
 1

Retargeting Open64 to A RISC processor

-- A Student’s Perspective

Huimin Cui, Xiaobing Feng
Key Laboratory of Computer System and Architecture,

Institute of Computing Technology, CAS, 100190 Beijing, China
{cuihm, fxb}@ict.ac.cn

Abstract
This paper presents a student’s experience

in Open64-Mips prototype development, we
summarize three retargeting observations.
Open64 is easy to be retargeted and the
procedure takes only a short period. With the
retarget procedure done, the compiler can
achieve good and stable performance. Open64
also provides many supports for debugging, with
which a beginner can debug the compiler
without difficulty. We also share some
experiences of our retarget, including
methodology of verifying the compiler
framework, attention to switches in Open64,
importance of debugging and reading generated
code.

1 Introduction

Open64 receives contributions from a
number of compiler groups around the world,
from industry as well as from academia. It is
derived from the SGI MIPSPro64 compiler [1].
Good performance and industrial strength origin
make the Open64 compiler a popular choice for
research projects. The Open64 compiler supports
C/C++ and Fortran95 languages and many
researchers from industry and academia have
contributed to the retargeting of the Open64

compiler [6].
Open64 has been retargeted to a number of

architectures. Pathscale modified Open64 to
create EkoPath, a compiler for the AMD64 and
X8664 architecture. The University of
Delaware's Computer Architecture and Parallel
Systems Laboratory (CAPSL) modified Open64
to create the Kylin Compiler, a compiler for
Intel's X-Scale architecture [1]. Besides the
targets mentioned above, there are several other
supported targets including PowerPC [6],
NVISA [9], Simplight [10] and Qualcomm[11].

In this paper, we will discuss three issues
when retargeting Open64: ease of retarget,
performance, and debuggability. The discussion
is based on our work in retargeting Open64 to
the MIPS platform, using the Simplight branch
as our starting point, which is a RISC style DSP
with mixed 32/16 bit instruction set. During our
discussion, we will use GCC (Mips target) for
comparison. This retarget work is just a student
project, so we have some non-goals, which will
be discussed in section 5.

And we will also share some of our
retargeting experiences, in four folds: 1) Steps to
verify the compiler framework. 2) Turn on/off
switches for special hardware features. 3)
Debugging is very important, not only for
retarget, but also for later extensive work. 4) Pay
attention to the generated code if it doesn’t work

 2

as expected.
The paper is organized as follows. Section

2 introduces the retarget procedure. Section 3
presents our major retarget results and analysis.
Section 4 summarizes our experiences and
expectations. Section 5 shows our non-goals and
section 6 concludes the paper.

2 Suggested Retarget Procedure

This section presents our retargeting
procedure, and it is applicable if one can find a
similar processor in Open64’s supporting targets.
Here, letters (A,B,..) represent the file creation
order, and numbers (1,2...) represent the building
order.
(A). Add make rules for your target(<targ>) in
top level Makefile.gsetup
(B). Create dir targia32_targ<targ>

This is the build directory for your new
target. Host is specified as ia32.
(C). Create and set up Makefile in each subdir
under targia32_targ<targ>

Make sure the BUILD_TARGET is set
correctly so it goes to the right target directory
for each sub component.

Set your BUILD_VENDOR correctly.
(1). Build include
(D). In common/com, create <targ>/ config_
targ.h

Add macros for Is_Target_xxx, xxx
represents the supported processors of the
new target, e.g, Is_Target_R10K() for MIPS.

Add ABI macros for the new target.
Set GP area size.
Set target debugging information.

