using 22 instructions 
when the methodology described in this paper is used. The 
jump table entries are replaced with the difference items that 
are compile time constants and the similar case statements 
that are replaced by a single representative.  The jump table 
now partly behaves like a look-up table. However, some 
additional code is needed for decoding the LUT entries and 
for the conditional jumps that leads the program control to 
execute the particular representative case statement. A 
reduction of 68 -22 = 46 is achieved, while the read only 
data (rodata) size for the jump table remains unchanged.  

2.2 Profitability of doing the transformation 

The example in the previous section uses a jump table to 
implement the switch-case statements. Entries of the LUT 
are formed by replacing the corresponding entry of the jump 
table. However, there is some additional control code needed 
to make the execution reach the specific case statement that 
is a representative for the set of similar case statements.  

test:
r8=#(.rodata)
r6=r0

if (r0 >= #19) 
jump .Lt_0_2

r8=add(r8,r0<<#2)
r9=loadw(r8+#0)

.Lt_Unchanged:
if (r0 <= #0) 

jumpr r9 

.Lt_SingleConst:
if (r0 <= #6) 

jump .Lt_0_1

.Lt_MemOffset:
if (r0 <= #12) 

jump .Lt_0_8

.Lt_SameCallSig:
if (r0 <= #18) 

jump .Lt_0_14

JUMP TABLE
NOW PARTLY
BECOMES  LUT

.section .rodata

.org 0x0

.word .Lt_0_2

.word 27

.word 55

.word 1024

.word 23

.word 129

.word 256

.word 4

.word 24

.word 8

.word 36

.word 20

.word 16

.word &func1

.word &func2

.word &func3

.word &func4

.word &func5

.word &func6

.Lt_0_2:
r0=r6
return;

.Lt_0_14:
r0=r1
r1=#1
callr r9
r6=r0
jump .Lt_0_2 

.Lt_0_8:
r6=#(g_array)
r6=r6+r9
r6=loadw(r6+#0)
jump.Lt_0_2

.Lt_0_1:
r6=add(r1,r9)
jump .Lt_0_2

ASSEMBLY  CODE AND LUT
WITH THE NOVEL METHODOLOGY

Figure 2: Assembly code generated for the motivating 
example using the optimization discussed in this paper. It 

shows much reduced code size. 

There is also some additional code in the representative case 
statement for decoding and extracting the desired value from 
the LUT entry. These give rise to the overhead components 
of doing this optimization, both for code size and cycles.  If 
the code size of the overhead becomes more than the 
memory saving obtained by replacing multiple case 
statements by a single representative, the optimizing won’t 
be beneficial. Hence we use a profitability function to decide 
for or against invoking the transformation for code size 
benefit: 

• CODE SIZE REDUCED =   {(SIZE OF A SIMILAR 
CODE REGION) * (# OF SIMILAR REGIONS 
DETECTED -1)   - (SIZE OF CODE TO ACCESS LUT 
+ SIZE OF DECODE CODE + SIZE OF GLUE 
CONTROL CODE + ADDITIONAL LUT SIZE)} 

• % CODE SIZE REDUCED =   “CODE SIZE 
REDUCED” * 100 / {(SIZE OF A SIMILAR CODE 
REGION) * (# OF SIMILAR REGIONS DETECTED)} 

The optimization is useful if “CODE SIZE REDUCED” > 0. 
However, cycle performance is reduced slightly when 
compared to the performance of a pure jump-table based 
implementation, particularly if there is some discontinuity in 
the case numbers and there are multiple groups of similar 
case statements. In the code size optimized example in 
Figure 2, there is some additional control flow overhead to 
determine the particular representative code region (out of 
the three groups)  to jump to, based on the switch index. 
However, this method can be applied for code size 
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optimization of non time-critical portions of the application 
by using the profitability function discussed in this section. 

2.3 Difference types and difference classes 

The types of differences that can be considered must be a 
compile time constant so that it can be encoded in a LUT. As 
an example, we can consider differences in two constant 
operands (say 123 v.s. 99), but cannot easily consider two 
different operations (say addition v.s. subtraction). If we 
really want to incorporate such difference, it will add control 
code overhead to decide on between “addition” v.s. 
“subtraction” at runtime based on a particular value (say “1” 
for addition, and “2” for subtraction) encoded in the LUT 
entry. Certainly, capturing such difference might be 
profitable under certain conditions, but is considered for 
future enhancement.  

