
A SoC simulator, the newest component in Open64
Report and Experience in Design and Development of a baseband SoC

Wendong Wang, Tony Tuo, Kevin Lo, Dongchen Ren, Gary Hau, Jun zhang, Dong Huang

{wendong.wang, tony.tu, dongchen.ren, jun.zhang, dong.huang}@simplnano.com
{lokaiman, waternoose}gmail.com

SimpLight Nanoelectronics Ltd., Beijing China 100088

Abstract

First silicon success, total system
performance and time to market are three
challenges in SoC design. Hardware/software
co-design approach with a good simulation
environment is usually used to address these
challenges. In this paper we report a SoC
simulation infrastructure which is used for
complex SoC design. We accomplished the three
big challenges with the help of a simulation tool
set. Experience on design of a baseband processor
based on the simulation environment is also
presented. We show how we start from scratch,
produced a product ready SoC within two years
and achieve first silicon success with our
production tape out. This system simulator has
been open sourced as part of Open64 source tree in
the summer of 2008. With this simulator, the
Open64 is one step closer in becoming a complete
toolchain suitable for new processor and SoC
development.

1. Introduction

First silicon success, total system
performance and time to market are three
challenges in SoC design. Hardware/software
co-design approach with a good simulation
environment is usually used to address these
challenges. With a complete set of simulation tools,
designers can run benchmarks and/or targeted
applications to experiment with hardware design at
very early stage of design cycle. At the same time
software programmers can use these tools to
develop and test software before the real hardware
becomes available [1, 2].

Application specific instruction set processor
(ASIP) is a popular choice as a compromise
between ASIC and general purpose processors
(GPP). ASIP is programmable, their architecture is
tailored for a certain application domain, such as
communication, audio or video processing. Their
performance requirements are usually very rigid
(e.g. video codec processor). This requires target
flexible instruction set simulator and compiler to

assist in ISA design as well as micro-architecture
design.

This paper reports our experience in design
and implementation of a SoC simulation tool set
for SL1, Simplnano’s first SoC. The simulation
tool set, named SoC SIMulator (SSIM) [3], is
designed with the following goals: (1) ISA and
SoC architecture design and verification; (2) early
SoC system bring up and RTL co-verification; (3)
early system software stack bring up and
application software development and testing.

SSIM has been used for designing of SL1
which is a baseband SoC processor. SL1 is
designed to meet the processing performance
requirements for common 2G/3G, such as
GSM/GPRS, EDGE and TD-SCDMA mobile
handset devices. The SoC architecture adopts a
hardware multi-threaded design that is based on a
single programmable engine with application
specific fix-function accelerators. All instructions
of SL1 core are designed to make it run wireless
application specific work load efficiently. With the
help of SSIM, we delivered the SoC within two
years of design-development cycle. And we were
able to run MPEG4 decoder on top of a RTOS
within hours of the chip came back from a
production tape out.

The rest of the paper is organized as follows.
Simulator related work is discussed in section 2.
Section 3 gives detail description for SSIM and the
use for hardware/software coverification.
Retargeting and speed of SSIM are also discussed
in section 3. In section 4, we concluded our work
with projection for future work.

2. Related work

There are lots of simulators used for
architecture research or design exploration.
SimpleScalar [2], ASIM [5] and Skyeye [7]
concentrate on accurately modeling the processor
architecture design and they are cycle accurate.
And other simulators which designed for
architecture verification as well as software
development such as FAST [4], are functional
accurate. There are also full system simulators

 1

capable of running commercial workloads for an
unmodified operating system, such as SIMOS [8],
Simics [5] and Skyeye [7].

But all of them have one disadvantage, which
leads us to develop a new simulation environment.
They are not designed for hardware/software
coverification in SoC system design process. Here
coverification means: (1) same code modules can
be shared by SSIM and C-model; (2) SSIM, FPGA
and real chip can be verified with the same test
cases and targeted application binaries.

3. SSIM

Figure 1 presents the kernel components of
SSIM. Both system and user-level programs can
run on this full-system simulation environment.
There are three main parts for SSIM infrastructure:
core instruction set simulator (ISS), SoC simulator
and target dependent performance simulator.

Instruction set simulator in SSIM can run
standalone or as one part of SoC simulator. Both

S
he

ll

Figure 1. Key components in SSIM

modes use same codes modules as can be seen
from figure 1. The simulator runs as a bit accurate
interpreter for applications which are developed
for the target system. It fetches instructions from
cached memory, decodes it into internal format,
executes the instruction, and updates register files
and/or memory. Further more, ISS and C-model,
which is used for hardware verification, can share
some components when this design pattern is used.
This makes SSIM effective for hardware/software
coverification and it is the motivation that we
design SSIM although there are many simulators
can be used.