In common/util, create <targ>c_qwmultu.c by
copying from ia64, or as appropriate.
(2). Build libcmplrs, libiberty, libcomutil

Sometimes, it helps to show the compile
line during building of the compiler, simply
change gcommondefs and gcommonrules in
linux/make/.
(E). In common/targ_info, create <targ> dir's
and their files. Use this order:

 isa/<targ>/isa.cxx
 isa/<targ>/isa_properties.cxx
 isa/<targ>/isa_subset.cxx
 isa/<targ>/isa_registers.cxx
 isa/<targ>/isa_enums.cxx
 isa/<targ>/isa_lits.cxx
 isa/<targ>/isa_operands.cxx
 isa/<targ>/isa_hazards.cxx
 isa/<targ>/isa_print.cxx
 isa/<targ>/isa_pack.cxx
 isa/<targ>/isa_bundle.cxx
 isa/<targ>/isa_decode.cxx
 isa/<targ>/isa_pseudo.cxx
 abi/<targ>/abi_properties.cxx
 proc/<targ>/proc.cxx
 proc/<targ>/proc_properties.cxx
 proc/<targ>/<targ>_si.cxx
This directory contains most of the basic

setting for retarget purposes. Most retarget
problems will be due to wrong settings in this
directory. All these files should be written
carefully.
(3). Build targ_info
(F). Deal with frontend in kgccfe and kg++fe
directories.

In kgccfe/gnu, kgccfe/gnu/config, kg++fe/
gnu, kg++fe/gnu/config, create directory of
<targ> by copying from ia64 or x8664 and
fixing the values and the include file names as
well as define statement.

Fix up the gnu_config.h to include the
corresponding config.h file for your target.

Fix up the <targ>/config.h, <targ>/
hconfig.h, <targ>/tconfig.h, <targ>/tm_p.h, to
include the corresponding file for your target.

Make sure Makefile and Makefile.gbase
know to go to gnu/<targ> directory also. It
requires one to check whether gnu/<targ> has
been added into SRC_DIRS.

In include/elf.h, the #define for Elf32_Byte
and Elf64_Byte can always be enabled.

If need to add intrinsic, the following files
needs changing.

 intrinsic.def – defines

 3

INTRINSIC_ID, property of
intrinsic (order is important,
 indexed by INTRINSIC_ID)

 FE definition files, kgccfe/gnu
 Builtins.def – id, name,

prototype, attribute
 Builtin-types.def – needed if new

type is needed
 Wfe_expr.cxx – translate GNU

builtin to WHIRL.
(G). Create the following files:
 common/com/<targ>/config_platform.h
 common/com/<targ>/config_asm.h

common/com/<targ>/config_cache_targ.cxx

common/com/<targ>/config_elf_targ.cxx
common/com/<targ>/config_host.c
common/com/<targ>/config_platform.c
common/com/<targ>/config_targ.cxx
common/com/<targ>/config_targ.h
common/com/<targ>/config_targ_opt.cxx
common/com/<targ>/config_targ_opt.h
common/com/<targ>/targ_const.cxx
common/com/<targ>/targ_const_private.h
common/com/<targ>/targ_ctrl.h
common/com/<targ>/targ_em_const.cxx
common/com/<targ>/targ_em_dwarf.cxx
common/com/<targ>/targ_em_dwarf.h
common/com/<targ>/targ_em_elf.cxx
common/com/<targ>/targ_em_elf.h
common/com/<targ>/targ_sim.cxx
common/com/<targ>/targ_sim.h
All these files can be copied from the

directory of a similar target, and modified as
required.

Make sure the endianness is set correctly. It
is set in config_host.c, config_targ.cxx and
common/com/config.cxx.

Make sure the assembly syntax for .s file
output is set correctly. It is set in config_asm.c.

Make sure the calling convention and
parameter passing are set correctly. They are set
in targ_sim.h and targ_sim.cxx. If you need your
own ABI definition, just change this file, and do
not forget to modify targ_sim.cxx for

consistency.
config_cache_targ.cxx sets cache models.
Targ_em_* files are for assembly output

control, section types, relocations, dwarf etc.
One only need to change these files when focus
in BE portion.