Based on our analysis of certain mobile software code, the 
current scope of this paper considered the following 
frequently occurring difference items: (i) constant operands, 
(ii) memory offset in the “base+offset” addressing mode for 
loads and stores, (iii) constants used in address computation, 
and (iv) functions with the same signature. When comparing 
two or more similar code regions, different instances of one 
or more of the above difference items are actually associated 
with distinct operations in the code region making them 
uniquely identifiable, and are called difference types. The list 
of all the difference types among two or more comparable 
code regions forms a “difference class”. When all 
instructions of the comparable code regions, except those in 
the difference class, are exactly same the code regions can be 
replaced by a common representative with the difference 
class encoded in a LUT. Thus in Figure 3, the difference 
items are “constant operand” and “memory offset”. There 
three difference types – constant operand in logical-or 
operation, constant operand for the width of extract 
operation, and memory offset in the loadw operation. These 
three difference types form the difference class that uniquely 
clusters the three code regions (basic blocks in this case) 
with labels .Lt_10_13, .Lt_10_12, and .Lt_10_11 into a 
single group. 

2.4 Encoding and decoding the differences 

Encoding and decoding are needed when a difference class 
has multiple differences types. Compact encoding of the 
differences types are needed for efficient memory usage.  A 
greedy approach for compaction is currently used, where the 
maximum bit requirement to represent the particular 
difference, among all the code-regions being compared, is 
determined. The difference types are then arranged in 
ascending order of “maximum bit requirements” per type. 
Figure 3 shows three code-regions (basic blocks with labels 
.Lt_10_13, .Lt_10_12, and .Lt_10_11) that are similar with 
three difference types: constant operand for the logical-or 

operation (the 3 values in order are:  16, 8, and 4), constant 
representing the bit-width of the extract operation (the 3 
values in order are:  10, 12 and 14), and the memory offset 
for the “loadw” operation (the 3 values in order are:  600, 
680 and 720). The maximum bits required to represent the 
three difference types are:  

• constant operand for the logical-or operation = 
BinaryBits( MAX[16, 8,4]) + 1 = 6 bits,  

• constant for the bit-width of the extract operation = 
BinaryBits ( MAX[10, 12,14]) + 1 = 5 bits, 

• memory offset for the “loadw” operation = BinaryBits 
( MAX[600, 680,720]) + 1 = 11 bits. 

Where, BinaryBits() is a function that computes the number 
of bits in the binary representation of the magnitude of the 
number, e.g., 16 decimal = 10000 binary (needs 5-bits), 14 
decimal = 1110 binary (needs 4-bits). Thus the difference 
class for the code regions can be implemented using 6 + 5 + 
11 = 22 bits. Since there is already 32 bits available (1 word) 
from the existing jump table, we have a relaxed constraint. 
Hence, the encoding done is: 0th to 7th bits for representing 
“bit-width” for the extract operation, 8th to 15th bit for 
representing the constant operand for the logical-or 
operation, 16th to 31st bit for representing the memory offset 
of the “loadw” operation. 

.Lt_10_13:
r17=loaduh(r30+#-584)
r17=or(r17,#16)    
r17=extract(r17,#10,#6) 
storeh(r30+#-584)=r17               
r9=loaduh(r29+#16)                          
r10=loadw(r29+#600)
jump .Lt_10_294     

.Lt_10_12:
r20=loaduh(r30+#-584)     
r20=or(r20,#8)    
r20=extract(r20,#12,#6)                            
storeh(r30+#-584)=r20
r9=loaduh(r29+#16)
r10=loadw(r29+#680) 
jump .Lt_10_294               

.Lt_10_11:
r21=loaduh(r30+#-584)          
r21=or(r21,#4)     

r21=extract(r21,#14,#6)
storeh(r30+#-584)=r21           
r9=loaduh(r29+#16)             
r10=loadw(r29+#720)             
jump .Lt_10_294               

EXAMPLE  ENCODING:

Memory offset Logical-or operand Extract bit-width

0 bit7th bit15th bit31st bit

Difference Item2: Memory Offset
• Difference Type 3: memory offsets 

in load word, i.e., loadw

Difference Item1: Constant Operand
• Difference Type 1: constant operand 

in “logical-or operation”
• Difference Type 2: bit width in 

extract operation

DIFFERENCE CLASS      

Figure 3: An example showing three similar BBs with 
multiple classes of difference that can be successfully 

encoded into the look-up table without increasing its size. 

