
A Context-Sensitive Pointer Analysis Phase in Open64 Compiler

Tianwei Sheng, Wenguang Chen, Weimin Zheng
Department of Computer Science and Technology

Tsinghua University, China
tianwei.sheng@gmail.com, {cwg, zwm-dcs}@tsinghua.edu.cn

Abstract
The precision of the pointer analysis plays an important role
in compiler and other software understanding tools. Context-
sensitivity is proven to be an effective methods to improve
the precision of the final results of pointer analysis. Many
context-sensitive pointer analysis methods have been pro-
posed, however, few of them have been incorporated into pro-
duction compilers. In Open64 compiler, it still uses a flow-
insensitive, context-insensitive, and field-insensitive pointer
analysis.

In this paper, we design and implement a cloning-based
inter-procedural context-sensitive pointer analysis in Open64
compiler. We expect that the new pointer analysis phase will
improve the performance and give a good infrastructure for
any program analysis tool based on Open64 compiler.

Keywords: Pointer analysis, Context-sensitive, Cloning-
based

1 Introduction
Many compiler optimizations and program analysis methods
for imperative programming languages rely on the pointer
information. Generally, more precise pointer information
clients get, more precise results they can produce. For in-
stance, partial redundant elimination (PRE) optimization can
hoist the ∗q out of loop as loop invariant in Figure 1 if we can
get precise pointer information that p and q point to different
memory location. In Figure 2, a simple static lock-set based
race detection tool [1] can easily report that the memory ref-
erence for ∗q at Line 9 is race candidate if we know q may
point to the shared variable y.

Pointer analysis methods mainly can be classified into two
categories–flow-sensitivity and context-sensitivity[2]. Be-
sides, field-sensitive is also an important property that mod-
els the way to handle aggregate types. Flow sensitive pointer
analysis is very precise because it respects program’s control
flow. However, it is also very expensive because it needs to
compute points-to solution for every program point. There-
fore, very little progress has been made in the flow-sensitive
dimension. Context-sensitive analysis considers calling con-
text when analyzing a function. Field-sensitive pointer analy-
sis can distinguish the individual elements of the aggregate
variables. Independent of these analysis techniques, there

1

2 void foo(int index,int *p, int *q) {
3

4 int i;
5

6 for(i = 0; i < index; i++)
7 {
8

9 *(p + i) = *q;
10

11 }
12

13 }

Figure 1: An example in which ∗q is a loop invariant if we
can get p and q point to different memory locations

1 pthread_mutex_t lock1;
2 pthread_mutex_t lock2;
3 int x, y;
4

5 void foo(int*p, int *q) {
6 pthread_mutex_lock(&lock1);
7 *p = 1;
8 pthread_mutex_unlock(&lock1);
9 *q = 2;

10 }
11 void bar() {
12 p = &x;
13 q = &y;
14 foo(p,q);
15 }

Figure 2: An example in which ∗q = 2 is a race candidate if
we can get q points-to shared variable y

are two categories of methods to model the memory loca-
tions in the problem ,inclusion-based and unification-based.
Inclusion-based [3], also known as Andersen-style method,
is that points-to set of pointer on the right side of a pointer
assignment is a subset of the points-to set of pointer on the
left side. Unification-based[4], also known as Steensgaard-
style method, is that points-to sets of the pointer on two sides
of an pointer assignment should be unified together. The
unification-based algorithm is very fast and has nearly lin-
ear time complexity while inclusion-base algorithm is more
precise but has cubic complexity. The context-sensitive and
flow-sensitive methods can be combined with those model-

1

ing methods independently. In this paper, we focus on the
context-sensitive pointer analysis with the unification method.

In Figure 3, we use an example to briefly explain the above
algorithms. For the flow-sensitive methods, different program
points have different points-to solutions and q has different
points-to solutions with different modeling methods at pro-
gram point 4. For the flow-insensitive methods, all program
points have same points-to solution and q has different points-
to solution for inclusion-based and unification methods again.
For context-sensitive pointer analysis, the concepts are similar
with flow-sensitive, we will describe them later in this paper.

