
Open64 on MIPS: porting and enhancing Open64 for Loongson II

Zhou Shuchang, Liu Ying, Lu Fang, Yin Le, Huang Lei, Li Shuai, Ma Chunhui, Gao Zhitao, Lian Ruiqi
Key Laboratory of Computer System and Architecture

Institute of Computing Technology, Chinese Academy of Sciences
Beijing, China

{zhoushuchang,liuying2007,flv,yinle,leihuang,lishuai,machunhui,gaozhitao,lianruiqi}@ict.ac.cn

Abstract—Loongson II is a MIPS III-compatible platform
with various modern features, including a state-of-art memory
subsystem. In the process of porting and enhancing Open64
on Loongson II, we observe that some optimizations lacking
or being rudimentary in Open64, like edge profiling and
array contraction, prove crucial for performance. We also
develop LIDO, Locality Inspired Data Optimizer, to facilitate
the optimization of data structure by source-to-source transfor-
mation. In orchestra of the powerful optimization framework
of Open64, our work results in 28.5%/78.4% performance im-
provement in SPEC2000INT/FP over latest GCC on Loongson
2F.

Keywords-Open64, Loongcc, Pathscale, ORC, MIPS, Loong-
son II, LIDO, CIL, source-to-source transformation

I. INTRODUCTION

MIPSPro was made open source except its high perfor-
mance MIPS backend under the name of Pro64 in 2000.
In later developments, it evolved into Open64 and has
been extended to various platforms, ranging from GPU to
embedded devices. However, an open source port on MIPS
is apparently missing from the picture. In addition, several
trends in hardware development, including the widening gap
between processor computation speed and memory system
bandwidth and latency, greatly impact compiler optimization
techniques. Consequently, a back-porting to MIPS is more
challenging than it seems. These two factors influence our
development of Loongcc, an Open64 branch for Loongson
II.

From our experience of adapting Open64 to Loongson
II, we observe that the memory system remains to be
the bottleneck, especially for SPEC2000FP. In particular,
the optimizations on spatial locality and array contraction
prove very effective. In comparison, the source of speedup
for SPEC2000INT is more diversified, consisting of con-
tributions from feedback-directed optimizations, improved
delay-slot filling, extended instruction set, and enhanced
instruction selection and scheduling. We give an analysis
of performance in Section III-B.

We build Loongcc by merging front-end and middle-
end of Pathscale compiler with the ORC-based backend for
Loongson II developed by our team[1]. To perform various
data structure optimizations, we develop LIDO, a source-to-
source transformation tool. An overview of our work is in
Figure 1.

New features

C C++

F77 F90

High/Mid

WHIRL

Low/Very Low

WHIRL

Source to source transformation

Array contraction

Extended loop transformation

Improved delay slot filling

Enhanced instruction scheduling

Extended instruction set

Figure 1: Overview of features of Loongcc

The rest of paper is organized as follows. Section II gives
some background on the target platform we used. Section III
describes our porting process and enhancement of Open64.
Section IV describes LIDO. Section V overviews related
work.

II. BACKGROUND

The Loongson 2F processor we use is a 64-bit, Out-Of-
Order, 4-issue, MIPS III-compatible platform[4]. It has a
memory managing unit supporting DDR2 memory, 64K/64K
Data/Instruction L1 caches, and a 512K L2 cache, all on-
chip. The memory system of Loongson 2F supports load
speculation, store fill buffers and non-blocking cache access
to improve the bandwidth and latency. Besides support
of full MIPS-III instruction set, Loongson 2F has a few
extension instructions aiming to improve the efficiency of
pipelines, including three-register-format multiplication, di-
vision and modulo operation. We perform our tests on a
800MHz Loongson 2F with 512MB DDR2 operating at
533Mhz.

III. PORTING AND ENHANCING OPEN64
A. Porting

We choose Pathscale compiler[2], the branch of Open64
targeting X86-64, as our basis of development for front-

end and middle-end, also incorporating modules from the
sibling branch ORC [3] and Open64 itself. We then merge
the modules from Pathscale with the backend developed
for Loongson 2E here at ICT as starting point. Thanks to
the clean hierarchy of WHIRL intermediate language and
modularity of Open64, the porting process mainly involves
replacing modules of CG phase in Pathscale compiler with
ORC-based Loongson modules, besides fixing a few glitches
scattered around. Table I gives an outline of our porting
process.

