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Abstract
Current trends in many-core architectures show a switch
from a small number of architecturally sophisticated cores
(e.g. Intel Core2, IBM PowerPC) to many simple cores (e.g
SiCortex and Tilera multiprocessor). These simple cores
lack many of the advanced features of the complex cores
(e.g. out-of-order execution, rotating register files, predica-
tion, speculation, etc.), which puts extra burden on the com-
piler to produce an efficient schedule, especially for loops.
We provide an advanced loop scheduling framework using
software pipelining, which does not rely on any special hard-
ware support. This open-source framework makes software
pipelining available to simple cores and helps to mitigate
the lack of advanced hardware features. The paper also pro-
vides measurements to demonstrate the effectiveness of this
framework.

General Terms compiler optimization, loop scheduling

Keywords Open64, software pipelining, modulo schedul-
ing, register allocation, code generation, MIPS

1. Introduction
Normal straight-line scheduling techniques, like list schedul-
ing [9] or hyper-block scheduling (HBS) [16] do a sub-
optimal job when it comes to loops. The common approach
is to unroll the loop several times to generate a larger loop
body and then perform straight-line scheduling on it. This
method has two drawbacks. Firstly, there might be not
enough parallelism in the unrolled loop to fully utilize the
hardware, leading to a sub-optimal schedule. Secondly, there
is the draining of the pipeline at the end of every unrolled
loop iteration and the refilling at the next iteration. Soft-
ware pipelining is a very well known loop scheduling tech-
nique, which is able to mitigate or completely eliminate the

drawbacks mentioned above. To illustrate the difference be-
tween these two scheduling techniques, consider the follow-
ing reduction loop example in Figure 1. Figure 2 shows the

f o r ( i = 0 ; i < SIZE ; ++ i ) {
sum += a [ i ] ;

}

Figure 1: Reduction Loop (C-Code)

resulting pseudo assembly code after unrolling the loop 4
times. The 4 pointer updates (daddiu) are reduced to a sin-
gle pointer update and the offset of the load operations are
adjusted. This is the reason why there is only one pointer
update later in the displayed schedules. Figure 3 shows a

loop :
TN267 :− l dc1 GTN277 (0 x0 )

GTN271 :− add . d TN267 GTN271
TN274 :− dadd iu GTN277 (0 x8 )
TN268 :− l dc1 TN274 (0 x0 )

GTN272 :− add . d TN268 GTN272
TN275 :− dadd iu TN274 (0 x8 )
TN269 :− l dc1 TN275 (0 x0 )

GTN273 :− add . d TN269 GTN273
TN276 :− dadd iu TN275 (0 x8 )
TN270 :− l dc1 TN276 (0 x0 )

GTN241 :− add . d TN270 GTN241
GTN277 :− dadd iu TN276 (0 x8 )

:− bne GTN277 GTN239 ( l a b : loop )

Figure 2: Reduction Loop - unrolled 4 times (Pseudo As-
sembly Code)

schedule, which has been obtained with HBS. Every itera-
tion starts with loading the required data and finishes with



processing them. The loading and processing have been par-
tially overlapped. This schedule uses 71% of the available
hardware resources1. Considering that the loop was unrolled
4 times and the schedule needs 8 cycles to finish one unrolled
loop iteration, each loop iteration is only 2 cycles long.

Figure 3: Trace Schedule

Figure 4 shows a possible schedule, obtained with soft-
ware pipelining. Note the differentiation of the schedule into
prologue, kernel, and epilogue. The prologue is necessary to
fill the pipeline and is only issued once at the beginning of
the loop. The kernel represents the steady-state of the sched-
ule, which keeps the pipeline busy. The epilogue is also only
issued once, but at the end of the loop to drain the pipeline.
The kernel simultaneously processes the data of the current
iteration and loads data for the next iteration. This sched-
ule uses 100% of the available hardware resources. For this
schedule we ignore the prologue and the epilogue for the
rate calculation under the premise that we have a loop with
a large number of iterations. Considering that the loop was
unrolled 4 times and the schedule needs 6 cycles to fin-
ish one unrolled loop iteration, each loop iteration is now
only 1.5 cycles long. The actual cost depends on the number
of iterations and can be calculated with the following for-
mula: cycle

iteration
= cycleP +cycleK×n+cycleE

n
, wherecycleP ,

cycleK , and cycleE are the length of the prologue, ker-
nel, and epilogue in cycles, respectively. This small exam-
ple shows that a loop-aware scheduler is necessary to take
advantage of the parallelism across iterations and to achieve
better performance for in-order execution architectures.Out-
of-order execution architectures are less affected, because

