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Abstract

As Java becomes more pervasive in the programming land-
scape even in HPC applications, it is very important to pro-
vide optimizing compilers and more efficient runtime sys-
tems. To this end, we try to leverage the synergy between
static and dynamic optimization to exploit more optimiza-
tion chances and improve Java runtime performance espe-
cially for server applications. This paper presents our first
achievement of implementing a Java static compiler Openc;j
which can perform fully optimization for Java applications.

Opencj takes Java source files or class files as inputs and

generates machine dependent executable code for Linux/[A32.

It is developed based on Open64 with some optimizations
implemented for Java. Efficient support for exception han-
dling and virtual method call resolution fulfills the demands
which are imposed by the dynamic features of the Java pro-
gramming language. Due to the same optimizer in Opencj
and Open64, the performance gap between Java and C/C++
programs can be evaluated. The evaluation of the scientific
SciMark 2.0 benchmark suite shows they have a similar peak
performance between its Java and C versions. The evalua-
tion also illustrates that the performance of Opencj is better
than GCJ for SPECjvm98 benchmark suite.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors-Compilers, Optimization, Code gen-
eration

General Terms  Algorithms, Languages, Performance

Keywords Java, Java Static Compiler, Java Exception Han-
dling, Bounds Check Elimination, Synchronization Elimina-
tion, Java Devirtualization

1. Introduction

The Java programming language enjoys widespread popu-
larity on different platforms ranging from servers to mo-
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bile phones due to its productivity and safety. Many op-
timization approaches have been applied to improve Java
runtime performance. In many applications, Java’s perfor-
mance is similar to other programming languages (includ-
ing C++/Fortran)[16]. There are two ways to run Java
programs: running bytecode within a Java virtual machine
(JVM) or running its executable code directly.

JVM can either interpret the Java bytecode or compile
the bytecode into native code of the target machine. Be-
cause interpretation incurs a high runtime overhead, JVMs
usually rely on compilation. The most popular compilation
approach is to perform dynamic or just-in-time (JIT) com-
pilation, where translation from bytecode to native code is
performed just before a method is executed. To reduce the
overhead of runtime compilation, JVM usually operates in
a hybrid mode, which means that bytecode of a method
is initially executed by an interpreter until the JVM de-
termines its suitability for further optimization. Examples
of such systems include IBM JVM[34]], Sun Hotspot com-
piler[21]], Hotspot™for Java 6[17], and Jalapefio adaptive
optimization system[2]. Nevertheless, JVMs using even the
most sophisticated dynamic compilation strategies in their
server compiler still suffer from two serious problems, Large
memory footprint and Startup overhead of JVMs. However,
static compilation achieves greatly reduced cost of startup,
reduced usage of memory, automatic sharing of code by
the OS between applications, and easier linking with native
code.

This paper introduces a static Java compiler Opencj
which is developed based on Open64 compiler. Open64 is
an open-source static compiler for C/C++ and Fortran with
excellent optimizer. Opencj benefits from Open64’s back-
end, especially IPA which enables us to generate advanced
optimized Java native code and evaluate the performance
gap between Java and C/C++.

Due to the lack of precise runtime information, it is hard
to predict runtime behavior for static compilation. Although
offline profiling technique has been adopted by some static
compilers including Open64, it may not be accurate or rep-
resentative. As a result, compilers are forced to make con-
servative assumptions to preserve correctness and to avoid
performance degradation. So, we argue that static and dy-
namic optimizations are not distinct and competitive. And



we try to find a way to integrate the benefits of static and
dynamic optimizations to improve runtime performance. We
take DRLVM, a JVM of Apache Harmony|[13], as a platform
to reveal how to leverage static optimization benefits.

In section 7, we picture a Java compilation framework
mixing the static and dynamic optimization techniques to
further reduce runtime overhead. In this framework, a dy-
namic compilation module is introduced to collect runtime
information and apply dynamic optimizations guided by the
profiling results. Besides, a complete Java runtime environ-
ment based on Harmony will be integrated into Opencj to
further accelerate Java runtime speed.