Module Changes
Machine model files A model for MIPS is constructed

from scratch as ORC has an incom-
patible scheme.

Front-end Support for MIPS N32/64 ABI is
included.

Middle-end A few machine dependent parts in
WOPT and LNO are fixed.

Backend For simplicity, we switch to IGLS
scheduling and drop region based
compilation framework.

Profiling Whirl profiling from Pathscale is
preserved. Edge profiling from
ORC-based backend is incorpo-
rated.

Table I: Summary of porting process of Loongcc

Throughout the porting process, we perform regression
tests to ensure that the augmented parts do not impair
the initial support for X86-64. All new modifications are
wrapped up in proper macros.

B. Performance

1) Comparison with GCC: Figure 2 gives a comparison
of performance between GCC and Loongcc. The benchmark
we use is SPEC2000 as support for SPEC2006 is still
under work. GCC base refers to a GCC branch released
by STMicroelectronics that is developed specifically for
Loongson 2E/2F. GFortran of the corresponding version is
used to process the Fortran examples. The flag we use is
”-O3 -march=loongson2f -mtune=loongson2f”, the highest
optimization level with tuned parameters for Loongson 2F.
GCC peak refers to the highest score selected from the
afore mentioned GCC branch, GCC 4.3 and GCC trunk
4.4. The flags used for GCC peak allow feedback-directed
optimizations and turn on special optimizations like matrix
reorganization. For Loongcc base we use ”-O3 -ipa” flag, the
highest optimization level with inter-procedural optimiza-
tion, but without profiling. Loongcc peak is Loongcc with
heavily tuned flags. In all, Loongcc base outperforms GCC
base by 13%/35%; Loongcc peak outperforms GCC peak
by 28%/78%; Loongcc peak outperforms Loongcc base by
26% and 52%, in SPEC2000INT/FP respectively. We will
analyze the performance gains below.

2) Performance analysis of SPEC2000INT/FP: The per-
formance gain for SPEC2000INT can be classified into

several categories, as shown in Table II. Since WHIRL
profiling and edge profiling affect each other, only the sum
of gain is given here. Figure 3 illustrates the composition.
As interference between different optimizations can not
be completely eliminated, we approximate the effect of
an optimization by measuring the amount of degrade of
performance when that optimization is disabled.

Optimization Effect on the generated code
Feedback-directed
optimizations by WHIRL
and edge profiling

Frequency information facilitate various op-
timization heuristics.

Tweaking optimization
flags and parameters

Parameters controlling optimizations are
adapted for Loongson.

Improved delay-slot filling The delay-slot module is enhanced to al-
low selection of instruction from consequent
basic blocks in speculative manner. The
main work is in fixing bugs and enriching
the CG dependency graph to support such
speculations.

Enhanced instruction
scheduling

Memory access instructions are reordered
to reduce stalls. Switching from backward-
direction scheduling to forward-direction
scheduling yields 8% performance improve-
ment for gap.

Stride prefetch based on
profiling

The pseudo-prefetch instruction in Loong-
son II is exploited to reduce latency of mem-
ory accesses. Test cases abundant in regular-
stride memory accesses like mcf benefit
most from this optimization, with its ratio
increases by about 27%. Applying prefetch-
ing to gap and parser improves them by
4%/6.3% respectively.

Other optimizations Optimization of global data access[5], use
of conditional move instruction, and peep-
hole optimizations also improve perfor-
mance.

Table II: categories of performance gain in Loongcc peak over Loongcc
base in SPEC2000INT

Profilings

41%

Others

14%

Prefetch

9%

Delay slot filling

8%

Flag tuning

23%

Instruction

scheduling

5%

Figure 3: Composition of performance gain in Loongcc peak over Loongcc
base in SPEC2000INT

Profiling proves to be the most effective optimization for
SPEC2000INT. Both WHIRL profiling and edge profiling