1 we assume the SiCortex Multiprocessor for this calculationas later de-
scribed in Section 4.1

Figure 4: Modulo Schedule

their hardware will attempt to maximize pipeline utilization.
In this paper

• we present our framework that implements a software
pipeliner, which does not depend on any special archi-
tectural features (Section 3), including

• an optimized code generation schema for architectures
with static branch prediction (Section 3.7). Moreover,

• we demonstrate its robustness and correctness in the
Open64 compiler (Section 4).

2. Background
Out-of-order execution allows processor to by-pass instruc-
tions which are not ready for execution and would have oth-
erwise stalled the processor. There have been different ap-
proaches to achieve this goal (e.g. scoreboarding, Tomasulo
algorithm [25], and reorder buffer). These methods are able
to increase performance, but they also require sophisticated
hardware implementations. In-order execution architectures
are more sensitive to a given schedule and require the com-
piler to carefully consider the processor’s pipeline behavior.
A compiler can fine tune the schedule for a specific proces-
sor, but sometimes it is not possible for the compiler to deter-
mine an optimized schedule, because necessary information
may only be available during runtime. In Section 3 we intro-
duce a scheduling technique, which allows us to narrow the
performance gap between in-order and out-of-order execu-
tion architectures.

Sophisticated architectures, like the Itanium architecture
from Intel and HP, have a feature called predication. Predi-
cation allows the compiler to convert control dependencies
into data dependencies [11]. Predication has two distinct,but
very interesting impacts on software pipelining. Firstly,it al-
lows the compiler to generate larger basic blocks (BBs) via



if-conversion [3]. This makes more loops suitable for soft-
ware pipelining. Secondly, it helps to reduce code size for
software pipelined loops. The software pipeliner normally
generates additional code for prologue and epilogue, which
results in larger code compared to the original loop. With
predication and special branch instructions it is possibleto
simulate the prologue and epilogue code, resulting in kernel-
only code [18, 19]. Without these instructions, we have to
rely on the original code generation schema of prologue, ker-
nel and epilogue.

Speculation is another advanced feature of the Itanium
architecture, which allows the processor to perform certain
operations speculatively without changing the state of the
memory or throwing exceptions. This is useful for software
pipelining of WHILE-LOOPS, where we don’t know how
many iterations are to be executed. Without speculation,
software pipelining these loops is very limited and deemed
not profitable.

Rotating register files are one of the most important fea-
tures for software pipelining. Rotating registers help to re-
move false dependencies (anti- and output-dependencies),
allowing the scheduler to find a better schedule (see Section
3.3). Without this feature, we have to unroll the kernel and
perform register rotation manually, resulting in larger code.

Since the existing software pipeliner in the Open64 com-
piler assumes these sophisticated features, there has not been
any software pipelining support in the Open64 compiler for
any processor other than Itanium. By adding our new soft-
ware pipelining framework to the Open64 compiler, we hope
other target architectures of the Open64 compiler can benefit
from having the software pipelining feature.

3. Framework
3.1 Overview of the Framework

The software pipelining framework in the PathScale EkoPath
compiler (a commercial x86 and MIPS compiler based on
Open64) is part of a multi-level optimization framework
for loops. Starting at the outer level we have the general
loop optimization framework, which analyzes the different
loops, one at a time, starting at the innermost loop level.
Even though we only optimize the innermost loop level, it is
also necessary to check the outer loop levels. This is neces-
sary, because we may fully unroll an inner loop during loop
optimization, which makes the innermost loop level disap-
pear. Loops are divided into two categories - DO-LOOPS
and WHILE-LOOPS. These two categories are further sub-
divided, depending on the properties of the loop we would
like to optimize. One of the most important criteria is the
number of basic blocks (BBs). Most advanced loop opti-
mization techniques, like software pipelining, can only be
performed on a single BB. It is possible to perform soft-
ware pipelining on WHILE-LOOPS, but it requires special
hardware support. Since the current implementation targets
a processor which does not support speculation, software

pipelining is not performed on those loops. Multi-BB loops
are not supported by the current software pipeliner either
and are therefore scheduled with the Hyper-Block Sched-
uler (HBS).