Most of recent studies focus on the context-sensitive
pointer analysis because it is proven to be an efficient method
to improve precision of the pointer analysis. In Figure 4,
a context-sensitive analysis can compute much more precise
points-to solution because it can distinguish different calling
contexts. Currently, two methods for context-sensitive pointer
analysis have been proposed. One is based on the graph-
reachability[5], which models the pointer analysis problem
into a graph-reachability problem. The other one is based on
the cloning that clones the call graph nodes [6] or inlines the
callee’s pointer information into caller [7] to achieve context
sensitivity information. Similar with flow-sensitive analysis,
the cloning-based methods can be combined with inclusion-
based and unification-based modeling methods.

Chris Lattner et al. [7, 8] have proposed a context-sensitive
points-to analysis with heap cloning–Data Structure Analysis
(DSA) and implemented it in LLVM compiler. They com-
bined the context-sensitive analysis with the unification-based
method and claimed that their algorithm can scale to 355K
lines of code. DSA can handle incomplete programs and con-
struct the complete call graph on the fly. They also come up
with several engineering choices that overcome bottlenecks of
the cloning based methods.

In open64, the current pointer analysis still uses a context-
insensitive, field-insensitive algorithm that is imprecise for
production use. Our design and implementation for the
context-sensitive pointer analysis in Open64 is largely based
on the DSA framework in LLVM. However, the intermediate
representation (IR) and inter-procedural analysis (IPA) frame-
work of Open64 are different from that in LLVM. In this pa-
per, we present our specific design and engineering tradeoffs
in Open64. Overall design mainly includes following items.

• We reorganize the existing points-to analysis phase in
Open64 and put a new phase at the beginning of the IPA
phase.

• We implement a context-sensitive, field-sensitive, inter-
procedural pointer analysis. For structure type, we create
different alias nodes for each member, and collapse them
when inconsistent access pattern is met. We use the uni-
fication method for the case of pointer assignment and
cloning between caller and callee.

• For global variables, we use a similar global variable
graph to hold all information about global variables in

the program. In the algorithm, we update the local graph
and global variable graph interactively.

• To verify the results of pointer analysis, we design an
inter-procedural mod-ref phase that is treated as a client
of the new pointer analysis phase. We plan to implement
a simple lock-set based static data race [1] phase to tune
the pointer analysis.

The rest of this paper is organized as follows: In Sec-
tion 2 we first describe background of our work followed by
the overview of the new pointer analysis phase. Section 4
presents the detailed design and implementation of the new
pointer analysis. The preliminary experimental results are re-
ported in Section 5. Section 6 gives a discussion of related
work. We conclude in Section 7.

2 Background
In this section, we first give some definitions that will be
used in this paper. Then we present a summary of the IPA
framework and existing pointer analysis algorithm in Open64.
Finally we describe our new design of the context-sensitive
pointer analysis and some conservative tradeoffs.

2.1 Definition
Definition 2.1 (Alias Graph). An alias graph is the approxi-
mation of the alias relation of program variables in a function
where each node (alias node) denotes the memory location
and the edge denotes the points-to relation between memory
locations. Some special nodes, such as return nodes, Call-
site nodes are recorded to do inter-procedural analysis. Each
member of an structure has its own alias node that is linked
together. The alias node for the structure has a link to the
alias node of first member.

Figure 5(b) is the alias graph for the example in Figure 5(a).
The Callsite node contains return value, called function and
actual parameters. A return node is recorded. In this exam-
ple, since the Callsite return a pointer to a STR node, we
create a dummy structure alias node that is pointed to by the r
field of the Callsite node. This structure alias node is incom-
plete and will be resolved after inlining bar’s alias graph into
foo at the bottom-up phase.

Definition 2.2 (Unification). When handling pointer assign-
ment, the points-to sets of two pointers on two sides of the
pointer assignment are unified together so that they have the
same points-to sets

In Figure 6, p and q are unified into one points-to set, s and
t point to the the unified points-to set.

Definition 2.3 (Alias Graph Cloning). Alias graph cloning
means that reachable alias node in called function is cloned
into calling function. The reachable alias nodes come from
the actual-formal parameters binding, return values, global
variables.