2

40%

60%

80%

100%

120%

140%

160%

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er
eo

n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip

2

tw
ol

f

SPEC
in

t

N
o

m
ai

li
ze

d
 S

p
ee

d
u

p

Gcc_base Loongcc_base Gcc_peak Loongcc_peak

0%

50%

100%

150%

200%

250%

300%

350%

w
up

w
is
e

sw
im

m
gr

id

ap
pl

u
m

es
a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d

si
xt

ra
ck

ap
si

SPEC
fp

N
o

m
ai

li
ze

d
 S

p
ee

d
u

p

Gcc_base Loongcc_base Gcc_peak Loongcc_peak

450%

400%

Figure 2: Comparison of performance of Loongcc and GCC on Loongson 2F. No GCC score for galgel can be produced here as we fail to produce correct
code on Loongson 2F with GCC.

collects the execution counts by instrumentation. However,
accuracy of frequency information collected by WHIRL
profiling is affected by transformations of WHIRL tree
in consequent phases. Edge profiling aims to improve the
accuracy by performing instrumentation as late as possible,
namely in code generation phase.

In comparison to SPEC2000INT, the performance gain for
SPEC2000FP is concentrated in optimizations for memory
accesses. For example, array contraction effectively im-
proves applu and galgel, and locality optimizations improves
art and equake. Probably due to the restrictiveness of the
pseudo-prefetch instruction, we have not be able to improve
SPEC2000FP ratio by stride prefetch yet. Performance of
facerec and fma3d are more than doubled after switching
to flush-to-zero mode. Below we describe array contraction
module in Loongcc.

C. Array contraction in Loongcc

Besides developing LIDO, which we will cover in Section
IV, we enhance several modules of Open64. In particular,
array contraction improves applu by 29.7% and galgel by
35.4%.

Array contraction is a form of array scalarization that
replaces the use of arrays with a few scalars or arrays
of less number of dimensions[6][7]. This transformation
both directly cuts the amount of memory accesses, and
reduces the cache footprint so that data are more likely to be
held in cache. We develop an array contraction module for
Open64 which uncovers more optimization opportunities by
aggressively applying loop transformations and performing
”rematerialization of array” when necessary[8]. Figure 4
gives an example of array contraction in applu.

After inlining the four subroutines and applying loop
fusion, two loop nests are constructed. It is obvious that
a, b, c and d are potential candidates for contraction.
However, d prevents direct contraction because of the data

3

dependency it introduces between the two loops. We apply
rematerialization to address this problem. By recalculating
the value of d at the second loop, we break the dependency
and allow the four arrays to be contracted.

subroutine ssor
common/cjac/
a(5,5,iar,iar,iar),
b(5,5,iar,iar,iar),
c(5,5,iar,iar,iar),
d(5,5,iar,iar,iar)

……
call jacld
call blts
call jacu
call buts

……

subroutine ssor
common/cjac/

….
do k = 2, nz – 1
do j = 2, ny – 1

do i = 2, nx – 1
Def of d, a, b, c
Use of d, a, b, c

…
end do

do k = nz – 1, 2, -1
do j = ny – 1, 2, -1

do i = nx – 1, 2, -1
Def of a, b, c
Use of d, a, b, c

…
end do

inline rematerialize

subroutine ssor
common/cjac/

….
do k = 2, nz – 1
do j = 2, ny – 1

do i = 2, nx – 1
Def of d, a, b, c
Use of d, a, b, c

…
end do

do k = nz – 1, 2, -1
do j = ny – 1, 2, -1

do i = nx – 1, 2, -1
Def of d

Def of a, b, c
Use of d, a, b, c

…
end do

Figure 4: Array contraction in applu by rematerialization. After remateri-
alization, data dependency between the first and the second loop is broken,
allowing all four arrays to be contracted into four much smaller two-
dimension arrays.

IV. A SOURCE-TO-SOURCE TRANSFORMATION TOOL

A. Source-to-source transformation

Data locality refers to the phenomenon that data accesses
are often performed at the same or related addresses. By
exploiting data locality we can effectively reduce memory
access latency and improve bandwidth[9][10]. In the effort to
improve the data locality of program by transforming data
structure, a family of transformations has been proposed,
including structure field reordering, structure splitting, struc-
ture peeling, array flattening, and array transposition[11]
[12][13][14]. These transformations in Open64 context are
often implemented as a rewriting of WHIRL at some level.
For example, [15] performed the structure peeling and
splitting in IPA. However, performing the transformation
at intermediate level has a few limitations due to the
information loss in front-end’s conversion to WHIRL. For
example, when structure size changes, all places with sizeof
expression of the structure need to be changed. But during
conversion to WHIRL, the front-end would have already
turned the sizeof expression into a constant number. [15]
suggests looking at the receiver pointer type at allocation
sites to identify the places to change. However, it is hard
to trace the receiving pointer when the calls to allocation
routines are wrapped in custom wrappers, as in the case of
parser and twolf.