Apart from ISS, SoC simulator includes
registered devices/peripherals. Considering
simulation speed, we emulate devices using
transaction level accuracy, which means the

simulator handle each interaction to the device as a
unit: the device is presented with a request,
computes the reply, and returns it in a single
function call. Only registered devices can be
accessed in runtime. SoC simulator will throw
error message when unregistered devices are
accessed by application. This can reduce
simulation overhead for some applications which
do not use all emulated devices.

Finally, there is a target dependent
performance simulator, which models the internals
of the target system and it is cycle accuracy. The
SoC simulator implements what programmers see,
but performance simulator implements what
programmers not see and what hardware designers
see. The decoupling method makes SSIM fast
enough for software development and makes
performance simulator accurate enough for

 2

hardware design. Note that the performance
simulator is not open sourced in the Open64 source
tree.

3.1 Coverification

In today’s SoC design processes, verification
phase has become the major part, not only because
it is time consuming but also due to the increasing
complexity in both hardware and software.
Traditional SoC design-develop cycle is: Architect
mapping partitions of SoC design into hardware
and software components, and the specifications
are handed to the hardware and software teams for
implementation. The hardware team implements
hardware portion of the design in Verilog or
VHDL, using hardware simulators for verification.
The software team develops software modules in
assembly, C, or C++ languages and uses ISS to test
the software. Many problems can arise during the

system integration process. The problems are due
to such things as misunderstanding of
specifications, incomplete interface definitions,
and late design changes.

Hardware/software coverification method
eliminates these integration errors through moving
integration phase early. The coverification occurs
in all system design phases: RTL module
verification, full-chip simulation, FPGA
verification and chip verification.

Our coverification approach is carried out in
three steps: (1) Develop SSIM and use test cases to
verify it. Meanwhile, run typical applications
under SSIM to collect performance data for design
choices. (2) Use small test cases to verify RTL
modules with the help of SSIM and develop target
applications on SSIM. (3) Use same unit test cases
and applications to verify the correctness of FPGA
and real chip. The approach is illustrated in Figure
2 and further discussed below.

Figure 2: Coverification with the help of SSIM

After SSIM is verified by small test cases,

targeted embedded applications are developed with
the help of SSIM. At the same time, system
designer could modify architecture (include ISA

and micro-architecture) of SoC if performance of
targeted application does not match the
requirement. Eclipse and GDB is supported to
reduce difficulty for embedded software

 3

development as shown in figure 2. SSIM parses
the command line, if needs to work in the debug
mode, a thread for the debugging system is forked.

To verify separate RTL modules, small test
cases are issued by testbench through PLI interface
to SSIM, The result is compared with result of
RTL codes. For full chip verification, more unit
tests are designed that includes carefully chosen
subset of devices for easy triaging and pinpointing
of root causes.

After verification at the RTL-level has been
performed, the verification process typically
continues on a prototype such as FPGA or full-chip
RTL simulation. The applications and test suit
developed in above stage can be used to test the
final prototype system without modifications
(except timing modules). If the verification failed,
specification need to be checked by software and
hardware engineers to make sure it is well
understood. In this phase, some hardware design
errors can be found and located through the help of
SSIM.

Figure 3: A Packaged SL1 SoC

With this approach, same test cases and

applications are used for RTL modules, FPGA and
real chip verification. So, time for SoC verification
can be reduced dramatically. When correctness
verification for real chip passed, both chip and
target system applications are ready for market. We
use this approach to develop a baseband processor
named SL1, shown in figure 3.

Figure 4: Register class for Atom platform

3.2 Retarget

SSIM are written in C++. The inheritance of
C++ made it easy to add new ISA. Figure 4 give
one example which realizes register class for Atom
platform in SSIM.

The interfaces in SSIM are well defined.
Figure 1 gives internal structure for SSIM and its
interfaces, where each component is defined as one
class. Common interfaces are defined as virtual
functions, and each target needs to inherit from
base classes to realize these virtual functions.

An instruction set table (figure 5), which

includes assemble name, decode function,
execution procedure and disassembler for each
instruction is defined in SSIM. New table need to
be added if a new ISA is introduced into SSIM.

As we stated in section 1, we use two
simulators: function simulator which implements
the part which can be seen by programmer, and
performance simulator which implements the parts
cannot be seen by programmer. This decoupling
implementation makes SSIM very flexible to
retargeting.