This paper makes the following contributions:

® Design and implementation of a Java static compiler
Opencj: we introduce the infrastructure of Opencj that
compiles Java source files or Class files into optimized
executable code. In particular, we focus on the Java ex-
ception handling and some optimizations in Openc;j.

e We compare the runtime performance of Java applica-
tions between running in JVM and running executable
code. Meanwhile we give an evaluation of the perfor-
mance gap between Java and C in scientific applications.

e We evaluate the performance of Opencj at Linux/IA32
comparing to GCJ 4.2.0, Harmony DRLVM and Sun
hotspot of JDK 1.6.

e We give a big picture of how to combine static optimiza-
tion and Java runtime technique to improve Java runtime
performance.

The rest of the paper is organized as follows. Section 2 gives
an overview of Opencj compiler. Section 3 presents the fron-
tend migration for Open64. Section 4 describes the optimiza-
tions which are designed and implemented for Java applica-
tions. Section5 gives the experimental evaluation of Openc;.
Section 6 pursues related works. Section 7 highlights the fu-
ture work of our research and, finally, section 8 concludes
the paper.

2. Overview of Opencj

The main components of Opencj include the Java frontend
migrated from GCJ[12] and the Optimizer of Open64[25].
The frontend is used to read Java source files or class files
and transform them into WHIRL[14]] of Open64. And then
Open64 Optimizer performs optimization on the WHIRL
and generates machine dependent executable code for IA32
or Itanium.

Open64 is open sourced by Silicon Graphics Inc. from
its SGI Pro64 compiler targeting MIPS and Itanium proces-
sors. Open64 is a well-written, modularized, robust, state-of-
the-art compiler with support for C/C++ and Fortran 77/90.
The major modules of Open64 are the multiple language
frontends, the interprocedural analyzer(IPA) and the mid-
dle end/back end, which is further subdivided into the loop

nest optimizer(LNO), global optimizer(WOPT), and code
generator (CG). These modules interact via a common tree-
based intermediate representations, called WHIRL(Winning
Hierarchical Intermediate Representation Language). The
WHIRL has five levels to facilitate the implementation of
different analysis and optimization phases. They are classi-
fied as Very High, High, Mid, Low, and Very Low levels, re-
spectively. And each optimization is implemented on a spe-
cific level of WHIRL. For example, IPA and LNO are ap-
plied to High level WHIRL while WOPT operates on Mid
level.

The C/C++, Java frontends are based on GNU technol-
ogy. The Fortran90/95 frontend is the SGI Pro64 (Cray) For-
tran frontend. This paper presents the detail of Java frontend
in Open64 in section 3. Each frontend produces a Very High
level WHIRL for the input program units, stored as a so-
called .B file. This representation is available for the subse-
quent phases. The driver of Open64 controls the execution of
the compiler, deciding what modules to load and what com-
pilation plan to use. The Driver is responsible for invoking
the frontends, the stand-alone procedure inliner, IPA, back-
end modules and the linker. Figure 1 is the compiler execut-
ing pattern.

3. Frontend migration
3.1 Java frontend

The C/C++ frontend of Open64 is inherited from GCC, so
the frontend of GCJ compiler which is a Java static compiler
of GCC is chosen to develop the Java frontend of Open64
when designing Opencj. In figure 1, the frontend has two
modules, gspin which outputs AST of GCC as language
independent spin file and wgen which takes spin file as
input and converts it into WHIRL. The objective of gspin
module is to keep the independency and persistency of wgen
module in the compiler version updating. Spin file is equal
to AST file except a few modifications in AST to remove the
language dependent tree nodes, such as renaming the tree
node type.

We migrate the frontend of GCJ 4.2.0 version into Openc;j.
After GCC 4.0 version, it redefined the AST tree into
GENERIC and GIMPLE[20] tree for performing optimiza-
tion at the tree level. The purpose of GENERIC is simply
to provide a language-independent way of representing an
entire function in trees. GIMPLE is a simplified subset of
GENERIC for use in optimization. We used to try to gener-
ate spin file at GIMPLE tree instead of GENERIC to benefit
the GCJ optimization. The evaluation of SciMark 2.0 Java
benchmark shows that it caused about 30% performance
degradation since some high level structure has been trans-
formed into low level, e.g. loop structure has been trans-
formed into goto structure, thus preventing further optimiza-
tion in Openc;j.
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Figure 1. Compilation Model of Open64

3.2 Handling Java exception

Open64 has handled C++ exception. Although Java excep-
tion is similar to C++ exception, there are several differences
between them:

1. Java exception could throw runtime exceptions, such as
throwing an ArithmeticException when a div or rem in-
struction takes zero as its second operand, and throwing a

Method

try statement

exception propagated
from nested block

13 |15

NullPointerException when an indirect load instruction
takes zero as its base address.