To avoid this information loss, we develop LIDO, Locality
Inspired Data Optimizer, to perform these transformations
at the source level. The effect of performing the transfor-
mation at source level has its strength and weakness. On

one hand, transformations on data structures are naturally
expressible at the source level. As these transformation
are rather high-level, describing the transformation rules in
lower levels would be much more verbose. In addition,
the source level transformation allows easy debugging as
all changes are completely reflected in the human-readable
transformed source files. On the other hand, special care
need be taken to avoid generating code patterns that confuses
later optimizations. These factors motivate us to develop
LIDO.

B. Background on CIL

LIDO is based on CIL[16], a source-to-source transforma-
tion framework previously used for verification of C code.
Unlike some source transformation tools like TXL[17] that
works by direct pattern matching, CIL first transforms the
source file to a standard form and then provides interfaces for
tree rewriting rules based on type information. We observe
that this canonicalizing process of the source considerably
improves robustness of consequent analysis and transfor-
mations. For example, after transformation, arguments of
functions are guaranteed to be side-effect-free, and different
forms of loops are all converted into a while(1) loop, with
exit statement placed at the head of loop body. Nevertheless,
as mentioned above, this transformation may confuse later
phases of compiler transformation. CIL provides an option to
mildly transform the code to more compiler-friendly form.
An example from art is shown in Figure 5. Although it
can be observed that the three forms are equivalent, Open64
produces much inferior code for the second format in our
experiments. Inspecting the intermediate WHIRL suggests
that it is due to failure of Open64 to recover the loop index
variable from the code in AS-IS format.

With the built-in support for dataflow analysis in CIL,
pointer analysis etc., the legality of transformations can be
established through analysis.

C. Structure of LIDO

LIDO is implemented as a plug-in to CIL. It performs
both analysis and transformations and includes modules to
analyze DEF-USE of arrays, uncover constant structures,
and recognize loop invariants. These analysis are light-
weight and not meant to replace corresponding analysis in
later phases of compiler. Instead, they are performed on
demand of establishing legality of a potential transformation.
At this stage of development, we only employ minimal
alias analysis. LIDO supports various transformations of
structure layout and array layout, and some pattern matching
rules to optimize special forms of program construct. Figure
6 illustractes structure of LIDO. LIDO works between C
preprocessor and Loongcc. Both its input and output are in
CIL format, which are also plain C sources. As analysis of
LIDO requires frequency information corresponding directly
to statements in the plain C source, we cannot use data

4

Original:
for (j=0;j<numf1s;j++)

norm += f1_layer[j].R

* f1_layer[j].R;

CIL AS-IS format:
j___0 = 0;
while (1) {
if (j___0 < numf1s) {

} else {
break;

}
norm += (f1_layer + j___0)->R

* (f1_layer + j___0)->R;
j___0 += 1;

}

Simplified:
j___0 = 0;
while (j___0 < numf1s) {
norm += (f1_layer + j___0)->R

* (f1_layer + j___0)->R;
j___0 ++;

}

Figure 5: Effect of the canonicalizing of source file to CIL and later
simplification. j is renamed to reflect its scope of definition so as to avoid
name conflicts.

collected by WHIRL/edge profiling of Open64 and have to
develop an instrumentation framework that operates at the
source level, which works as a standalone phase of Loongcc.

CIL

LIDO

Informaion

from

Profiling

Loongcc

C source

C Preprocessor

C source
Determine potential

transformations based on

profiling information

Check legality via analysis

Perform transformations

Figure 6: Structure of LIDO

D. Example Transformations

In this subsection we will cover LIDO’s transformations
of art and equake in detail.

Original:
typedef struct {

double *I;
double W;
double X;
double V;
double U;
double P;
double Q;
double R;

} f1_neuron;

Transformed:
double ** f1_layer_I;
double * f1_layer_W;
...