Figure 4 shows an example where the number of difference 
types is large enough to require additional LUT. In this 
example the code-regions being compared are three basic 
blocks with labels .Lt_30_1, .Lt_30_3, and .Lt_30_7. There 
are four differences types of difference item “constant 
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operand”, each of which would require at least 8 bits. There 
are two difference types of difference item “memory offset”, 
requiring 10 and 15 bits respectively. Finally the last 
difference type is of difference item “function with same 
signature”, requiring 32 bits for 4-byte addresses. This 
example needs 12 bytes to encode the difference class, thus 
requiring extra 8 bytes per existing jump-table entry. 

.Lt_30_1:
r0=loadub(r25+#124)           
r1=#33
r2=loadw(r24+#1020)            
r3=#125
r4=#75
r5=#85
call Callee1 
jump .Lt_30_2              

EXAMPLE  ENCODING REQUIRES AT LEAST THREE WORDS (12 bytes):

Callee Function Address

0 bit31st bit

.Lt_30_7:
r0=loadub(r25+#492)           
r1=#55
r2=loadw(r24+#4088) 
r3=#114
r4=#15
r5=#49
call Callee3 
jump .Lt_30_2              

Constant for “r3” Constant for “r1”

0 bit7th bit15th bit31st bit

.Lt_30_3:
r0=loadub(r25+#248)           
r1=#66
r2=loadw(r24+#2040)           
r3=#10
r4=#95
r5=#51
call Callee2 
jump .Lt_30_2              

offset for “loadw to r2”

0 bit9th bit24th bit

offset for “loadub to r0”

Constant for “r5” Constant for “r4”

23rd bit

unused

31st bit

Item: Memory Offset
• Types: memory offsets 

for loadub and loadw

Item: Constant Operands
• Types: constants loaded

in r1, r3, r4, r5

Item: function with same signature
• Types: the function called 

Difference Class

Figure 4: An example showing multiple similar BBs with 
multiple classes of difference that can only be encoded into 

the look-up table by increasing its size, or adding a new 
look-up table. 

Decoding involves extracting the value for the particular 
difference type from the entries of the LUT. However, unlike 
encoding, where the encoded values are compile time 
constants, decoding involves introduction of assembly 
instructions that extracts a consecutive sequence of bits 
starting from a certain offset, at runtime. As an example, to 
extract the value for the logical-or operand in figure 3, a 
signed extract operation with the semantics 
“Rx=signed_extract(Ry=LUT_entry, width=8, offset=8)” is 
used. This operation extracts a contiguous set of 8 bits, at an 
offset of 8 bits from the least significant bit of the register Ry 
containing the LUT entry. The extracted value is signed 
extended and saved in register Rx. In most processors signed 
extract is implemented using an arithmetic shift-left by X, 
followed by arithmetic shift-right by Y, where, X and Y are: 

• X = Right shift value = “no. of bits in register – 
(width+offset)”, and 

• Y = Left shift value = “no. of bits in register – width” 

2.5 Description of the algorithm 

The input to the algorithm is a pair of code-regions that are 
to be compared for similarity. For a particular pair of code-

regions (example for two different code regions given by two 
different case statements), similarity is determined 
hierarchically, i.e., first the control flow pattern is compared, 
then the individual basic blocks, finally the operations in the 
basic-blocks and their operands. The differences that could 
be encoded in the LUT are at the operand level. Thus two 
regions are similar if they have the same control flow pattern 
and their basic blocks have the same operations with the 
same dependency graph, but the individual operations could 
have different constant values as their operands, as 
mentioned in section 2.3.   