If the loop optimization framework finds a suitable loop
for software pipelining, further optimizations are performed
before the loop is finally passed on to the software pipelin-
ing framework. These include loop unrolling, recurrence
breaking, induction variable removal, load store elimination
and extended block optimization (EBO). After all these op-
timizations and transformations have been performed, the
software pipelining framework is invoked to do the schedul-
ing, register allocation and code generation of the loop.

The first step is the calculation of the data dependence
graph (DDG), followed by the minimum initiation interval
(MII) calculation. Then the modulo scheduler uses this in-
formation to find a schedule. If successful, modulo variable
expansion (MVE) and then register allocation (RA) is per-
formed. If register allocation fails, the framework gives up
and the loop is restored to its original form. Otherwise we
continue with the final step - code generation (CG) (see Fig-
ure 5).

Figure 5: Software Pipelining Framework

3.2 Data Dependence Graph (DDG)

The data dependence graph (DDG) is a representation of the
various data dependencies between a given set of instruc-
tions. The data dependencies are called flow, anti, and out-
put. Flow dependence is also known as true dependence and
the remaining two as false dependence [1]. In the context of
a hardware pipeline, these dependencies correlate to read-
after-write (RAW), write-after-read (WAR) and write-after-
write (WAW) hazards, respectively. Figure 6 shows an exam-
ple for each dependence type. Dependencies between regis-
ters are indicated with a solid edge. Dependencies between
memory locations use a dashed edge instead. Each edge has
two values associated with it (e.g.<2,1>). The first value is
calledδ and represents the latency between two instructions.
The second value is calledω and represents the iteration dis-
tance.



x← a + b

c← 2× x

(a) flow dependence
(read-after-write)

b← x + a

x← c× d

(b) anti dependence
(write-after-read)

x← a + b

x← c× d

(c) output dependence
(write-after-write)

(d) flow dependence
example

(e) anti dependence
example

(f) output dependence
example

Figure 6: Data Dependencies

Definition 3.1. Let DDG = G(V, E, δ, ω) be a cyclic
directed graph, where

• V is the set of vertices of the graph G. Each vertexv ∈ V

represents one instruction of the loop L.
• E is the set of dependence edges. Each edgeek(u,v) ∈ E

represents one dependence between the verticesu ∈ V

andv ∈ V . There may be more then one edgeek(u,v) ∈

E between the same two verticesu andv.
• δk(u,v) is the latency in processor cycles between the two

verticesu andv, and is associated to the corresponding
edgeek(u,v). The value ofδ depends on the architecture
and which instructionsu and v represent. It is a non-
negative number for RISC like architectures. Negative
numbers are possible for VLIW and EPIC architectures
[21].

• ωk(u,v) is the iteration distance between two verticesu

and v, and is associated with the corresponding edge
ek(u,v). This means thatv depends on a value from
u, which has been producedωk(u,v) iterations before.
Therefore,ω is a non-negative number, since we can’t
depend on values which will be produced in future itera-
tions.

The current DDG framework can calculate non-cyclic
DDGs for single- and multiple-BBs. Cyclic DDGs on the
other side can currently only be generated for single BBs.
The DDG, which is generated for software pipelining does
not have anti- and output-dependencies for registers, because
they can be removed by register renaming (see section 3.3
and 3.5). Since DDGs are an integral part of every compiler,
there was no need to reimplement it in the context of this
paper.

3.3 Minimum Initiation Interval

Modulo scheduling requires a fixed initiation interval (II),
for which it tries to find a valid schedule. The lower the II,
the shorter is the resulting runtime. The lower bound for the

II is called the minimum initiation interval (MII). Two fac-
tors determine the MII. One is the critical resource usage, the
other is the critical recurrence circuit in the DDG. They are
called resource MII (ResMII) and recurrence MII (RecMII),
respectively. The maximum of both yield a possible, but not
necessarily feasible, lower bound. Complex interactions be-
tween data dependencies and resource restrictions may pre-
vent a valid schedule at MII. Nevertheless, it is a good start-
ing point to find a schedule.

Definition 3.2. MII = max(ResMII, RecMII)

The ResMII is determined only by the critical resource
usage of the functional units. Dependencies between instruc-
tions are ignored during this calculation. RecMII calculation
on the other side assumes infinite resources.