 4

Figure 5: ISA table example for SL platform in SSIM

A good compiler is needed for retargeting and

performance evaluation in ASIP. The Open64
compiler was chosen for its machine independent
optimization so that once retargeted, the generated
code will be of high performance quality. Then
accurate performance data which collected can be
used for architecture design.

3.3 Simulation speed

In most cases, instruction processing occupies
most of the execution time for simulation, and
programmer use instruction simulator (or SoC
simulator) to develop software before real
hardware becomes available. Thus, speed is very
important for SSIM.

First, template is used to accelerate SSIM so
that most references are solved at compile time.

Second, as described in above section, we
emulate instructions in SSIM as it executed in
hardware. Each instruction is decoded from the
binary program and is passed to an appropriate

simulation routine, which interprets the instruction
and correspondingly updates the simulator status.
So a technique named decoded instruction caching
is used to speed up the performance. SSIM
allocates one cached page and decodes all
instructions belongs the page when the first
instruction in a page is accessed. This method
reduces a lot of preparations needed to fetch and
decode of instructions one at a time. It also
eliminates unnecessary decoding overhead when
executing loops. SSIM provides one parameter
which can be used to control number of decoded
cache pages. And page size can also be configured
to match page size of host system in order to get
maximum performance.

Through these optimizations, SSIM can reach
tens of million of instructions per second, which is
sufficient to execute large real embedded
workloads as can be seen from table 1. The data is
obtain on machine with Intel core2 CPU (6600,
2.4G, single thread).

 EDGE

Equalization
AAC decoder MPEG4 decoder

Matrix

Decomposition

With instruction caching 17060748 16243558 15879146 16826678

Without instruction caching 9748999 9163032 9283193 9707699

Table 1: Speed of SSIM with/without instruction caching (instructions per second)

4. Summary

We reported some preliminary results and
illustrated, through the process of designing a real
baseband processor, how SSIM achieve its
objectives: efficient for hardware/software
coverification, easy to retarget and acceptable
simulation speed.

As future work, we plan to add one flexible
machine description language (MDL)[9, 10] for
SSIM, through which SSIM can be retarget
automatically as shown in figure 6. Furthermore,

the current SSIM does not simulate bus traffic,
hence it is not suitable to study SoC system
performance issues such as power usage, bus
contention etc. This will be our future goal.

Acknowledgments

The author would like to acknowledge Sun
Chan for his wisdom that directs us in SSIM
design.

 5

Figure 6: ASIP design flow with MDL

5. Reference
[1] M. Heinrich, D. Ofelt, M. Horowitz, J.

Hennessy. “Hardware/Software Codesign of
the Stanford FLASH Multiprocessor”. In
Proceedings of the IEEE Special Issue on
Hardware/Software Co-design, Vol. 85, No. 3,
March 1997.

[2] T. Austin, E. Larson, and D. Ernst. “Simple
Scalar: An Infrastructure for Computer
System Modeling”. IEEE Computer, 35(2):
59–67, Feb. 2002.

[3] http://svn.open64.net/svnroot/open64/sim/fsim
[4] C. Juan, Z. Weirong, H. Ziang, G, GuangR.

“FAST: A Functionally Accurate Simulation
Toolset for the Cyclops64 Cellular Archi
tecture”. Workshop on Modeling, Bench
marking, and Simulation (MoBS2005).

[5] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. Hallberg, J. Hogberg, F.
Larsson, A. Moestedt, and B. Werner. “Simics:
A full system simulation platform”. IEEE
Computer, 35(2):50–58, February 2002.

[6] J. Emer, P. Ahuja, E. Borch, A. Klauser,
etc. “Asim: a performance model
framework”. IEEE Computer, 35(2):68–76,
Feb. 2002.

[7] http://www.skyeye.org/index.shtml
[8] M. Rosenblum, E. Bugnion, S. Devine, and S.

A. Herrod. “Using the SimOS machine
simulator to study complex computer
systems”. ACM Transactions on Modeling
and Computer Simulation, 7(1):78–103,
January 1997.

[9] http://www.retarget.com/products/whatisnml.
php

[10] Eric Schnarr, Mark Hill, and James Larus,
"Facile: A Language and Compiler For
High-Performance Processor Simulators," in
the ACM SIGPLAN 2001 Conference on
Programming Language Design and
Implementation (PLDI01), Snowbird, Utah,
June 20-22, 2001.

 6