2

int *p,*q;

int x,y,z;

void foo(int i)

{

 q = &z;

 if(i)

 {

 p = &x;//program point 1

 }

 else{

 p = &y; //program point 2

 }

 //program point 3

 p = q;

 //program point 4

}

(a) example code

Flow-sensitive Flow-insensitive

Inclusion-based unification-based inclusion-based unification-based

program point 1
p->{x}
q->{z}

p->{x}
q->{z}

p->{x,y,z}
q->{z}

p->{x,y,z}
q->{x,y,z}

program point 2
p->{y}
q->{z}

p->{y}
q->{z}

same as point 1 same as point 1

program point 3
p->{x,y}
q->{z}

p->{x,y}
q->{z}

same as point 1 same as point 1

program point 4
p->{x,y,z}

q->{z}
p->{x,y,z}
q->{x,y,z}

same as point 1 same as point 1

(b) points-to solution for different methods

Figure 3: An example to explain different algorithms. For flow-sensitive algorithm, for the assignment p = q, we assume
there are no kill update (the most precise solution is that p only points to z), and use inclusion-based and unification-based
methods to compute the solution.

int foo(int **p, int*q) {

 *p = q;

 *q = 1;

}

int main()

{

 int x, y;

 int *s, *t;

 foo(&s,&x);

 foo(&t,&y);

 printf("x = %d\n",x);

 printf("y = %d\n",y);

 return 0;

}

(a) example code

Context-sensitive:

p1 = &s; p2 = &t;

q1 = &x; q2 = &y;

*p1 = q1 *p2 = q2

*q1 = 1; *q2 = 1;

Solution: s->{x}, t->{y}

Context-insensitive:

p = &s; p = &t;

q = &x; q = &y;

*p = q

*q = 1

Solution: s->{x,y}, t->{x,y}

(b) points-to solution

Figure 4: A simple example to illustrate the context-sensitive pointer analysis

2.2 Inter-procedural Analysis Framework of
Open64 Compiler

Figure 7 gives inter-procedural analysis framework of Open64
compiler. IPL (inter-procedural local phase) is responsible
for collecting the summary information for all functions. IPA
(inter-procedural analysis) make use of the summary infor-
mation from the IPL and applies different analysis. The IPA
does not check the IR and only work on the summary infor-
mation. Typical analysis phases include inter-procedural con-
stant propagation, inter-procedural inline analysis, etc. IPO
(inter-procedural optimization) reads the IR and transforms
the code according to the decisions of the IPA.

2.3 Existing Pointer Analysis Phase in Open64
The existing pointer analysis in Open64 is still based on the
Steensgaard algorithm [4] that is context-insensitive, field-
insensitive. Open64 implemented both intra-procedural and

inter-procedural version algorithms. The inter-procedural
pointer analysis is designed only for intra-procedural opti-
mization phase, and located at the end of IPA phase. In the
intra-procedural phase, combined with other memory disam-
biguation techniques that are similar with the work in [9], the
pointer analysis can answer most of the alias queries from
client optimization phases.

Overall, the whole existing alias analysis framework of
Open64 is presented in Figure 8.

There are several shortcomings in the existing framework.
First, the IPA cannot make use of any pointer information be-
cause the pointer analysis is at the end of the IPO phase. The
inter-procedural pointer analysis is only designed for intra-
procedural optimization phase. Second, the pointer analysis
is still context-insensitive and field-insensitive, which is fairly
imprecise. Actually, from our experimental results, most of
the alias queries are resolved by the Base-offset-size rule that
comes from symbol table information and SSA-based flow

3

typedef struct {

 int a;

 int *s;

}STR;

int x;

STR str;

extern STR* bar(STR*);

STR* foo(int **q)

{

 STR* str_p;

 int *p;

 p = &x;

 str_p = bar(&str);

 str_p->s = p;

 *q = p;

 return str_p;

}

(a) example code

Callsite

r f

anon bar anon_ptr

strq

anon_ptr
field1:a field2:s p field1:a field2:s

x

str_p(return node)

A STR alias node which

Callsite return

(b) Alias graph

Figure 5: Basic constructs of an alias graph. anon ptr and anon are the temporal alias nodes.

int p, q;

int *s, *t;

s = &p;

t = &q;

s = t;

(a) example code

s t

p q

s

p q

t

(b) unification graph

Figure 6: An unification example

Front End (FE)