A pair of code-regions is rejected if there is any difference 
item that can’t be handled by the scope of this paper. The list 
of pair-wise code regions, with each pair having its list of 
difference types, is then used to form disjoint sets of code-
regions of a particular “difference class”. As described in 
section 2.3, a “difference class” uniquely clusters a group of 
similar code regions. Each difference class contains a group 
of code-regions, whose difference items can be exactly 
encoded in the same way in the LUT and decoded with 
exactly the same set of operations. This makes the set of code 
regions replaceable by a single representative code region, 
with the difference class encoded in a LUT and difference 
types read back using the decoding instructions that are 
added in the representative code region. The original switch 
index becomes the LUT index, similar to the indexing 
mechanism of a jump table.  The list of pair-wise code 
regions are first arranged in descending order of number of 
difference types found in the pair. Thus if a particular code 
region Z occurs multiple times in the list with other code 
regions W, X, Y, with each pair (Z,W), (Z,X), and (Z, Y) 
having different number of difference types, the pair with the 
higher number of difference types gets priority. Example, if 
the difference types in (Z, W) > difference types in (Z,X) > 
difference types in (Z Y) , the  pair (Z, W) is first considered 
as a  difference class. The pairs (Z,X) and (Z,Y) can also be 
included if the difference types present in them are a subset 
of the difference types found in (Z,W). However, if any of the 
difference types in (Z,X) and/or (Z,Y) is not a subset then X 
and/or Y cannot be included in the difference class that 
includes Z and W.  

The disjoint sets of code-regions of specific difference classes 
can be pictorially represented as a Venn diagram, as shown 
in figure 5, which represents different code regions as 
numbers. The following disjoint sets representing different 
difference classes of code region are present: {1,2,3,4}, 
{5,6,7}, {8,9}, {13, 14}, {15,16,17}, {18,19,20}, {21,22}, 
{23,24,25,26}, {27,28,29,30,31,32}. Each set A, B, C, D, E, 
F represents a difference type (as discussed in section 2.3). 
Example: the set {1, 2, 3, 4} represents code regions whose 
difference class is composed of only a single difference type 
A, the set {5, 6, 7,} represents code regions whose difference 
class is composed of a combination of two difference types A 
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and B, while the set {8, 9} represents code regions whose 
difference class is composed of a combination of three 
difference types A, B, and C. In each of the disjoint region, 
the set of code regions can be replaced by a representative 
code-region and a LUT with number of entries equal to the 
number of similar code-regions in that set. Some additional 
control code is needed to allow control to jump to the 
representative code region, when the corresponding case 
statements are invoked.  

A

B

C

D

E

F
1

2

3

4

5

6

7

8

9

10 11
12

13

14

15

16

17

18
19

20

21
22

23
24

25
26

27

29 30

28

31
32

 

Figure 5: The disjoint sets of code-regions pictorially 
represented as a Venn diagram 

3. Code size optimization across control-flow 
regions using LUT for differences 
In this section we first briefly compare the different 
approaches of code size reduction for similar code regions 
that has been tried out in research. Many previous 
approaches of similarity extraction and replacement [1, 2, 5, 
and 6] for reducing the code size operated after register 
allocation and scheduling, where the code representation is 
very close to the final assembly. These approaches suffered 
from some serious problems. First, these approaches needed 
to extract the control flow information after the similar 
sequences are detected, and then decide if the two similar 
sequences are indeed equivalent w.r.t program control flow. 
As an example two otherwise similar sequences, one of 
which has an incoming control flow edge in between and the 
other doesn’t, cannot be replaced by a single representative 
code region since it will break the control flow. The 
implementation in this paper is in the control flow 
optimization (CFLOW) sub-phase in the code generation 
(CG) phase of Open64 and uses the CFG. Second, many of 
the previous techniques are limited to the textual 
representation of a program, where the algorithms are 
sensitive to the use of different registers. Some works used 

register renaming to solve the problem. However, due to the 
limited number of registers, not all registers could be 
renamed with spare registers and some additional register to 
register move instructions have to be inserted. Thus, register 
renaming could not solve the problem completely. Third, 
working with a special order of instructions hinders the 
identification of similar basic blocks, or code regions.  The 
CFLOW sub-phase in the CG-phase of Open64 occurs before 
register allocation and instruction scheduling. Hence the 
methodology described in this paper could avoid the register 
reuse and renaming problem, and also avoided the difficulty 
in determining similarity due to the reordering of the 
instruction sequence that comes with scheduling.  However, 
the original source code ordering could still hamper 
similarity extraction. Hence the methodology in this paper is 
augmented to incorporate the associative, commutative and 
distributive nature of the operations. Also, use-def chains are 
created and used in conjunction to the dependency graph to 
determine the similarity of two code regions to expand the 
scope to cases where the original source code ordering can be 
different for the same functionality. 