Figure 7: f1 layer structure in art

As the first step, either by extracting frequency informa-
tion collected by Loongcc or by heuristics, we can decide
that the global array f1 layer is the key data structure. By
inspecting its USE sites, we observe that typically only part
of fields in the structure is accessed in loops. Intending to
optimize the spatial locality, we perform structure peeling
for the f1 neuron array to turn it into a couple of smaller
arrays, named as f1 layer I f1 layer W etc. It is performed
as in [15], but now at source level. The transformation is
shown in Figure 7. The new array names are constructed to
correspond to the field names.

After structure peeling, LIDO performs a custom dataflow
analysis inspecting DEF-USE chains of the newly created
arrays, as they are now the key data structure in the program.
The analysis reveals that f1 layer P is always equal to
f1 layer Q. Hence USE of f1 layer Q can be replaced by
that of f1 layer P. However, we cannot replace in reverse
order as f1 layer P escapes the procedure. This requires
another round of dataflow analysis, which is a weak form
of shape analysis[22]. The analysis is performed only when
required to establish the legality by some transformations.
The results of analysis is saved for potential reuse.

The dataflow analysis of arrays also reveals that
f1 layer W/f1 layer V/f1 layer X and f1 layer U have a
special usage pattern. These arrays are typically used as
temporary storage places for intermediate calculation results
and are visited in circular style in a hot loop. As they
are stream processed and not reused, bringing them into
the cache only pollute the cache. Observing that there is
no real overlap of lifetime of these arrays, we can overlay
these arrays to overlap the region of cache that these arrays
may pollute, consequently increase the chance for cache
reuse of other data. In addition, the write-allocation policy
of cache management requires data to be first loaded into

5

cache before further operations. In this case, overlaying of
temporary arrays reduces the number of write-misses. Last
but not least, overlaying exploits the fact that there is no need
to write these temporary values into main memory, as long
as they are present in cache. The effect of overlay can be
verified by statistics in Table III. We can observe that array
overlaying significantly reduces the amount of traffic among
L1 cache, L2 cache and main memory. Array contraction
does not apply here due to data dependency. We perform
the overlay by straightforward replacement of references.

Event Normalized number of event after overlay
CPU CLK 0.698
DCACHE MISSES 0.696
MEM READ 0.683
MEM WRITE 0.317

Table III: Overlay of arrays in art causes number of many performance-
critical events to be reduced. CPU CLK measures the number of clock
cycles. DCACHE MISSES counts L1 data cache misses. MEM READ
and MEM WRITE measures read/write traffic between L2 cache and main
memory. All statistics are collected by Oprofile[?] by checking performance
counters of Loongson 2F.

Also by inspecting the hot loops identified from profiling
information, we observe that bus array and tds array are
multi-dimensional arrays accessed in non-row-major order.
LIDO flattens these arrays to one-dimension after proper
array transposition. In addition, as structure peeling produces
f1 layer I as an two-dimensional array as in Figure 7, we
can also flatten it to further improve performance. The fact
that input and output of transformations are all valid C code
in CIL format allows direct chaining of transformations.
The multi-dimensional arrays are all dynamically allocated
arrays, which is a common program idiom as C language
prior to C99 does not allow variable-length arrays. The
flow of the array flattening and transposition in LIDO is
performed in three passes over the whole source. First, all
allocation sites of the target array are scanned to gather span
of each dimension by inspecting the arguments passed to
the allocator. In the second pass, the allocation sites are
transformed. The size argument of allocation calls for the
base dimension pointer are increased to hold the whole array.
Allocation calls for higher dimensions are deleted. Finally,
LIDO scans all the USE sites of the array and transforms the
index expression based on information collected in the first
pass. We also map the USE of pointers of higher dimension
to equivalent addresses in the new array. Transposition of
array can be performed in this pass by simply swapping
items in the index expression. An example is given in Figure
8.

The transformations will be aborted whenever legality
cannot be established, like when programmers hard-code
the size of structure as ”magic numbers” and the receiving
pointer does not give type information, which is a case of
bad programming style hindering optimization.

LIDO also includes some miscellaneous transformations.