. C++ exception has no restriction on the type of exception
objects, which means objects of any type could be thrown
out, while Java exception restricts all its exception objects
to be of Throwable class or its subclass.

. C++ exception uses “catch-all” handler to catch excep-
tions which have no corresponding handler, while Java
has an alternative way to get the same result. Java uses
a catch handler which catches the exception objects of
Throwable class.

. When a statement throws an exception in a try block,
C++ exception requires to destruct the objects which are
defined within a try block before this statement. Java
exception has no such a requirement since all objects in
Java are managed by the garbage collector.

. Java exception has the “finally” mechanism, that is, no
matter what happens in a try block, the finally block fol-
lowing this try block must be executed. This mechanism
makes Java exception more complex than C++ exception.
As figure 2[32] shows, there could be 15 kinds of exe-
cution routes during a Java exception handling process,
while C++ exception just has 7 execution routes corre-
sponding to the route 1, 3, 5,7, 9, 13 and 15.

Therefore, an new algorithm need to be designed to han-

dling Java exception in Opencj. The Java exception handling
can be divided into four sub-procedures:
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Figure 2. Intraprocedural control flow in Java exception-
handling constructs

1. To recognize the expressions which may throw an ex-

ception. In wgen module, the expressions which may
throw an exception will be surrounded in an indicative
REGION. In C++ exception, only the CALL expres-
sion may throw an exception, but in Java exception, the
ILOAD, DIV and REM expressions can throw exceptions
as well.

. To analyze the relationships of try statements. There

are many kinds of execution routes in a Java excep-
tion handling process. To implement these routes and
make the exceptions thrown from different parts of a pro-
gram be handled correctly, the critical problem is how
to make the compiler understand the relationship among
try/catch/finally blocks.

. To find the landpad of the expressions which may

throw an exception. The landpad means the start point



of a piece of the exception handling code. Basing on
the knowledge of the relationship among try/catch/finally
blocks, the compiler will locate the corresponding excep-
tion handling codes of each exception throwing point.

4. To build the exception handling relative code. The
layout of all the exception handling codes will be set
down in this step.

Take a program presented in figure 3(a) as an example.
The wgen phase will generate the WHIRL with Java excep-
tion handling code as illustrated in figure 3(b). Each block in
this Java program may contain expressions which may throw
an exception, and the landpads of these expressions may not
be the same. In figure 3(b), the Java exception handling algo-
rithm sets the landpad of the inside try block with label L3,
sets the landpad of catch block A and catch block B with L6,
sets the landpad of the inside finally block, code block a and
code block b with L7, set the landpad of catch block ¢ with
L9 and leaves the landpads of other blocks unset. Finally,
each exception thrown in this program can be processed by
its corresponding exception handling code.

fO{ function body of f
try //try outside try block outside
code block a |
try block inside ]

code block a O

try //try inside :

{ry 1y nside finally block inside ]
code block b |

L2:

finally block outside

Exception Handling Block inside
L3:

if exception is A goto L4;
catch(ExceptionType B) //catch B if exceptionis B goto L5;
{ finally block inside
Unwind Resume

} L4: |
finally //finally inside s catch‘ block A goto L1; |
{ catch block B goto L1; |
Lé6:

finally block inside goto L7; |

catch(ExceptionType A) /catch A | | |
{

}

code block b
} Exception Handling Block outside
catch(ExceptionType C) //catch C L7 ]
{ if exception is C _goto L8;
finally block outside
} Unwind Resume
finally //finally outside L8: J

{ catch block C  goto L2; ]
L9: ]

} finally block outside |

) Unwind Resume ]

(a) (b)

Figure 3. A simple Java program and its exception handling
code

4. Optimization for Java

The backend of Opencj comes from the optimizer of Open64
as figure 1 shows. It performs advanced optimizations at
WHIRL and generates the machine code of target platform.
The remainder of this section outlines the main optimiza-
tions for Java applications which we implemented in Openc;j:
the virtual call resolution, redundant synchronization elimi-
nation and the array bounds check elimination.