IR

Object Code

Pre-Optimizer

(PreOPT)

Inter-Procedural

Analysis

Loop Nest

Optimizer (LNO)

Main Optimizer

(WOPT)

Code Generator

(CG)

Very High

WHIRL

High WHIRL

Mid WHIRL

Low WHIRL

Source Code

Inter-Procedural

Local Analysis (IPL)

Inter-Procedural

Analyzer (IPA)

Inter-Procedural

Optimizer (IPO)

Figure 7: The inter-procedural analysis framework in Open64

sensitive analysis. On the other hand, the compiler has to
do conservative analysis for parameter passing and procedure
calls even with an inter-procedural pointer analysis.

Intra-procedural

Client Optimization

Alias Query

Inferface

Intra-procedural

pointer analysis

Base, offset, size

analysis based on symbol

table and SSA-flow-

sensitive analysis

Simple address taken

analysis and Ansi type

rule analysis

Intra-procedural Phase

IPA

Inter-procedural

pointer analysis

Inter-procedural Phase

Figure 8: The existing alias analysis framework in Open64

3 Overview of The New Pointer Anal-
ysis Phase

For the new context-sensitive pointer analysis, we use a
standard inter-procedural data flow analysis to compute the
pointer information for the whole program. The main algo-
rithm is divided into three steps:

• Local Phase

For this phase, there are several design tradeoffs for
Open64. In the framework of Open64, the IPA will only
work on summary information from the IPL and will not
check the IR because of the scalability problem. The

4

only phase that traverses the IR of whole program is at
the IPO phase. For the new pointer analysis, because we
need to collect every pointer related statements, we cre-
ate a separated phase at the beginning of the IPA phase
instead of collecting summary information at the IPL and
passing to the IPA. This local phase traverse every PU
(Program Unit) and create the local alias graph for them.
For any global variable that has occurrence in the local
graph, we also record it in the global variable graph. For
the call sites, as in [7], we create a Callsite node that in-
corporates the parameters and return values information.

We recognize standard library calls in this phase and
summarize their side effects by hard code in the com-
piler. The final local graph do not contain any call sites
for these library calls.

The result local graphs only contain intra-procedural
pointer information and the Local phase is also the only
phase that checks the real IR. The following two phases
work on the the local graph and eliminate the incomplete
information through graph inlining.

We put the local phase after the DFE(dead function elim-
ination) phase. DFE can use some simple address-taken
analysis techniques to eliminate some unreachable func-
tions. Furthermore, if some dead functions reference
global variables, it also can improve the precision.

• Bottom-up Phase

The bottom-up phase will eliminate the side effects of
call sites through inlining the pointer information of
callee into caller. We sort the call graph nodes in a topo-
logical order, and then visit these call graph nodes in post
topological order. During the visiting, we use a standard
strong connected component (SCC) detection algorithm
to find SCCs. For a call graph node, we first incorpo-
rate the global variables information and copy any reach-
able alias nodes into the local graph. Then we inline the
reachable nodes in the callee to caller through actual and
formal parameters binding. The bottom-up phase do not
copy non-reachable alias nodes into the alias graph of
caller. Finally, we update the global variable graph ac-
cording to the new local alias graph.

For any indirect call that is introduced by function
pointer, we copy the Callsite node into caller if the
pointed function has not been resolved yet.

When all information has been propagated into main
function, all the local graphs do not have any incomplete
information introduced by direct function calls.

• Top-down Phase

Even after the bottom-up phase, for a function, we still
cannot know the information of formal parameters and
have to do conservative analysis for these parameters. In
order to eliminate these incomplete information, for a
function, we copy nodes in all of its callers that are reach-
able from the formal parameter into this function.The fi-

1 void foo(int *p,int *q) {
2 int i;
3 for(i = 0; i < 10; i++)
4 *(p + i) = *q;
5 }
6 void bar() {
7 int a[10],x;
8 x = 1;
9 foo(a,&x);

10 }

Figure 9: A simple example to explain the necessity of top-
down phase

nal Top-down alias graphs contain all the results of our
pointer analysis algorithm.