Original:

while (ti < numf1s) {
(f1_layer + ti)->W =

*((f1_layer + ti)->I + cp)
+ a * (f1_layer + ti)->U;

tnorm += (f1_layer + ti)->W

* (f1_layer + ti)->W;
ti ++;

}

Transformed:
while (ti < numf1s) {

*(f1_layer_U + ti) =

*(f1_layer_I +
(cp *
(unsigned int)numf1s + ti))

+ a * *(f1_layer_U + ti);
tnorm += *(f1_layer_U + ti)

* *(f1_layer_U + ti);
ti ++;

}

Figure 8: Flattening f1 layer I in art. numf1s is the span of inner-most
dimension of f1 layer I. Also note that accesses to W field are first
transformed to accesses to f1 layer W, and then replaced by accesses to
f1 layer U due to overlay.

Original:

for (tj=0;tj<numf2s;tj++)
{

if ((tj == winner)&&(Y[tj].y > 0))
tsum += tds[ti][tj] * d;

}

Transformed:

if(winner >=0 && winner <numf2s)
{

tj = winner;
if (Y[tj].y > 0)

tsum += tds[ti][tj] * d;
}

Figure 9: An inefficient loop in art

For example, we observe that a hot loop can be reduced as
in Figure 9, which we implement as a tree rewriting rule
as follows: LIDO scans for all loops enclosing a conditional
branch involving an equality test of index variable. The loop
found is reduced to a conditional after transformation and
the equality test in the loop body is deleted.

Transformations applied for equake are array flattening,

6

for (i = 0; i < ARCHnodes; i++)
for (j = 0; j < 3; j++)
disp[disptplus][i][j] *=

- Exc.dt * Exc.dt;

for (i = 0; i < ARCHnodes; i++)
for (j = 0; j < 3; j++)
disp[disptplus][i][j] +=
2.0 * M[i][j] * disp[dispt][i][j] -

(M[i][j] - Exc.dt / 2.0 * C[i][j]) *
disp[disptminus][i][j] -
Exc.dt * Exc.dt *
(M23[i][j] * phi2(time) / 2.0 +

C23[i][j] * phi1(time) / 2.0 +
V23[i][j] * phi0(time) / 2.0);

for (i = 0; i < ARCHnodes; i++)
for (j = 0; j < 3; j++)
disp[disptplus][i][j] =
disp[disptplus][i][j] /
(M[i][j] + Exc.dt / 2.0 * C[i][j]);

Figure 10: Hot loops in equake

lifting of loop invariant codes and aggressive loop fusion.
One of the kernel loops of equake is shown in Figure 10.

The phi0/phi1/phi2 functions are in fact pure, but compiler
fail to recognize their purity because the functions read some
global variables. We perform a simple analysis to discover
constants of structure type and then replace their USE by
constants, hence establishing purity of the phi0/phi1/phi2
functions. LIDO also observe that fusing the three kernel
loops may be beneficial. However, data dependency may
exist if any two of disptplus, dispt and disptminus are equal.
To resolve this dependency, an analysis is performed by a
scan of DEF of the point-to sets [23] of these variables.

As the scanning in LIDO is performed in top-down tree
traversal manner, the algorithm complexity is O(kn) where
n is the length of the program and k is the number of
passes. Therefore, although every transformation performed
by LIDO requires a few scanning passes of the whole
syntax tree, the time of analysis and transformations is barely
noticeable in our experiments.

The applicability of LIDO is limited only by that of CIL,
which can parse the whole LINUX kernel. However, due to
front-end restrictions, LIDO can only perform transforma-
tions on C sources. We hope to remove this restriction in
later development.

E. Effect of applying LIDO

As source-to-source transformation is compiler indepen-
dent, we measure the effect of LIDO for art and equake

on three platforms. Table IV gives the performance gain
achieved by LIDO on an Intel Xeon 2.33GHz and an AMD
Opteron 1GHz. For Xeon we use Intel C Compiler 10.1,
for Opteron we use Pathscale 3.1, with flags fetched from
SPEC CPU2000 peak configurations. No parallelization is
involved here.

Benchmarks Xeon Opteron Loongson 2F
art +344% +106% +349%
art without array overlay +189% +64% +212%
equake +53% +30% +44%

Table IV: Performance for art and equake on three platforms.