4.1 Virtual method call resolution for Java

A major advantage of Java is abstraction, which supports
dynamic dispatch of methods based on the run-time type
of an object. Virtual functions make code easier for pro-
grammers to reuse but harder for compilers to analyze. Of
cause, many devirtualization techniques[33][15] have been
proposed to reduce the overhead of dynamic method calls for
various object-oriented languages through statically deter-
mining what methods can be invoked. Many optimizations
can benefit from devirtualization. It can provide an accurate
graph which can be used to compact applications by remov-
ing dead methods and improve the efficiency and accuracy
of subsequent interprocedural analysis.

Opencj adopts class hierarchy analysis|9]] and rapid type
analysis[4] to resolve Java virtual method call. The devirtu-
alization algorithm has four following steps:

1. Identifying whether a indirect call is a virtual function
call which is called through vtable, and recording the
offset of the function in the vtable.

2. Rapid type analysis: checking the initialized type of the
object with the type table analysis. For example, A ¢ =
new B();, the declared type of ¢ is A, but the initialized
type is B. According to Java specification, the class B
must be a subclass of A. And then all virtual functions
called through ¢ can be found in the vtable of class
B. This is simple case. When the initialized type of ¢
depends on runtime control flow, e.g. ¢ = foo(), the type
analysis can only achieve the declared type of function
foo(). If the foo() has a declared class type B, the
possible runtime return type includes B plus subclasses
of B. So we need to build class hierarchy graph to resolve
Java virtual function call.

3. Building class hierarchy graph at inter-procedure analy-
sis phase. When handling a virtual function call, the de-
clared type of object ¢ has no subclass, this function can
be resolved, otherwise, we adopt a conservative way.

4. Resolving the virtual function call into direct call with
the vtable and the offset and updating the call graph.

In the SciMark 2.0 Java benchmark test, Opencj can resolve
all 21 user defined virtual function calls.

4.2 Synchronization elimination

One important characteristics of the Java programming lan-
guage is the built-in support for multi-threaded program-
ming.There are two synchronization constructs in Java, syn-
chronized methods and blocks. When a thread executes a
synchronized method against an object or a synchronized
block with an object, the thread acquires the object’s lock
before the execution and releases the lock after the execu-
tion. Thus, at most one thread can execute the synchronized
method or the synchronized block. As a result, Java pro-
grams perform many lock operations. Many techniques have



been proposed for optimizing locks in Java, which can be di-
vided into two categories, runtime techniques and compile-
time techniques. The former attempts to make lock opera-
tions cheaper[10]], while the later attempts to eliminate lock
operations|[29]. Openc;j tries to eliminate redundant lock op-
erations to reduce the synchronization overhead and exploit
more optimization chance.

We implement synchronization optimization in Opencj
based on escape analysis[l6] which is flow-sensitive and in-
terprocedural. Escape analysis checks whether an object es-
capes from the method or the thread. In Opencj, we focus on
the thread escape. If a synchronized object doesn’t escape
from thread, then the synchronized operation must be re-
dundant, it can be removed; otherwise, conservatively identi-
fied it as a needed synchronization. In fact, if do inter-thread
analysis and make sure no other threads operate on this ob-
ject, the synchronization operation can be removed too. The
synchronization optimization implemented in Opencj can be
divided into three following steps:

To build connection graph. The connection graph ab-
straction captures the connectivity relationship among ob-
jects and object references. Performing reachability analy-
sis on the connection graph can easily determine whether an
object is local to a thread. Because connection graph just fo-
cuses on objects in the program, only five following kinds of
statements need to be traced in building connection graph:

1. p=new P()

2. p = return_new_P() where returns a class type to p

3.p=¢q
4.p=q.f
5.p.f=¢q

These five statements will update connection graph. Figure
4 shows a example to illustrate the connection graph compu-
tation:

N
(rp) > P1 (» > Pl 4 P2 ‘
v - / v
Y .
() (r £

S3:q=p: ( f )

Figure 4. An example illustrating connection graph compu-
tation. Boxes indicate object nodes and circles indicate refer-
ence nodes (including field reference nodes). Solid edges in-
dicate points-to edge, dashed edges indicate deferred edges,
and edges from boxes to circles indicate field edges.

Intraprocedural analysis. The objective of this step is to
record synchronization operations and synchronized objects,

and set initial escape state for each node in the connection
graph.

We define four kinds of escape states with an order-
ing among them: GlobalEscape > ArgEscape > OutEscape
>NoEscape.