Basically one needs to tailor files
mentioned about and then continue building
components as follows.
(4). Build gccfe
(5). Build g++fe
(6). Build ir_tools
(H). Create be/be/<targ> and be/com/<targ>
directories
 Create driver_targ.cxx, fill_align_targ.cxx
in be/be/<targ> dir
 Create betarget.cxx, sections.cxx in
be/com/<targ> dir

There is no need to be optimal at this point,
just make it work, and then make it perform. e.g.
One can set Can_Do_Fast_Multiply to return
FALSE, and return to that later.
(7). Build be
(8). Build libelf, libelfutil, libdwarf, libunwindP
(I). Create be/cg/<targ>/register_targ.h

 be/cg/<targ>/tn_targ.h
 be/cg/<targ>/op_targ.h
Create one’s own target specific portion in

lib/elf.h (or appropriate elf.h), define the right
relocations, sections, etc.
(9). Build wopt
(J). Create files in be/cg/<targ>
 Fix cgtarget_arch.h, such as CGTARG_
Copy_Op, ...

There might be needs to add more things in
be/cg/op.h

Fix cgdwarf_targ.cxx, Find_Spill_TN, ...,
unwind table in dwarf.

Copy other files from a similar processor’s
directory. Go over expand.cxx, whir2ops.cxx
carefully. And exp_branch.cxx, exp_divrem.cxx,
exp_loadstore.cxx, expand.cxx, entry_exit_targ.
cxx needs to be changed or tailored substantially.
(10). Build cg

 4

(11). Build driver
(12). Build ipl
(13). Build lno
(14). Build inline
(15). Build whirl2c
(16). Build ipa

3 Retarget Results & Discussion

3.1 Machine Assumption &
benchmarks

Machine Assumption:
 Processor: Loongson 2f, out of order

 ISA: MIPS3
 Frequency: 666MHz

 Issues: 4
 ALU: 2

 FALU: 2
 MEM Unit: 1

 It is customary to use SPEC CPU2000 or
2006 to evaluate a compiler performance, but
that is our non-goal (discussed in section 5). As a
student project, we only consider the following
benchmarks: Stanford benchmark, the
abstraction penalty benchmark written by
Stepanov [3], two programs chosen from SPEC
CPU2000 - bzip2 and mcf.
 Stanford benchmark [2] consists 7 small
programs: hanoi, bubble, matmul, perm, qsort,
queen, and sieve. The abstraction penalty
benchmark summarizes the characteristics of
generic programs; it measures the performance
under different levels of abstraction for C++
programs. The baseline is a non-generic version
of the kernel function, as shown by Figure 3.1.

Figure 3.1 non-generic version in abstract
penalty benchmark

3.2 Main Results

Observation 1 (See also section 3.3.1). A
student can complete the retarget procedure in
about two months, if an appropriate supported
target processor can be used to start the
retargeting. In our case, the Simplight SL1
processor is a RISC based processor with 16 bit
instructions and DSP extensions. We chose this
as our starting point for its RISC basis as ISA.

Observation 2 (See also section 3.3.2).
Performance of the generated Open64 compiler
is satisfying, in two folds.

1. We expect the retargeted Open64
compiler will generate very good code due to the
excellent middle ends such as Wopt and Lno
components. Indeed, when we achieved
competitive or better performance compared to a
matured GCC compiler, for all the benchmarks
we tested as a result of our effort.

2. Open64 provides obvious performance
improvement with optimization option switched
from –O2 to –O3, especially for C++ programs
with higher abstraction levels.

Observation 3 (See also section 3.3.3).
The debuggability of Open64 compiler and its
generated code is good, it is not difficult for a
beginner to learn and use.