Structure peeling and matrix reorganization on art has
been implemented in GCC under the ”-fipa-struct-reorg”
and ”-fipa-matrix-reorg” flags. GCC with these two flags
yield 93% improvement on Loongson 2F. However, to our
knowledge, the overlaying of arrays of splitted structure
fields in LIDO is unique. It can be seen from the table that
the overlay contributes significantly to the gross speedup.
By composing all transformations mentioned above, LIDO
achieves better overall performance gain for art.

As main strength of LIDO is in improving effective
memory bandwidth, applying LIDO to other C test cases
in SPEC2000 does not yield significant performance gain
and is not shown here.

V. RELATED WORK

Our work is part of continuous effort at ICT to develop
custom compilers designed for Loongson family. The back
end of our compiler is heavily influenced by ORC. In
parallel to our work, Cui Huimin independently developed a
backend for Loongson II based on an Open64 branch. What
distinguishes our work is the maturity and the emphasis on
performance.

[24] describes porting Open64 to Power-PC platform.
They develop a method to partially automate the creation
of code generators.

Cetus[21] is another open source source-to-source trans-
formation tool that targets C sources. To our knowledge,
it does not yet include structure and array transformation
modules.

VI. CONCLUSION

We develop Loongcc, a high performance Open64 branch
for Loongson II, which is a MIPS III-compatible platform.
We hope to make Loongcc open source in this year, provid-
ing another option for Open64 target platforms. Due to the
RISC nature of Loongson II, we hope that our branch would
serve as a basis for porting Open64 to other platforms in
RISC family, while preserving most optimizations available
in Loongcc.

We also develop LIDO to perform various optimizations
of data structure at the source level. The transformations

7

that LIDO performs include array overlaying, array flatten-
ing, array transposition, structure field reordering, structure
peeling, and structure splitting, and optimization of spe-
cific program constructs. To establish the legality of these
transformations, LIDO performs a variety of light-weight
analysis. Due to frontend limitations, currently LIDO can
only process C source. We hope to eliminate this restriction
and extends it to work on the whole SPEC2000FP in later
versions.

ACKNOWLEDGMENT

We are grateful to developers of MIPSPro, Open64,
Pathscale and ORC for their contributions to the open
source society. Mi Wei developed the first version of array
contraction model. Shi Hui and Xiang Xiaoya initiated the
work for locality optimization on Loongson platform. We
would also like to thank the anonymous reviewers for their
precious remarks which help improve this paper.

REFERENCES

[1] Hu, W. W., and Wang J. Making effective decisions in com-
puter architects’ real-world: Lessons and experiences with
Godson-2 processor designs. JOURNAL OF COMPUTER
SCIENCE AND TECHNOLOGY 23(4):620-632 July 2008

[2] Pathscale compiler. http://www.pathscale.com/

[3] Open Research Compiler. http://ipf-orc.sourceforge.net

[4] Hu, W. W., Zhao, J. Y., Zhong S. Q., Yang X., Guidetti,
E., and Wu C. Implementing a 1GHz Four-Issue Out-of-
Order Execution Microprocessor in a Standard Cell ASIC
Methodology. In Journal of Computer Science and Technology,
Vol. 22, No. 1, pp.1-14, 2007.

[5] Haber, G., Klausner, M., Eisenberg, V., Mendelson, B., and
Gurevich, M. 2003. Optimization opportunities created by
global data reordering. In Proceedings of the international
Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization (San Francisco, California,
March 23 - 26, 2003). ACM International Conference Proceed-
ing Series, vol. 37. IEEE Computer Society, Washington, DC,
228-237.

[6] Gao, G. R., Olsen, R., Sarkar, V., and Thekkath, R. 1993.
Collective Loop Fusion for Array Contraction. In Proceedings
of the 5th international Workshop on Languages and Compilers
For Parallel Computing (August 03 - 05, 1992). U. Banerjee,
D. Gelernter, A. Nicolau, and D. A. Padua, Eds. Lecture Notes
In Computer Science, vol. 757. Springer-Verlag, London, 281-
295.

[7] Song, Y., Xu, R., and Wang, C. 2004. Improving Data Locality
by Array Contraction. IEEE Trans. Comput. 53, 9 (Sep. 2004),
1073-1084.

