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Abstract 

First silicon success, total system 
performance and time to market are three 
challenges in SoC design. Hardware/software 
co-design approach with a good simulation 
environment is usually used to address these 
challenges. In this paper we report a SoC 
simulation infrastructure which is used for 
complex SoC design. We accomplished the three 
big challenges with the help of a simulation tool 
set. Experience on design of a baseband processor 
based on the simulation environment is also 
presented. We show how we start from scratch, 
produced a product ready SoC within two years 
and achieve first silicon success with our 
production tape out. This system simulator has 
been open sourced as part of Open64 source tree in 
the summer of 2008. With this simulator, the 
Open64 is one step closer in becoming a complete 
toolchain suitable for new processor and SoC 
development. 

 
1.  Introduction 

First silicon success, total system 
performance and time to market are three 
challenges in SoC design. Hardware/software 
co-design approach with a good simulation 
environment is usually used to address these 
challenges. With a complete set of simulation tools, 
designers can run benchmarks and/or targeted 
applications to experiment with hardware design at 
very early stage of design cycle. At the same time 
software programmers can use these tools to 
develop and test software before the real hardware 
becomes available [1, 2]. 

Application specific instruction set processor 
(ASIP) is a popular choice as a compromise 
between ASIC and general purpose processors 
(GPP). ASIP is programmable, their architecture is 
tailored for a certain application domain, such as 
communication, audio or video processing. Their 
performance requirements are usually very rigid 
(e.g. video codec processor). This requires target 
flexible instruction set simulator and compiler to 

assist in ISA design as well as micro-architecture 
design. 

This paper reports our experience in design 
and implementation of a SoC simulation tool set 
for SL1, Simplnano’s first SoC. The simulation 
tool set, named SoC SIMulator (SSIM) [3], is 
designed with the following goals: (1) ISA and 
SoC architecture design and verification; (2) early 
SoC system bring up and RTL co-verification; (3) 
early system software stack bring up and 
application software development and testing. 

SSIM has been used for designing of SL1 
which is a baseband SoC processor. SL1 is 
designed to meet the processing performance 
requirements for common 2G/3G, such as 
GSM/GPRS, EDGE and TD-SCDMA mobile 
handset devices. The SoC architecture adopts a 
hardware multi-threaded design that is based on a 
single programmable engine with application 
specific fix-function accelerators. All instructions 
of SL1 core are designed to make it run wireless 
application specific work load efficiently. With the 
help of SSIM, we delivered the SoC within two 
years of design-development cycle. And we were 
able to run MPEG4 decoder on top of a RTOS 
within hours of the chip came back from a 
production tape out. 

The rest of the paper is organized as follows. 
Simulator related work is discussed in section 2. 
Section 3 gives detail description for SSIM and the 
use for hardware/software coverification. 
Retargeting and speed of SSIM are also discussed 
in section 3. In section 4, we concluded our work 
with projection for future work. 

 
2.  Related work 

There are lots of simulators used for 
architecture research or design exploration. 
SimpleScalar [2], ASIM [5] and Skyeye [7] 
concentrate on accurately modeling the processor 
architecture design and they are cycle accurate. 
And other simulators which designed for 
architecture verification as well as software 
development such as FAST [4], are functional 
accurate. There are also full system simulators 
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capable of running commercial workloads for an 
unmodified operating system, such as SIMOS [8], 
Simics [5] and Skyeye [7]. 

But all of them have one disadvantage, which 
leads us to develop a new simulation environment. 
They are not designed for hardware/software 
coverification in SoC system design process. Here 
coverification means: (1) same code modules can 
be shared by SSIM and C-model; (2) SSIM, FPGA 
and real chip can be verified with the same test 
cases and targeted application binaries. 

3.  SSIM 

Figure 1 presents the kernel components of 
SSIM. Both system and user-level programs can 
run on this full-system simulation environment. 
There are three main parts for SSIM infrastructure: 
core instruction set simulator (ISS), SoC simulator 
and target dependent performance simulator. 