® GlobalEscape: static variable which is thread escape.

® ArgEscape: formal arguments which are method escape
or thread escape.

® QutEscape: parameters and return values which is method
escape or thread escape.

® NoEscape: local variables which are not escape from
method.

An object node maybe pointed by many reference nodes
which have different escape states. So the ordering among
escape states is necessary and let A € EscapeSet = { NoEscape,
OutEscape, ArgEscape, GlobalEscape}, then A A NoEscape
= A, and A A GlobalEscape = GlobalEscape.

If a node is marked NoEscape, the synchronization oper-
ation can be removed. For GlobalEscape, the synchroniza-
tion operation must be preserved. If it is marked ArgEscape
or OutEscape, it needs interprocedural analysis to identify
whether is redundant or not.

Interprocedural analysis. Interprocedural analysis can
get the escape state from other methods. For example, A()
has a statement ¢ = B() where a receive return value of
method B(), so a is marked OutEscape. If return variable
of B() is NoEscape, a will be updated into NoEscape. This
analysis starts at entry point of program, then traverses call
graph in depth-first order.

The task of interprocedural analysis is to match escape
states for caller and callee pair. The process is:

1. Caller sends escape states of actual parameters and
their field nodes to callee;

2. Callee updates escape states of its parameters and re-
lated nodes in its own connection graph, and then submits
the escape states to caller.

3. Caller updates escape states and connection graph ac-
cording to callee’s feedback.

There are four synchronization operations in figure 5, and
three of them(#1, #2, #4) can be removed by Opencj. In the
building connection graph step, four statements (line 5, 6,
7, 23) will be used to construct connection graph. Since this
example is simple that every object node is pointed by only
one reference node. synchronized object of #1, #2, #3, #4 is
d, b, a and this.

Intraprocedural analysis can easily set escape states of a,
b, d and temp with GlobalEscape, OutEscape, OutEscape
and OutEscape correspondingly.

In interprocedural analysis phase, d receives the return
value of default constructor of Class C, so d is NoEscape,
and #1 can be removed. b receives the return value of re-
turn_new_C() method, so its escape state is equivalent to
the variable temp in return_new_C(). The remp is NoEscape



same as d, then #2 can be removed. For #4, the formal pa-
rameter variable this is a synchronized object, and the actual
parameter of caller main is d. d is NoEscape, so this is also
NoEscape and #4 can be removed. For #3, a is static vari-
able, so it is GlobalEscape, #3 need to be kept.

public class Test{
static C a;

1

2

3

4 public static void main(String[] args){
5 a=new C();
6

7

8

C d=new C();
C b =d.return_new_C();
synchronized(d){ //#1
9 System.out.println("synchronized #1 for d");
10}
11 synchronized(b){ //#2
12 System.out.println("synchronized #2 for b");
13}
14 synchronized(a){ /1#3
15 System.out.println("synchronized #3 for a");
16}
17}
18 }
19

20 public class C{
21 public final synchronized C return_new_C(){ //#4

22 System.out.println("synchronized #4 for this");
23 C temp = new C();

24 return temp;

25}

26 }

Figure 5. An simple example illustrating synchronization
optimization

4.3 Array bounds check elimination

Array bounds check elimination removes checks of array
indices that are proven to be within the valid range.When an

index variable is guaranteed to be between 0 and array.length—

1, the check can be completely omitted (Fully Redundant
Check). When the check is in a loop, the array length is loop
invariant, and the index variable is an induction variable, the
check can be moved out of the loop (Partially Redundant
Check) to reduce the total number of executed checks. The
semantics must stay the same when eliminating or moving
checks in Java programs.

In contrast to other approaches that perform in JVMs,
(see e.g. [, [28] and [36]), we adhere to the design prin-
ciple of the static compiler to optimize scientific Java ap-
plications. The algorithm tries to eliminate redundant array
bounds check especially in a loop to exploit more optimiza-
tion chance. It takes advantage of the SSA form and requires
an inequality graph to recode value range constraint for each
array index variable, and it handles more cases, such as in-
dex variable which is a multiplication or division expression
and two-dimension array.