Figure 6 illustrates the overall infrastructure that uses the 
difference classification results and the encoded LUTs, for 
replacing code-regions by a single representative code-region 
across different types of control flow regions. First, the 
different control flow regions are identified according to the 
control flow features. Second, the common interface 
classifies the difference among the basic blocks in one region 
and generates the necessary LUTs, as discussed in Section 2. 
Finally, the control flow regions are processed, and 
transformed according to the needs of the specific control 
flow region type. Figure 6 illustrates  three specific control 
flow region types to perform searching for similar among 
code regions: (i) case statements regions indicated by labels 
in a jump table, (ii) tail regions that merge at a common 
point, (iii) basic block (or code regions with limited control 
flow) that form a cascaded chain.  The module for 
performing difference classification and LUT generation 
have generic APIs that enable plugging of newer control 
flow region types easy. However, there is a default 
procedural extraction phase that also uses the module for 
difference classification and LUT generation, when no 
specific control flow region type is determined. The 
transformation for the case-statement regions with jump 
tables have already been discussed in section 2. The 
following paragraphs briefly describe the application of the 
methodology to control flow regions of different types. 
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Determine similar 
tail regions that merge 

at the same point 

Cascaded 
sequence of
similar BBs
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statements determined 

from Jump table
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at the same point 
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a similar BB as it’s body, 
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similar case statements 

by a single 
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Figure 6: Overall infrastructure of code size optimization using difference classification and LUT generation. 

 

3.1 Tail merging with LUT generation for differences 

 

BB4
r12=#0
r13= #1
jump .LBB7_agc_init

BB5
r12=#0
r13= #1
jump .LBB7_agc_init

BB6
r13= #1   
jump .LBB7_agc_init

BB1
r13=add(r25,r26)
r14=r26
r15=r13+r14
r0=loadw(r6+#0) 
r1=r10
r2=r11>>#2  
r3=r2
r4 =r13-r14
r5=#11
r6=r15+1
call msg_send_3

BB2
r13=sub(r25,r26)
r14=r26
r15=r13+r14
r0=loadw(r6+#8)
r1=r10
r2=r11>>#2  
r3=r2
r4=r13-r14
r5=#91
r6=r15+1
call msg_send_3

BB7
.LBB7_agc_init:

 

Figure 7(a) CFG before code size optimization across tail regions 
that merge at a common point. 

Figure 7 (a) gives an example of tail regions that could 
potentially be merged. In this example, the basic blocks BB1 
and BB2 are similar; BB4, BB5 are exactly same, while BB6 
has one less operation than in BB4/BB5. The algorithm 
starts from the basic blocks (i.e. BB4, BB5, and BB6) with 
the same successor (i.e. BB7), and first determines the 
number of instructions in them. If two basic blocks are not 

completely the same (i.e. BB4 and BB6); then one basic 
block (i.e. BB4) is split. Next, the algorithm merges the 
similar basic blocks (i.e. BB4, BB5, and BB6). The 
algorithm optimizes the control flow graph by optimizing the 
branches and removing the unreachable basic blocks (i.e. 
BB5), making BB4 as the successor of both BB1 and BB2.  

BB4
r12=#0

BB6
jump .LBB9_agc_init

BB7
.LBB7_agc_init:

BB9
.LBB9_agc_init:

r13= #1

918

110

Look Up Table

new BB
r14=r26
r15=r13+r14
Ry=#LUT_base_address; 
Ry=Ry+Rz
Rx=loadh(Ry+#0)
r0=extract(Rx,8,8); 
r0=r0+r6
r0=loadw(r0+0)
r1=r10
r2=r11>>#2
r3=r2
r4=r13-r14
r5=extract(Rx,8,0)
r6=r15+1
call msg_send_3

BB1
Rz=#0
r13=add(r25,r26)

BB2
Rz=#2
R13=sub(r25,r26)

 

Figure 7(b) CFG after code size optimization across tail 
regions that merge at a common point. 
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The algorithm is further applied to BB1 and BB2. The 
algorithm detects instructions that have differences 
conforming to the acceptable difference categories, as 
discussed in section 2. The instructions (i.e. 
r0=loadw(r6+#0) in BB1 compares with r0=loadw(r6+#8) in 
BB2 with the memory offset difference. Similarly, the 
instruction r5=#11 in BB1, compares with instruction 
r5=#91 in BB2 with the difference in the constant operand. 
Representing these two difference sets in the LUT thus 
increases the scope of the code-region that could be tail-
merged.  