Instruction set simulator in SSIM can run 
standalone or as one part of SoC simulator.  Both 
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Figure 1. Key components in SSIM 

 
 

modes use same codes modules as can be seen 
from figure 1. The simulator runs as a bit accurate 
interpreter for applications which are developed 
for the target system. It fetches instructions from 
cached memory, decodes it into internal format, 
executes the instruction, and updates register files 
and/or memory. Further more, ISS and C-model, 
which is used for hardware verification, can share 
some components when this design pattern is used. 
This makes SSIM effective for hardware/software 
coverification and it is the motivation that we 
design SSIM although there are many simulators 
can be used. 

Apart from ISS, SoC simulator includes 
registered devices/peripherals. Considering 
simulation speed, we emulate devices using 
transaction level accuracy, which means the 

simulator handle each interaction to the device as a 
unit: the device is presented with a request, 
computes the reply, and returns it in a single 
function call. Only registered devices can be 
accessed in runtime. SoC simulator will throw 
error message when unregistered devices are 
accessed by application. This can reduce 
simulation overhead for some applications which 
do not use all emulated devices. 

Finally, there is a target dependent 
performance simulator, which models the internals 
of the target system and it is cycle accuracy. The 
SoC simulator implements what programmers see, 
but performance simulator implements what 
programmers not see and what hardware designers 
see. The decoupling method makes SSIM fast 
enough for software development and makes 
performance simulator accurate enough for 

 2



hardware design. Note that the performance 
simulator is not open sourced in the Open64 source 
tree. 

 
3.1 Coverification 

In today’s SoC design processes, verification 
phase has become the major part, not only because 
it is time consuming but also due to the increasing 
complexity in both hardware and software. 
Traditional SoC design-develop cycle is: Architect 
mapping partitions of SoC design into hardware 
and software components, and the specifications 
are handed to the hardware and software teams for 
implementation. The hardware team implements 
hardware portion of the design in Verilog or 
VHDL, using hardware simulators for verification. 
The software team develops software modules in 
assembly, C, or C++ languages and uses ISS to test 
the software. Many problems can arise during the 

system integration process. The problems are due 
to such things as misunderstanding of 
specifications, incomplete interface definitions, 
and late design changes. 

Hardware/software coverification method 
eliminates these integration errors through moving 
integration phase early. The coverification occurs 
in all system design phases: RTL module 
verification, full-chip simulation, FPGA 
verification and chip verification. 

Our coverification approach is carried out in 
three steps: (1) Develop SSIM and use test cases to 
verify it. Meanwhile, run typical applications 
under SSIM to collect performance data for design 
choices. (2) Use small test cases to verify RTL 
modules with the help of SSIM and develop target 
applications on SSIM. (3) Use same unit test cases 
and applications to verify the correctness of FPGA 
and real chip. The approach is illustrated in Figure 
2 and further discussed below. 

 

 
Figure 2: Coverification with the help of SSIM 

 
After SSIM is verified by small test cases, 

targeted embedded applications are developed with 
the help of SSIM. At the same time, system 
designer could modify architecture (include ISA 

and micro-architecture) of SoC if performance of 
targeted application does not match the 
requirement. Eclipse and GDB is supported to 
reduce difficulty for embedded software 
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development as shown in figure 2. SSIM parses 
the command line, if needs to work in the debug 
mode, a thread for the debugging system is forked. 

To verify separate RTL modules, small test 
cases are issued by testbench through PLI interface 
to SSIM, The result is compared with result of 
RTL codes. For full chip verification, more unit 
tests are designed that includes carefully chosen 
subset of devices for easy triaging and pinpointing 
of root causes. 

After verification at the RTL-level has been 
performed, the verification process typically 
continues on a prototype such as FPGA or full-chip 
RTL simulation. The applications and test suit 
developed in above stage can be used to test the 
final prototype system without modifications 
(except timing modules). If the verification failed, 
specification need to be checked by software and 
hardware engineers to make sure it is well 
understood. In this phase, some hardware design 
errors can be found and located through the help of 
SSIM. 