[8] Briggs P., Cooper K. D., and Torczon L. Rematerialization.
Proceedings of the SIGPLAN 92 Conference on Programming
Language Design and Implementation, SIGPLAN Notices
27(7), p.311-321. July 1992.

[9] Ding, C. and Kennedy, K. 2004. Improving effective band-
width through compiler enhancement of global cache reuse. J.
Parallel Distrib. Comput. 64, 1 (Jan. 2004), 108-134.

[10] D’Hollander, E. Discovery of Locality-Improving Refactor-
ings by Reuse Path Analysis. Proceedings of the 2nd Interna-
tional Conference on High Performance Computing and Com-
munications (HPCC). Springer. Lecture Notes in Computer
Science. Vol. 4208. 2006. pp. 220–229

[11] Zhong, Y., Orlovich, M., Shen, X., and Ding, C. 2004.
Array regrouping and structure splitting using whole-program
reference affinity. SIGPLAN Not. 39, 6 (Jun. 2004), 255-266.

[12] Ding, C. and Kennedy, K. 2001. Improving Effective Band-
width through Compiler Enhancement of Global Cache Reuse.
In Proceedings of the 15th international Parallel and Dis-
tributed Processing Symposium

[13] Hundt, R., Mannarswamy, S., and Chakrabarti, D. 2006.
Practical Structure Layout Optimization and Advice. In Pro-
ceedings of the international Symposium on Code Generation
and Optimization (March 26 - 29, 2006). Code Generation and
Optimization. IEEE Computer Society, Washington, DC, 233-
244.

[14] Chilimbi, T. M., Hill, M. D., and Larus, J. R. 1999. Cache-
conscious structure layout. In Proceedings of the ACM SIG-
PLAN 1999 Conference on Programming Language Design
and Implementation (Atlanta, Georgia, United States, May 01
- 04, 1999). PLDI ’99. ACM, New York, NY, 1-12.

[15] Gautam C., Fred C., Structure Layout Optimizations in the
Open64 Compiler: Design, Implementation and Mesurements.
In Open64 Workshop at CGO 2008, Boston, Massachusetts.

[16] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W.
2002. CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs. In Proceedings of the 11th
international Conference on Compiler Construction (April 08
- 12, 2002). R. N. Horspool, Ed. Lecture Notes In Computer
Science, vol. 2304. Springer-Verlag, London, 213-228.

[17] Thurston A. and Cordy J.R. , Evolving TXL, Proc. SCAM
2006, IEEE 6th International Workshop on Source Code Anal-
ysis and Manipulation, Philadelphia, September 2006, pp. 117-
126.

[18] GNU Compiler Collections. http://gcc.gnu.org/

[19] SPEC. Standard performance evaluation corporation.
http://www.spec.org

[20] Mostafa H. and Caroline T.. Cache aware data layout reor-
ganization optimization in GCC . In Proceedings of the GCC
Developers’ Summit , pages 69–92, 2005.

[21] Lee S. I., Johnson T. A., and Eigenmann R.. Cetus -
An Extensible Compiler Infrastructure for Source-to-Source
Transformation. In Proc. of the Workshop on Languages and
Compilers for Parallel Computing(LCPC’03), pages 539–553.
(Springer-Verlag Lecture Notes in Computer Science), Oct.
2003. (Ipdps’01) - Volume 1 (April 23 - 27, 2001). IPDPS.
IEEE Computer Society, Washington, DC, 10038.2.

8

[22] Mooly S., Thomas R., Reinhard W. May 2002. ”Parametric
shape analysis via 3-valued logic”. ACM Transactions on
Programming Languages and Systems (TOPLAS) (ACM) 24
(3): 217C298. Beyls, K.;

[23] OProfile system-wide profiler. http://oprofile.sourceforge.net

[24] Steensgaard, B. 1996. Points-to analysis in almost linear
time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St.
Petersburg Beach, Florida, United States, January 21 - 24,
1996). POPL ’96. ACM, New York, NY, 32-41.

[25] Lin M., Yu Z., Zhang D., Zhu Y., Wang S., Dong Y.,
Retargeting the Open64 Compiler to PowerPC Processor,
icesssymposia,pp.152-157, 2008 International Conference on
Embedded Software and Systems Symposia, 2008

9