In SSA form, each variable is assigned only at a single
point. When a variable is defined, its value will never change
again. To build inequality graph for a bounds check, we need
to access the dominator tree and get the path from the root
to the current bounds check block. To determine the value

range of the array index, the ABCD[3] algorithm builds two
inequality graphs for the current PU, one is used to deter-
mine the upper bound value of the array index and the other
is used to determine the lower bound value. Different from
the ABCD algorithm, our algorithm merges these two graphs
together. An inequality graph is a constraint system of an ar-
ray index. It is a weighted directed graph built from a root-
path in the dominator tree. The building process of the in-
equality graph is dynamic, updated when entering or exiting
a block. If a block is pushed into the stack, the constraint
information (e.g. nodes or edges for the graph) contained in
the current block will be added to the inequality graph and
if a block is popped from the stack, the information gener-
ated by this block will be removed as well. The nodes in
the inequality graph represent the variables or expressions
with the int type. Unlike the ABCD and the constraint graph
in the paper[28]], our inequality graph does not contains any
constant node. The edge in the inequality graph represents
a condition. An edge from ¢ to 5 with a constant weight c
stands for a constraint condition ¢ + ¢ < j.

A condition is generated by an assignment or a branch
statement or an array bounds check statement. For example,
an int type assignment statement ¢ = j + ¢ generates con-
ditions 7+ — ¢ < j and j + ¢ < 4, a branch statement ¢ < j
generates a condition ¢ + 1 < j for the true branch and the
check statement for a[i]will generate conditions 0 < ¢ and
i+ 1 < a.length after the array access ali].

In ABCD algorithm, it needs a shortest path algorithm to
determine the relationship between the array index and O or
array length. Our algorithm solves this problem in a different
way: recording the value range information for each variable
node in the inequality graph. The last step is Elimination.
For the PRC, ABCE adopts loop versioning[22]]. It clones
the original loop and sets some trigger conditions before and
after the optimized loop. This tactic can guarantee the ex-
ception semantic for Java. When a check fails, the exception
can be thrown at the correct code position of the failing array
access.

5. Evaluation

This section presents the evaluation of the Java runtime
performance of SciMark 2.0 Java benchmark suite[27] and
SPECjvm98 benchmark suite[8] at Linux/32 platform. We
have two objectives in the experiment. One is to evaluate
the performance gap between Java and C in the scientific
applications with the same optimizer, the other is to compare
the peak performance of Opencj, GCJ 4.2.0, Sun HotSpot of
JDK 1.6 and Harmony|[13].

All experimental results are obtained on an IA32 platform
with four Intel(R) Xeon(TM) 2.8GHz CPUs and 3.5 GB
main memory. The operating system is Linux-2.6.18.

For the evaluation, two benchmark suites SPECjvm98
and SciMark 2.0 are executed. The first one consists of eight
benchmarks derived from real-world client applications ex-



cept _200_check, while the second one performs scientific
computations which has Java and C versions. Five scientific
computing applications which are widely used in Java pro-
grams are included in SciMark 2.0 benchmark.

1. FFT: A complex 1D fast Fourier transform algorithm;

2. SOR: Solving of the Laplace equation in 2D by succes-
sive over-relaxation;

3. MC: Computing by Monte Carlo integration;
4. MV: Sparse matrix-vector multiplication;

5. LU: Computing the LU factorization of a dense N x N
matrix.

Each kernel except MC has small and large problem sizes.
The small problems are designed to test raw CPU perfor-
mance and the effectiveness of the cache hierarchy. The large
problems stress the memory subsystem because they do not
fit in cache. In the experiments, we only test its small prob-
lem size.

5.1 Performance gap between Java and C

Five kernels in the SciMark 2.0 benchmark suite are loop-
intensive programs. We test their Java version and C version
with the same optimizer to evaluate the peak performance
gap between Java and C.

In the evaluation, all compilers compile the source code
with -O3 flag, while opencc(C driver of open64) and opencj
enable their IPA, moreover opencj and gcj enable -fno-
bounds-check flag to eliminate all array bounds check in
Java programs. Although, we implemented a ABCE al-
gorithm in Opencj and can eliminate most redundant ar-
ray bounds check in SciMark 2.0 test, the achieved 28.4%
speedup is lower than we expected, mainly due to phase
ordering. Currently the eliminating array bounds check op-
timization is added after the SSA-PRE since it may benefit
from this optimization. However Open64 does LNO opti-
mization before PRE and the bounds checks limit some op-
timizations in the LNO phase. In another word, the LNO op-
timization can benefit from ABCE. We will move the ABCE
phase before LNO in the future.