 

 
Figure 3: A Packaged SL1 SoC  

 
With this approach, same test cases and 

applications are used for RTL modules, FPGA and 
real chip verification. So, time for SoC verification 
can be reduced dramatically. When correctness 
verification for real chip passed, both chip and 
target system applications are ready for market. We 
use this approach to develop a baseband processor 
named SL1, shown in figure 3. 

 
Figure 4: Register class for Atom platform 

 
3.2 Retarget 

SSIM are written in C++. The inheritance of 
C++ made it easy to add new ISA. Figure 4 give 
one example which realizes register class for Atom 
platform in SSIM. 

The interfaces in SSIM are well defined. 
Figure 1 gives internal structure for SSIM and its 
interfaces, where each component is defined as one 
class. Common interfaces are defined as virtual 
functions, and each target needs to inherit from 
base classes to realize these virtual functions. 

 

 
An instruction set table (figure 5), which 

includes assemble name, decode function, 
execution procedure and disassembler for each 
instruction is defined in SSIM. New table need to 
be added if a new ISA is introduced into SSIM. 

As we stated in section 1, we use two 
simulators: function simulator which implements 
the part which can be seen by programmer, and 
performance simulator which implements the parts 
cannot be seen by programmer. This decoupling 
implementation makes SSIM very flexible to 
retargeting. 
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Figure 5: ISA table example for SL platform in SSIM 

 
A good compiler is needed for retargeting and 

performance evaluation in ASIP. The Open64 
compiler was chosen for its machine independent 
optimization so that once retargeted, the generated 
code will be of high performance quality. Then 
accurate performance data which collected can be 
used for architecture design. 

 
3.3 Simulation speed 

In most cases, instruction processing occupies 
most of the execution time for simulation, and 
programmer use instruction simulator (or SoC 
simulator) to develop software before real 
hardware becomes available. Thus, speed is very 
important for SSIM. 

First, template is used to accelerate SSIM so 
that most references are solved at compile time. 

Second, as described in above section, we 
emulate instructions in SSIM as it executed in 
hardware. Each instruction is decoded from the 
binary program and is passed to an appropriate 

simulation routine, which interprets the instruction 
and correspondingly updates the simulator status. 
So a technique named decoded instruction caching 
is used to speed up the performance. SSIM 
allocates one cached page and decodes all 
instructions belongs the page when the first 
instruction in a page is accessed. This method 
reduces a lot of preparations needed to fetch and 
decode of instructions one at a time. It also 
eliminates unnecessary decoding overhead when 
executing loops. SSIM provides one parameter 
which can be used to control number of decoded 
cache pages. And page size can also be configured 
to match page size of host system in order to get 
maximum performance. 

Through these optimizations, SSIM can reach 
tens of million of instructions per second, which is 
sufficient to execute large real embedded 
workloads as can be seen from table 1. The data is 
obtain on machine with Intel core2 CPU (6600, 
2.4G, single thread). 

 
 EDGE 

Equalization 
AAC decoder MPEG4 decoder 

Matrix 

Decomposition 

With instruction caching 17060748 16243558 15879146 16826678 

Without instruction caching 9748999 9163032 9283193 9707699 

Table 1: Speed of SSIM with/without instruction caching (instructions per second) 
 
 

4.  Summary 

We reported some preliminary results and 
illustrated, through the process of designing a real 
baseband processor, how SSIM achieve its 
objectives: efficient for hardware/software 
coverification, easy to retarget and acceptable 
simulation speed. 

As future work, we plan to add one flexible 
machine description language (MDL)[9, 10] for 
SSIM, through which SSIM can be retarget 
automatically as shown in figure 6. Furthermore, 

the current SSIM does not simulate bus traffic, 
hence it is not suitable to study SoC system 
performance issues such as power usage, bus 
contention etc. This will be our future goal. 
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Figure 6: ASIP design flow with MDL 
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