In Figure 9, the leaf function foo still can not know
whether p and q point to different memory locations after
bottom-up phase. However, after top-down phase, the a
and x are copied into foo so that they are pointed to by
p and q respectively.

The alias graphs for all functions are attached into their
call graph nodes and have alias query interfaces. For scalar
variables, the client can provide symbol table index (ST) of
two variables and invoke the alias query interface, the alias
graph will return the results if they are aliased or not. For in-
direct reference , the client first locates the alias node for them
through access path (**p,***q,etc), then determines whether
these two alias node in the same alias set or not.

Now the IPA and BE are separated dynamic libraries and
any information propagating between them must be stored
into the intermediate files. Since we use the unification
method, we are planning to use a cheap method to pass these
alias information to intra-procedural phase instead of passing
those alias graphs one by one.

4 Design and Implementation
In this section, we describe the detailed design and imple-
mentation of the new context-sensitive pointer analysis. First
we present how we implement the unification and the cloning
method to get context-sensitive pointer information. Then we
discuss the design of field-sensitive analysis and global vari-
able graph. Finally we briefly describe the mechanism to han-
dle function pointer and recursion.

4.1 Context-sensitive Analysis
As discussed in previous sections, we use cloning-based
method to achieve context-sensitivity. It clones the pointer
information of callee into caller. For the example in Figure
10, foo is invoked twice and passes different parameters.

At the Local phase, the algorithm collects pointer informa-
tion and create the local alias graphs for all functions. For
this example, 11(a) and 11(b) are the local alias graph for the

5

1 int foo(int **p, int*q)
2 {
3 *p = q;
4 *q = 1;
5 }
6 int main()
7 {
8 int x, y;
9 int *s, *t;

10

11 foo(&s,&x);
12 foo(&t,&y);
13 printf("x = %d\n",x);
14 printf("y = %d\n",y);
15 return 0;
16 }

Figure 10: Another simple example to illustrate the context-
sensitive pointer analysis

functions foo and main. Any variable that can be reachable
from parameters of function call must be treated conserva-
tively since they may be modified by other functions.

At the bottom-up phase, since the call graph has been con-
structed and all actual-formal parameter information bindings
have been incorporated into the call graph nodes, the pointer
information of foo is cloned into main. Finally we get the s
points-to x and t points-to y in main function. After cloning
a callee, the corresponding Callsite node in the caller’s alias
graph is deleted.

The bottom-up phase is the main phase where the context-
sensitive pointer analysis occurs. The top-down phase some-
time cannot give us much context-sensitivity since our method
is flow-insensitive.

At the top-down phase, the pointer information of main will
propagate down to foo. We do not get much precise infor-
mation for foo because the p still points-to s and t while q
points-to x and y. This is because we do not compute flow-
sensitive nor path-sensitive information. However, if we only
care about the pointer information in main function, the alias
graph after bottom-up contains all the pointer information.

4.2 Field-sensitive Analysis

Field-sensitive[10] means that every structure member has its
own distinguished memory location. Our algorithm models
this property through creating an alias node for each member
of structure variables. The structural alias node is labeled as
Collapsed if there are inconsistent type casts over this alias
node.

For the example code in Figure 12, the alias graph is pre-
sented in Figure 13. In this graph, all aggregate variables
have a link to its first member. Every node has the informa-
tion about offset, size, field-id. Given a field-id/offset and an
structure node, we can find the corresponding sub-node in this
aggregate node.

The IR of line 25 and 26 are listed in Figure 14. For
line 25, to do field-sensitive analysis, from the second kid of

1 typedef struct{
2 int * p;
3 int f;
4 float g;
5 }INNER;
6 typedef struct {
7 int a;
8 INNER w;
9 float b;

10 }MIDD;
11 typedef struct{
12 int c;
13 MIDD d;
14 INNER m;
15 float e;

16 int *x;
17 int v;
18 }OUTER;
19

20 OUTER out;
21 int main()
22 {
23 int y;
24 OUTER *p = &out;
25 p->x = &y;
26 int ** q = &(p->x);
27 **q = 4;
28 printf("%d\n", *(p->x));
29 }