Figure 6 shows the Java performance is similar to C
performance in SciMark 2.0 benchmark whatever opencj vs
opencc, or gcj vs gecc. The result also shows the opencc has
the best performance, followed by opencj which is better
than gcj and gcc. There is a big speedup in MC comparing
opencj to gcj. The MC has a synchronized method which the
synchronization is unnecessary. However gcj does not have
synchronization optimization to remove this lock operation
while opencj has. If disable this optimization, the opencj
gets a similar performance score as gcj. The synchronization
optimization of Opencj achieved about 3.94X speedup in
MC test case.

1000
oo0 —— Mopencj [Ogej -

800 —— Mopencc Ogec L

hw

Figure 6. Performance test among four compilers in Sci-
Mark 2.0 test. The y-axis indicates the performance score
and taller bars are better.
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Figure 7. Performance of SciMake 2.0 in two running
modes. One is to run bytecode in Sun Hotspot of JDK1.6
and DRLVM of Harmony, the other is run executable code
compiled by Opencj. The y-axis indicates the performance
score and taller bars are better.

5.2 Static compilation vs JVM in Java runtime
performance

Two popular approaches for compiling Java programs are
Just-In-Time (JIT) compilation and static compilation. It
would be wrong to say one approach is definitely better than
the other, since they are suited for different situations[37]].
We measure the Java runtime performance in these two
modes comparing the Opencj,Sun JDK1.6 and Harmony.
Harmony is a Java SE project of the Apache Software Foun-
dation. We test its latest Apache Harmony 6.0 M8 version.
In JVM running mode, we test its server mode compar-
ing to Opencj with full optimization. Currently, the Opencj
just can correctly compile seven benchmarks of SPECjvm98
except _228_jack as GCJ does, since the Java frontend of
Opencj is migrated from gcj 4.2.0 version. _200_check is
not used to evaluate Java performance, so the evaluation re-
sults just have six test cases of SPECjvm98. Figure 7 shows
Opencj is a little better than JDK1.6 in composite score of
the SciMark 2.0 test cases while more better than Harmony
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Figure 8. Performance of SPECjvm98 in two running
modes. The y-axis is the running time(sec.) and lower bars
are better.

in all 5 test cases, on average about 72.7% performance gap.
There are some bugs in compiling SPECjvm98 test cases
when enable IPA, so Opencj compiles SPECjvm98 test cases
at —O3. Figure 8 illustrates the result of SPECjvm98 bench-
mark test. The y-axis in the graph is the running time(sec.)
and JDK1.6 is more better than Opencj except compress and
mpegaudio.

The test results show that sometimes dynamic optimizer
can do more effective optimization to enhance Java runtime
performance. So we adhere to that online profiling mech-
anisms and feedback directed optimizations will become
mainstream, and multi-language runtime systems as the di-
vide between static and dynamic environments will dissolve.

6. Related work

As Java becomes more and more popular, many dynamic
and static compilation techniques were applied to compile
Java code and improve the runtime performance and secu-
rity of Java programs. With the support of runtime profil-
ing techniques, many dynamic compilers were developed
in these years, such as Sun Hotspot[21], Microsoft JIT[7],
JRockit[26], Apache Harmony, JikesRVM][1] and Open-
JIT[24]). These dynamic compilers, apply optimizations and
analysis actions at runtime. Such characteristic of dynamic
compilation uncovers a lot of optimization chances to the
compiler, but it also introduces a significant compilation
overhead at runtime. Such overhead not only greatly raises
the startup time of Java programs, but also neutralizes the
effect of optimizations.

On the other hand, several static compilers for java are
also available, such as HPCJ[31]], Marmot[11]], TowerJ[33]] ,
BulletTain[23]] and GC]J. Static compilation easily eliminates
the runtime overhead which bothers the dynamic optimiza-
tion designers. But, due to the lack of runtime profiling feed-
back, many aggressive optimizations cannot be directly ap-
plied in these compilers. Current generation of Opencj uses
static compilation to compile Java code, and we attempted to
take the advantages of static interprocedural analysis to ex-

ploit the optimization chance for Java codes in Opencj. And
evaluation result shows the performance of Openc;j is better
than GCIJ.