3.3 Detailed Discussions

3.3.1 Ease of Retarget
 Following the suggested retarget procedure,
we completed our retargetting work in two
months. In a short period, our compiler has
passed all the benchmarks mentioned in section
3.1, with option from –O0 to -O3. It means that
our compiler framework is reasonable and the
major components work well.
 As we know, compiler development needs
to deal with the issues of ISA, ABI, code
generation, and some machine-dependent
functions or methods. All these issues are
covered in the suggested retarget procedure, as
presented in Section 2.

double data[SIZE];
… …
for(int i = 0; i < iterations; ++i) {
 double result = 0;

for (int n = 0; n < last - first; ++n)
 result += first[n];

 check(result);
}

 5

 Porting GCC is similar; it requires the
developers to consider ISA and code generation
in the .md (machine description) file. While ABI,
processor information and machine-dependent
subroutines should be considered in some
machine-dependent header files and C source
files [4][5]. These issues are common for both
Open64 and GCC.
3.3.2 Performance Results and

Discussions
 In this subsection, we will present our
performance comparison with GCC for the three
benchmarks mentioned earlier. The performance
is measured with just the retarget procedure done,
it should be emphasized that we did NOT do any
machine-dependent performance tuning of the
Open64 compiler during this exercise.
 Figure 3.2 shows the performance
comparison for abstraction penalty benchmark
between Open64 and GCC. We can see that
Open64 provides better performance for both
–O2 and –O3 options.

(a) performance comparison with –O2

(b) performance comparison with –O3
Figure 3.2 Performance comparison for

abstraction penalty benchmark

 Figure 3.3 shows the performance

comparison of -O2 and -O3 for Open64 and
GCC. Open64 –O3 option provides obviously
better and more stable performance for higher
abstraction levels, comparing with –O2 option.
While GCC has no obvious difference for the
two options.

(a) Open64 performance

(b) Gcc performance
Figure 3.3 Performance comparison of -O2 and

-O3, for abstraction penalty benchmark.

 Figure 3.4 shows the performance
comparison for Stanford benchmark. Open64
provides better performance than GCC, with
options –O2 and –O3. The vertical axis is
normalized execution time to GCC –O2. We can
see that matmul shows dramatically performance
increasing for Open64 –O3 option. The reason is
that loop tiling is applied, which is effective for
matrix multiplication, especially when the
problem size is large.

Figure 3.4 Performance of Stanford benchmark

0

20

40

60

80

100

0 2 4 6 8 10 12

Test number

Pe
rf
o
rm
an
ce
 (
a
dd
it
io
ns

pe
r
se
co
n
ds
)

Open64

GCC

0

20

40

60

80

100

0 2 4 6 8 10 12

Test number

P
er
f
or
ma
n
ce

(a
dd
i
ti
o
ns

pe
r
se
c
on
ds
)

Open64

GCC

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12

test number

P
e
r
f
o
r
m
a
n
c
e
(
a
d
d
i
t
i
o
n
s

p
e
r

s
e
c
o
n
d
)

-O2

-O3

64.6

64.8

65

65.2

65.4

65.6

65.8

0 2 4 6 8 10 12

test number

P
e
r
f
o
r
m
a
n
c
e
(
a
d
d
i
t
i
o
n

s

p
e
r

s
e
c
o
n
d
)

-O2

-O3

2.61 2.05

 6

 Figure 3.5 shows the performance of
Open64 and GCC for bzip2 and mcf, from SPEC
CPU2000. Open64 and GCC have no obvious
performance difference.

Figure 3.5 Performance of bzip2 and mcf.

3.3.3 Debuggability
 Open64 provides many supports for
debugging the compiler, including: 1) dumping
out the program code and symbol table between
phases. 2) tracing of optimization and analysis
process. 3) builtin options to allow one to
isolating program file that triggers the bug, and
isolate the PU, the expression, basic block, etc
that exhibits the bug. 4) some dump methods
that can be called in GDB.
 With these supports, the compiler can be
debugged in an intuitive way. Here are our steps:
1) use isolation tools to find which PU in which
file causes the bug. 2) read the assemble code of
that PU carefully, to find out which BB or BBs
are translated incorrectly. 3) dump out the
intermediate representations between phases as
a .t file, read the .t file carefully to find out the
bad optimization phase. 4) Now we can know
which optimization causes which BBs error. And
can use GDB to debug the optimization phase.
Dumping methods can be used in debugger, such
as WHIRL dumper, BB dumper, etc.
 Also Open64 provides friendly comments
in the generated file, to help the reader
understand the assemble code. For example, a
loop would be commented with its line number
in source file, nesting depth, estimated iterations,
and unroll times. It clearly showed the loop
transformations and helps the reader understand

the assemble code more easily.