Figure 12: Field-sensitive example

1 LOC 1 31 p->x = &y;
2 U8LDA 0 <2,1,anon1> T<50,anon_ptr.,8>
3 U8U8LDID 0 <2,2,anon2> T<48,anon_ptr.,8>
4 U8ISTORE 64 T<48,anon_ptr.,8> <field_id:14>
5 LOC 1 32 int ** q = &(p->x);
6 U8U8LDID 0 <2,2,anon2> T<48,anon_ptr.,8>
7 U8INTCONST 64 (0x40)
8 U8ADD
9 U8STID 0 <2,3,anon3> T<51,anon_ptr.,8>

Figure 14: The IR of line 25 and 26 in Figure 12

ISTORE, we get the alias node for p. Since it is ISTORE
and the offset, field-id are not zero, we get the alias node for
the member of the structure node. Here it is the alias node for
member x. Then we add an edge to y from the alias node for
member x. For the line 26, it is a pointer arithmetic. We add
a refining phase to handle such simple pointer arithmetic and
get a temporal node that point to the member x. The STID
statement will unify the points-to set of q and temporal node
and make q point to the member x of the structure node.

In open64, we can not simply distinguish patterns between
the start address of a nested structure and the address of the
first member of this nested structure. Now we solve this prob-
lem through matching the type information of STID and field
node. To do this, we add an link from the first member to
the structure node itself. If the type of field node for an ADD
expression does not match the type of STID, we return the
structure alias node.

4.3 Global Variable Graph
During the bottom-up phase, we need to inline any reachable
node to caller from callee. In this process, we also have to
copy all global variables since we do not know if they will be
accessed or not. In order to ensure correctness, we copy all
global variables into main in the bottom-up phase and propa-
gate down to all functions. This process incurs unacceptable
overhead to the whole algorithm. To overcome such problem,
we use a similar method [7, 11] to create a separate global
variable graph to hold those global variables information and
do interaction between global variable graph and local alias
graph.

6

Callsite

return callee

foo

Callsite

return callee

anon_ptr

s

anon_ptr

x

anon_ptr

t

anon_ptr

y

(a) Local graph for main function

p

anon_ptr q

.predef_I4

(b) Local graph for foo func-
tion

anon_ptr

sanon_ptr

x

anon_ptr

tanon_ptr

y

(c) Alias graph for main after cloning

Figure 11: The local and bottom-up alias graph for the code in Figure 10

1 int *p, *q, **s;
2 int x, y;
3 void foo_1() {
4 s = &p;
5 }
6 void foo_2() {
7 p = &x;
8 }
9

10 void foo_3() {
11 q = &y;
12 }
13

14

14 void bar(int **m, int *n)
15 {
16 *m = n;
17 }
18 void bar_1() {
19 bar(&p,&y);
20 }
21 int main()
22 {
23 foo_1();
24 foo_2();
25 foo_3();
26 bar_1();
27 }

Figure 15: The example code to illustrate the usage of global
variable graph

For the example in the Figure 15, at the bottom-up phase,
when we are cloning the function bar into bar 1, we do not
know the pointer information about the global variable pointer
p. At that time, before cloning, we first need to update the
local graph according to the global variable graph where p
points-to x. After cloning, p points-to x and y, we need to up-
date the global variable graph again and then other functions
can know this updated information for these global variables.

4.4 Function Pointer And Recursion
For function pointer, we treat it as a normal pointer during the
analysis. When the function pointer is invoked in the program
where there is an indirect call, we create a Callsite node and
the f field points-to the alias node for the function pointer.
During the bottom-up phase, if the callee still has indirect
calls, these Callsites need be copied to the caller. In some
cases, the function pointer may be resolved after cloning, then
the SCCs algorithm will revisit the caller and new resolved
callee again.

To handle the recursion, we merge the alias graphs of the
functions in the same SCC into one alias graph and sacrifice
the context-sensitivity within the same SCC as the way in [7].
After visiting the SCC, the functions inside the SCC may be-
come the callee or the caller of functions which are out of the
SCC. In order to provide the right formal parameters and re-
turn value information when visit such callsites, we create a

mapping between these information and IPA NODE for each
function in the merged SCC graph.