Azevedo, Nicolau, and Humme have developed the AJIT
compiler[3]. It annotates the bytecode with machine inde-
pendent analysis information that allows the JIT to perform
some optimization without having to dynamically perform
analysis. This approach reduces the runtime analysis over-
head, but runtime optimization overhead cannot be reduced.
Besides, considering portability, those optimizations that re-
quire machine dependent information cannot benefit from
this framework.

Recently, several research groups attempt to mix sta-
tic compilation and dynamic compilation together in order
to achieve better performance behavior for Java language.
Quicksilver[30] bypass the runtime optimization overhead
through using a static compilation phase instead of the dy-
namic one. It generates a version of object code, and uses
these object codes as an alternative in target JVMs. How-
ever, it makes the JVM sophisticated and weakens the porta-
bility of these object codes. LLVM][19] is a compiler in-
frastructure that can be used as Java static compiler as well
as C/C++ compiler. It also provides a Just-In-Time compiler
for runtime optimizations. In the next generation framework
for Opencj, we aim to construct a general framework that
not only support static and dynamic optimization, but also
provides other Java runtime environment such as garbage
collector to uncover the chances for improving Java runtime
behavior.

7. Future work

As a static compiler, Opencj achieves a relative high per-
formance comparing to other static Java compilers. As the
evaluation result shows, the performance of Opencj can be
further improved. There are two following aspects can be
taken into account:

e Higher-level languages must have interface with lower-
level languages, typically C, to access platform function-
ality, reuse legacy libraries, and improve efficiency. For
example, most Java programs use native function calls,
since several methods of even class Object at the root of
Javas class hierarchy are written in C. Java uses Java Na-
tive Interface (JNI)[[18]] to incorporate native code. How-
ever, the using of JNI in Java programs will cause a large
overhead at runtime because the JNI instructions intro-
duce indirect calls which block the optimizations in com-
pile time. Most of the JNI instructions can be promoted
into direct calls with the help of runtime profiling result.

e With the multicore/manycore architecture becoming pop-
ular, the efficient usage of idle resources may signifi-
cantly improve the performance of Java programs. With
the help of machine information, the jobs can be properly
de-composited in JVM and assigned to different cores by
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Figure 9. The framework of next generation Opencj for
further improving the performance

operating systems, thus improve the overall performance
of Java code.

Both JNI calls and machine information can be easily col-
lected at runtime. In the next generation of Opencj, we plan
to introduce a Java compilation framework which combines
the static and dynamic compilation together. In this frame-
work, profiling results can be used to guide the dynamic op-
timizations, thus achieving better runtime performance. Fig-
ure 9 depicts the overall framework.

In the next generation framework, Opencj will be further
modified to translate WHIRL files into IR used by dynamic
compiler after fully optimization. The dynamic compiler is
modified from one of the Harmony’s JVMs, named DR-
LVM. DRLVM has two intermediate data structures, called
the high-level intermediate representation (HIR) and the
low-level intermediate representation (LIR). We only use
LIR in DRLVM. Java bytecode will be first pre-compiled
by Opencj to generate LIR files with some annotations. DR-
LVM will take LIR files as input and compile them into
native code after some runtime initializations.

This framework can greatly benefit the optimizations of
Opencj and DRLVM. The profiling information can be col-
lected at runtime to guide the further optimization of DR-
LVM. Such information can guide the optimizations at run-
time and further improve the performance of Java applica-
tions. Moreover, by integrating Harmony JVM into Opencj,

it is possible to construct a general framework leveraging
the cooperation between static and dynamic optimizations to
improve the performance of other programming languages.
Now the implementation of this framework is in progress,
more evaluation will be presented in the future.

8. Conclusion

In this paper, we present a static compiler named Opencj
which compiles Java code offline. Opencj utilizes the Open64
backend to achieve more higher quality optimizations. We
migrate the frontend of GCJ into Opencj, and handle Java
exception in Opencj. Some optimizations which have great
effect on Java performance, such as redundant array bounds
check elimination and synchronization optimization, have
been implemented in Openc;j.

In the future, there are still much work for Opencj. Opencj
will be integrated with dynamic compilers to obtain a more
flexible control over Java programs. We can apply more
optimistic optimizations by this integration. For example, by
dealing with Java and C cross-calls in Opencj, we can break
the boundary between Java and C programs in JVMs which
will cost a significant performance degradation at present.
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