The final control flow graph after tail-merging the code-
regions is shown in Figure 7 (b). The associated LUT is also 
shown. The operation Rz=#0 and Rz=#2 sets the LUT offset 
to be used for accessing the LUT entry for the two original 
basic blocks, BB1 and BB2 respectively. In this example 
each LUT entry is 2 bytes, using a byte each for the two 
difference categories.  

3.2 Loop conversion for a sequence of cascaded code 
regions with LUT generation for the differences 

Figure 8(a) shows a sequence of code regions (basic blocks 
BB1, BB2, BB3, BB4, and BB5) forming a cascaded chain. 
The sequences of similar code–regions have a unique 
predecessor and successor relationship and could be replaced 
by a loop. Figure 8(b) shows the transformed loop body. The 
loop body is a single representative code-region (shown as 
New BB 7), and the loop header (shows as New BB 6). A set 
of additional decoding operations on the LUT entry, which is 
indexed by the loop induction variable, is present in the loop 
body (i.e., New BB 7).  

3.3 Procedural abstraction with LUT generation for the 
differences 

Procedural abstraction can be augmented with difference 
classification and LUT generation, when no specific control 
flow region type can be determined. The methodology in this 
paper can improve the traditional procedural abstraction 
technique. In the traditional procedural abstraction 
technique, the different instructions between the two basic 
blocks are left in the original code region. While the 
approach in this paper can include the operations involved 
with the differences in the abstracted procedure by 
incorporating the differences in the LUT. The abstracted 
procedure has some additional instructions to load the 
particular LUT entry and operations to decode and generate 
the difference values. Figure 9 shows an example of 
procedure abstraction with LUT generation. Two similar 
code regions that are replaced by two calls to the abstracted 
procedure, named “NewProcedure”, are shown in Figure 9. 

The call site initializes the LUT index and passes it as an 
argument to the abstracted procedure (as shown by register 
r0 before the call to “NewProcedure” in Figure 9).  

BB1
r0=loadw(r6+#0) 

r1=r10
r2=#106  
r3=r11
call msg_send_3

New BB 7
LoopStart:

Rx=loadw(Ry++)
Rz=extract(Rx,16,16)
Rz=r6+Rz;
r0=loadw(Rz);
r1=r10
r2=extract(Rx,16,0)
r3=r11
call msg_send_3

LoopEnd

BB2
r0=loadw(r6+#48) 

r1=r10
r2=#135  
r3=r11
call msg_send_3

BB3
r0=loadw(r6+#36) 
r1=r10
r2=#224 
r3=r11
call msg_send_3

LOOK UP TABLE:

Upper half-word is for the load 
offset.
Lower half-word is for the 
constant loaded in r2

BB4
r0=loadw(r6+#64) 
r1=r10
r2=#298  
r3=r11
call msg_send_3

BB5
r0=loadw(r6+#72) 
r1=r10
r2=#234  
r3=r11
call msg_send_3 23472

29864

22436

13548

1060

New BB 6
Ry = #LUT_base_address
LoopCounter=#5

 

(a) CFG before   (b) CFG after  
code size optimization    code size optimization 

Figure 8:  Code size optimization for a cascaded chain of similar 
BBs 

4. Results 
This section provides some of the results of using the new 
code size optimization method discussed in this paper. 
Implementation is done in Open64, but other compilers (e.g., 
GCC 3.4.6 and GCC 4.3.2) would also benefit by 
implementing this optimization. This is a work in progress. 
The current implementation focuses on the similar case 
statements in switch-case constructs. Additional LUTs are 
not added; hence the total size of the encoded value is 
limited to the address size in the target processor.  Table 1 
shows the comparison in text size (pure text and read only 
sections) with original Open64 (i.e., without the 
optimization), GCC 3.4.6 and GCC 4.3.2, all compiled using 
–Os optimization level. 
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r0=#0
call NewProcedure

r0=#4
call NewProcedure

1451

1012

Look Up Table

r4=add(r5,#14)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,#51)

<OTHER
INSTRUCTIONS
EXACTLY SAME>

r4=add(r5,#10)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,#12)

<OTHER
INSTRUCTIONS
EXACTLY SAME>

NewProcedure:

Rx=
#LUT_base_address

Rx=Rx+r0
r0=loadw(Rx+#0)
r0=extract(r0 ,#8,#0)
r1=extract(r0 ,#8,#8)

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,r1)

<OTHER 
INSTRUCTIONS
EXACTLY SAME>

RETURN

r0=#10
r1=#12

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,r1)

<OTHER
INSTRUCTIONS
EXACTLY 
SAME>

r0=#14
r1=#51

r4=add(r5,r0)
r4=mul(r4,r3)
r4=r4<<2;
r4=and(r4, r2)
r4=loadw(r4)
r4=or(r4,r1)

<OTHER
INSTRUCTIONS
EXACTLY 
SAME>

 

Figure 9: Procedural abstraction with difference encoding. 