4.5 Some Tradeoffs
We work on the High-level WHIRL (Winning Hierarchical
Intermediate Representation Language) that still preserves the
ARRAY operator. In our algorithm, we treat the whole array
as an element and will not distinguish individual elements.
For pointer arithmetic, we add a refining phase to identify
simple pointer arithmetic statement. For those complicated
pointer arithmetic, we make them point to an unknown node.

5 Preliminary Experimental Results
We are still implementing and testing the new pointer analysis
phase. In this section we only give a preliminary results for
our current work. Now the new phase can get the final alias
results for medium-sized program, such as SPEC 2000. How-
ever, it still cannot pass large programs at bottom-up phase,
such as mysql. We give our preliminary result in 1. The mysql
is built with the -all-static flag and all sub-components will
be compiled into static libraries(the .a libraries contain object
files that are in WHIRL format). This gives us much more
large inputs and reduces the number of extern library calls. In
order to verify the overhead of field-sensitive analysis, we add
a flag to disable the field-sensitive analysis.

From the preliminary data, we can get the following in-
sights:

• The Bottom-up phase is unlikely to increase the number
of alias nodes exponentially. This is because the cloning
phase only clones reachable nodes to the caller from the
callee. Actually, most of the cloning phases only add
the new points-to relations which are introduced by the
function call and will not copy any node. These data is
consistent with the fact that the scope of local variables
in the callee does not include the code in the caller.

• For some programs, such as 177.mesa and mysql, the
field-sensitive analysis incurs very much overhead since
the algorithm creates an alias node for each member of
the structure variables. The field-insensitive will have

7

out

field_id:

14(x)
field_id:13 field_id:15field_id:1

field_id:3 field_id:8

field_id:6field_id:5 field_id:7

field_id:11field_id:10 field_id:12

structure node for MIDD structure node for INNER

p

q

y
structure node for INNER

Figure 13: The alias graph for the main function in Figure 12. Note that in implementation, the field members are linked
together and the structure node has a link to the first field member. Furthermore, in the IR definition of Open64, the nest
structure is flatten and the nest structure itself occupies an field id number. That’s why the first member of MIDD has the
field id 3 and not 2.

much less number of alias nodes. We also add a field
number limit which can disable the field-sensitive for the
variables that have large numbers of fields.

Now our work is still very preliminary and can not pass
large program at the bottom-up phase. Furthermore, we are
implementing some client optimizations phases, such as mod-
ref analysis, inter-procedural lock-set based data race detec-
tion, to evaluate the precise of the new context-sensitive anal-
ysis compared with the existing algorithm in Open64.

6 Related Work
Pointer analysis have been studied for a long time. A lot of
methods have been proposed that focus on the tradeoff be-
tween precision and scalability. Recently, two dimensions are
active, one is to improve the scalability of inclusion-based
context-insensitive method and the other one is the context-
sensitive analysis combined with unification method.

For the inclusion-based context-insensitive method, Ben et
al. [12] proposed lazy cycle detection and hybrid cycle de-
tection that reduce both the time and memory overhead of the
algorithm significantly. Their method has been incorporated
into production compilers, such as gcc and LLVM.

For the context-sensitive direction, studies prove that it is
hard to scale without the combination with unification. Wil-
son et al. [13] use a partial transfer function to summa-
rize the pointer information of a function and instantiate the
callee at different call sites. Compared with the cloning based

method, they cannot get context sensitivity for heap objects.
Besides, their methods only can compile medium-sized pro-
gram. Nystrom,et al[14] also proposed a summary-based
context-sensitive pointer analysis method and use bottom-
up,top-down traverse over the call graph. Liang et al. [11]
proposed a MOPPA method to compute context-sensitive
pointer information. They also use a global variable graph to
hold all global variable information. All these methods have
not been tried in the production compiler. So it is hard to
evaluate if they can scale to large programs.

Our work is largely based on the DSA framework [7]. They
used three-steps inter-procedural analysis and graph inlining
to get context-sensitivity. In addition, they applied a lot of
engineering methods that make their algorithm very practical.
They implemented the algorithm in LLVM compiler that is
very convincing for their experimental results.