4 Experience and Suggestion

 In this section, we will share our
experience and our suggestion for Open64. We
hope our experience might be useful for future
developers to port Open64 in a short time. Some
issues are related to the methodology of
retargeting, and some might be trivial but useful.
 Experience 1: How to verify the basic
issues of the compiler framework step by step
quickly? Our experience is choosing benchmarks
from simple to complex. The following shows
our steps.
 Step 1: taking "hello world"(-O0) as the
startup. If it works well, it means the modules of
front-end \ ir-transformation\ code-generation\
lib-function-call are reasonable.
 Step 2: focus on the variations of "hello
world"(-O0). Change data type of the parameters,
and change the number of parameters. Add some
control-flow into the test-case, eg, branch and
loop. If all the variations work well, it means the
ABI and variant-as-parameter are reasonable.
Remember to test for 64-bit immediate values if
you are retargetting for a 64-bit platform.
 Step 3: turn -O0 into -O2 and -O3 for
hello-world and its variations. If it works, the
optimization FRAMEWORK works. But
optimization is a complex issue, and needs more
efforts.
 Step 4: taking "stanford benchmark" for
test (-O0 to -O3). If the suite works well, it
means the compiler works for multiple
procedures. And some bugs on code generation
and optimizations would be found and fixed
during this step.
 Step 5: testing for "abstract penalty"
benchmark. It can check the c++ frontend, and
loop optimizations.
 Experience 2: Be familiar with Open64’s
switches.
 There are many switches in Open64. If we
need turn on/off some machine feature, search its

0

20

40

60

80

100

120

140

bzip2(test) mcf(train)

e
x
ec

u
t
i
o
n
 t

i
m
e
(
s
ec

)

open64 -O2

gcc -O2

open64 -O3

gcc -O3

 7

corresponding switch first of all. If the switch
already existed, things would turn much simpler.
For example, delay slot, multiply-and-add,
divide instruction, etc.
 Experience 3: Easy to debug is significant.
 It is not easy to modify all the files
correctly at first. We can fix the bugs by running,
tracing, debugging the compiler. After familiar
with that, we can do extensive changes to those
files.
 Debugging not only fixes bugs, but also
helps get familiar with the compiler more
quickly and efficiently.
 Experience 4: Pay attention to the
generated code.
 Some files will not affect the correctness of
the compiler if they are not modified
appropriately, but they will affect the quality of
generated code. For example, if the branch cost
was set inaccurately in CGTARG_Compute_
Branch_Parameters (be/cg/<targ>/cgtarget.cxx),
the code layout of if-statement would not match
that of the real machine. Remember to check the
machine parameters if compiler generates codes
with poor quality.
 Suggestion 1. Can the flags distributed in
multiple files be merged into one file?
 For example, the endianness should be set
in three files: config_host.c, config_targ.cxx and
common/com/config.cxx. We do not know
whether there are other similar instances, but this
really brings some inconvenience to the retarget
procedure. If a flag can be set only in one file, it
would be more facile.
 Suggestion 2. Can some graphic tools be
developed for view IR, flow, etc?
 Now the intermediate information is shown
in text format, including WHIRL node, control
flow graph, etc. It is time-consuming and
requires the developer be familiar with all the
data structures. If there are some graphic tools,
this information can be shown in an intuitive
way and helps the developers find the bug point
more quickly.