The test cases in table 1 are obtained from Qualcomm’s 
software applications on mobile devices and contain one or 
more functions. It is seen that the methodology in this paper 
consistently reduces code size: for pure text (assembly 
instructions) in the range of 30% to 80%, while the total text 
(pure text and read only data) in the range of 5% to 60%. 
For an entire application the total code size reduction would 
depend on how frequently functions with largely similar case 
statements are present in them.  

Table 2 illustrates the total text size improvement and the 
impact on cycle performance of the new methodology on 
Open64. It compares the original Open64 and the modified 
Open64 (i.e., with the novel methodology in it). It is seen 
that code size consistently reduces (as large as 38%), with 

very small performance reduction in most cases. The slight 
performance reduction (for tests 9, 10, and 11) is attributed 
to the overhead for decoding the LUT and the control flow 
overhead to select the particular representative code region, 
when compared to a pure jump table based implementation. 
In some cases, like test example 8, cycles can degrade 
noticeably when there are multiple difference classes in the 
switch-case construct, or frequent gaps in the case values, 
leading to large control flow overhead for selecting the 
representative code regions. Test example 7 actually shows a 
remarkable improvement in performance because the 
original Open64 didn’t use jump table to lower the switch-
case statement, while the modified Open64 lowered to jump 
table and then performed the optimization described in this 
paper.  

Table 1: Code size when using the methodology in Open64 and compared with other compilers, using –Os optimization level. 

Test 
cases 

GCC 4.3.2  (size in bytes) GCC 3.4.6 (size in bytes) Original Open64 

(size in bytes) 

Methodology in Open64  

       (size in bytes) 

 Pure 
text 

rodata Total 
text 

Pure 
text 

rodata Total  
text 

Pure 
text 

rodat
a 

Total   
text 

Pure 
text 

rodata Total    
text 

1 3368 6164 9532 3364 6164 9528 4040 7512 11552 1676 6568 8244 

2 1152 308 1460 1224 312 1536 1352 352 1704 916 476 1392 

3 1032 352 1384 1036 352 1388 1336 352 1688 572 416 988 

4 896 0 896 876 0 876 1352 0 1352 116 224 340 

5 2204 9204 11408 2204 9204 11408 2220 9208 11428 524 9208 9732 

6 1052 1128 2180 1088 1128 2216 728 1952 2680 724 1392 2116 
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Table 2: Comparing total text size and cycle performance of 
original and modified Open64 using –Os optimization level. 

 

5. Summary and conclusion 
In this paper we described a code size optimization 
methodology based on difference classification and look-up 
table generation. The methodology can be consistently used 
for code size optimization of the non time-critical portions of 
the applications. The side benefits are improved instruction 
cache performance and increased availability of instruction 
bus bandwidth. The optimization has been implemented in 
the Open64 compiler, but could also be implemented in other 
compilers, e.g., GCC (versions 3.4.6. or 4.3.2). 

The work to enhance Open64 for code size is ongoing, 
further enhancements are being looked into, as mentioned in 
section 1.2. We compared the enhanced Open64 compiler 
with the GNU 3.4.6 and 4.3.2 compiler versions for memory 
usage (i.e., code size) of the generated assembly code and 
compared the impact on cycle performance with and without 
the novel methodology in Open64. The results are promising 
and we are further enhancing the methodology for various 
types of control flow regions.  
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Test Original 
Open64 

Methodology 
in Open64 

Percentage 
improvement 

 Text 
size 

Kilo 
cycles 

Text 
size 

Kilo 
cycles 

Text 
size 

Cycle 
Perf. 

7 1884 3.89 1168 2.76 +38 +27 

8 2448 34.1 1896 39.0 +22 -14.3 

9 3744 1161 3672 1162 +2 -0.09 

10 11860 17358 8372 17360 +29 -0.05 

11 7392 20996 4580 21329 +38 -1.5 
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