7 Conclusion and Future Work

In this paper, we design a context-sensitive pointer analysis
phase in Open64. The new phase can compute more pre-
cise pointer information than existing alias analysis method
in Open64. Furthermore, the inter-procedural analysis can
benefit from the new pointer analysis due to the new phase
ordering. There are a lot of future work. We will continue to
test the new phase and get complete experimental results . We
also plan to implement an inter-procedural data race detection
phase that makes use of the results of the new pointer analysis

8

Table 1: The total alias node number after Local phase and Bottom-up phase. FS is Field-Sensitive and FI is Field-Insensitive.
U means that current implementation can not pass the benchmark.

Local Phase Bottom-up Phase
Benchmark Number of Functions max SCC FI FS FI FS

164.gzip 106 0 4459 4719 4622 4863
186.crafty 109 2 13710 15928 14011 16373
254.gap 854 20 49450 67339 72182 91062

256.bizp2 74 0 2493 2250 2584 2278
175.vpr 272 0 10413 12317 10706 13671
181.mcf 26 0 718 2259 732 2636

197.parser 324 3 9255 13016 9565 14166
253.perlbmk 1076 322 48084 72215 67870 93364
255.vortex 923 38 46596 76219 81961 117293
300.twolf 191 0 13564 14853 13758 16236
177.mesa 1106 0 36226 719659 60706 1157327
179.art 26 0 931 912 943 1030

183.equake 27 0 1223 1278 1236 1389
188.ammp 179 2 8196 23618 8407 24286

mysql 52875 U 743318 7216837 U U

phase. Since the static data race detection relies on the pointer
information very much, we are planning to learn the interac-
tion between them. Finally we are designing consistent alias
query interface that makes it easy to compare different pointer
analysis algorithms.

References
[1] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race de-

tection on millions of lines of code. In ESEC-FSE ’07: Proceedings
of the the 6th joint meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The foundations of soft-
ware engineering, pages 205–214, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-811-4. doi: http://doi.acm.org/10.1145/1287624.
1287654.

[2] Michael Hind. analysis: Havent we solved this problem yet. In In
PASTE, pages 54–61. ACM Press, 2001.

[3] Lars Ole Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994. (DIKU report 94/19).

[4] B. Steensgaard. Points-to analysis in almost linear time,
1996. URL http://citeseer.ist.psu.edu/
steensgaard96pointsto.html.

[5] Manu Sridharan and Rastislav Bodı́k. Refinement-based context-
sensitive points-to analysis for java. In PLDI ’06: Proceedings of
the 2006 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 387–400, New York, NY, USA, 2006.
ACM. ISBN 1-59593-320-4. doi: http://doi.acm.org/10.1145/1133981.
1134027.

[6] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI ’04:
Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, pages 131–144, New York, NY,
USA, 2004. ACM. ISBN 1-58113-807-5. doi: http://doi.acm.org/10.
1145/996841.996859.

[7] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real
world. SIGPLAN Not., 42(6):278–289, 2007. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1273442.1250766.

[8] Chris Lattner. Macroscopic Data Structure Analysis and Opti-
mization. PhD thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, May 2005. See
http://llvm.cs.uiuc.edu.

[9] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance of
points-to analysis and other memory disambiguation methods for c pro-
grams. SIGPLAN Not., 36(5):47–58, 2001. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/381694.378806.

[10] David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Efficient field-
sensitive pointer analysis for c. In In ACM workshop on Program Anal-
ysis for Software Tools and Engineering (PASTE, pages 37–42. ACM
Press, 2004.

[11] Donglin Liang and Mary Jean Harrold. Efficient computation of param-
eterized pointer information for interprocedural analyses. In In Static
Analysis Symposium, pages 279–298. Springer-Verlag, 2001.

[12] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 290–299, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-633-2. doi: http://doi.acm.org/
10.1145/1250734.1250767.

[13] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive
pointer analysis for c programs. In PLDI ’95: Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design and im-
plementation, pages 1–12, New York, NY, USA, 1995. ACM. ISBN
0-89791-697-2. doi: http://doi.acm.org/10.1145/207110.207111.

[14] Erik M. Nystrom, Hong-Seok Kim, and Wen-Mei W. Hwu. Bottom-
Up and Top-Down Context-Sensitive Summary-Based Pointer Analy-
sis. 2004. URL http://www.springerlink.com/content/
59q3n3tkmmecg8qv.

9