5 Non-goals

 We mentioned earlier that we are
retargeting for an Open64-MIPS PROTOTYPE.
So there are some issues we have not dealt with,
and we will discuss these issues in this section.
 Multiple ISA support. As we know, MIPS
has several ISAs, say, MIPS2, MIPS3, MIPS4,
MIPS64, etc. It should be controlled and chosen
with the target machine, but we did not cover it.
In our prototype, only MIPS3 is supported.
 Dynamic Shared Object (DSO). DSO is a
library that is linked in at runtime, and it requires
generation of position independent code (PIC)
and position independent data (PID). We have
not tested the compilation for dynamic
execution.
 Production Quality. Production compiler
requires elaborate code reviews and extensive
tests; especially the code generator part, to
assure it works well and generates correct code.
Much more benchmarks and testsuites would be
needed for test, such as, SuperTest, CPU2000,
Perennial, etc.
 As a student project, we only focused on
the framework of the compiler, and the IR
translation. Code generation modules still have
rooms for improvement.
 Optimization Tuning. After retarget
procedure is done, each optimization should be
tested for the new target, to assure that its
expectation can be reached.
 We only tested for –O2 and –O3 options,
without paying attention to the individual
optimizations. So in the previous sections, we
said our optimization FRAMEWORK is
reasonable. It does not mean the optimizations
are at its best, especially the peephole
optimizations in the code generator.
 Machine-dependent Optimization. Extra
machine-dependent optimization is an important
step of the retarget, including the machine
parameters, memory hierarchy organizations, etc.
With these optimizations, the target machine’s
resources can be efficiently used.

 8

6 Conclusion

This paper shows Open64’s ease of retarget
and good performance that can be obtained after
retarget. Debuggability is also discussed with
our retarget procedure. The paper also shares our
retarget experiences, including methodology of
verifying the compiler framework, attention to
switches in Open64, importance of debugging
and reading generated code. Also we present
some suggestions for Open64 community.

Acknowledgement

 Sun Chan guided our retarget procedure
from start, told us the methodology and detailed
steps of retargeting Open64. Fred Chow
provided the basic document for retargeting
procedure (section 2). Sun also helped us
organize and revise the paper.
 We give our thanks to Professor Guang. R.
Gao for giving us this opportunity. Professor
Gao also gave us invaluable encouragements and
discussions during the retarget procedure.
 We also thank to members from ICT and
Simplight for their help and discussions, and
thank to the reviewers for their valuable
comments.

Reference

[1] Homepage of Open64.
http://www.Open64.net/
[2] W. J. Price. A benchmark tutorial. IEEE
Micro, 9(5):28--43, Oct. 1988
[3] Alex Stepanov. Abstraction Penalty
Benchmark, version 1.2 (KAI). Silicon Graphics,
Incorporated, 199?.
[4] Homepage of GCC, the GNU Compiler
Collection. http://gcc.gnu.org/
[5] Soubhik Bhattacharya, Generation of GCC

Backend from Sim-nML Processor Description,
master thesis, 2001
[6] Ming Lin, Zhenyang Yu, Duo Zhang,
Yunmin Zhu, Shengyuan Wang, Yuan Dong,
"Retargeting the Open64 Compiler to PowerPC
Processor," icesssymposia,pp.152-157, 2008
International Conference on Embedded Software
and Systems Symposia, 2008
[7] Juha Haataja, Ville Savolainen, Cray T3E
User’s Guide, (Center for Scientific Computing,
Finland, 1997).
[8] The Power Challenge Technical Report.
On-line. as. http://www.sgi.com/Products/
hardware/ Power/index.html.
[9] Mike Murphy, NVIDIA's Experience with
Open64, Open64 Workshop at CGO 2008.
[10] K. M. Lo and Lin Ma, Quantitative
approach to ISA design and compilation for code
size reduction, Open64 Workshop at CGO 2008.
[11] Subrato K De, Anshuman Dasgupta,
Sundeep Kushwaha, Tony Linthicum, Susan
Brownhill, Sergei Larin, Taylor Simpson,
Development of an Efficient DSP Compiler
Based on Open64, Open64 Workshop at CGO
2008.