Definition 3.3. RecMII = max
∀c∈C

⌈

delay(c)

distance(c)

⌉

, where

delay(c) is the sum of allδ’s anddistance(c) is the sum
of all ω’s in the elementary circuitc.

Anti- and output-dependencies have a negative effect on
RecMII, because they create elementary circuits in the DDG.
For every flow dependence between a producer and con-
sumer operation, there exists an anti-dependence between
the consumer and the producer operation. Moreover, every
operation (which produces a result) is output dependent onto
itself. This creates unnecessary dependence cycles in the
DDG and limits the execution rate of the loop. Register anti-
and output-dependencies can be eliminated by register re-
naming. In hardware this can be done with a rotating reg-
ister file [18]. If we do not have the hardware support, we
can simulate it with modulo variable expansion (MVE) (see
Section 3.5). Figure 7 shows a simplified example how these
false dependencies can hinder a more efficient schedule. Fig-
ure 7b shows all the dependencies for the given pseudo as-
sembly code in Figure 7a. Figure 7c shows the pruned DDG
without anti- and output-dependencies for registers. Figures
7d and 7e show the resulting schedule for each case. The
false dependencies create the recurrence circuits in the DDG,
which are clearly the limiting factor in this example. By re-
moving these dependencies, it is now possible for the mod-
ulo scheduler to overlap more instructions and therefore in-
crease instruction level parallelism (ILP). On the other hand
this might also increase register pressure. The RecMII cal-
culation in this compiler is based on Monica Lam’s method
[13], by finding first all the elementary circuits (also known
as strongly connected components (SCC)) in the DDG us-
ing Tarjan’s algorithm [24] and then solving the all-points
longest path problem for each SCC with Floyd’s algorithm
[8].

3.4 Modulo Scheduler

The modulo scheduler is the most important and also the
most compile time consuming part of the framework. In gen-
eral, a modulo scheduler tries to place the instructions of



TN100 :− op1 . . .
. . . :− op2 TN100

(a) Pseudo Assembly Code

(b) DDG (with all dependencies) (c) DDG (w/o
anti- and output-
dependencies)

(d) Schedule 1 (e) Schedule 2

Figure 7: Recurrence Example

one loop iteration, one at a time, into free issue slots, con-
sidering the dependence and resource constrains. In Figure
8a you can see one possible schedule for the reduction loop
example from Section 1. The corresponding modulo reser-
vation table (MRT) is shown in Figure 8b. Since the pro-
cessor is dual-issue capable, we have two issue slots dis-
played in the MRT. Ex represents the integer unit, MD the
integer multiply-divide unit and FP the floating-point unit.
The branch instruction of this architecture can not be dual-
issued and also can only have one instruction in the delay
slot. Therefore, the branch instruction occupies both issue
slots when it is issued and one issue slot in the cycle after.
The resulting kernel has 2 stages and is shown in Figure 8c.
The current modulo scheduler implementation is based on
Huff’s Lifetime-Sensitive Modulo Scheduler [10]. First we
calculate the earliest and latest possible starting time for ev-
ery instruction and the slack, which is just the difference of
the former two. Furthermore, we calculate which hardware
resources are in high demand. Then we start scheduling one
instruction at a time. A heuristic decides which instruction
needs to be scheduled next. This is done by assigning a prior-
ity to each instruction, which depends on the current slack of
the instruction and on the hardware resource requirements.
After an instruction has been chosen by the heuristic, we

(a) Modulo Schedule (b) Modulo Reservation Table

(c) Kernel

Figure 8: Modulo Scheduler

need to check if there are free resources in the modulo reser-
vation table, between the latest and earliest starting time. The
search direction, which decides if we want to place an in-
struction later or earlier is based on heuristics, which tries
to minimize register lifetime. More details about the heuris-
tic can be found in the paper [10]. If we can’t find free re-
sources, we just pick a time slot. Instructions, which already
have been scheduled and violate any dependence constrain,
will be unscheduled, including all it’s successors and pre-
decessors. If there are not enough free resources to sched-
ule the selected instruction, other instruction, which usethe
same resources or relevant resources, will be unscheduled
until we can place the new instruction. After an instruction
has been placed, we recalculate the earliest and latest start-
ing time and the slack, because the new placed instruction
might have affected the earliest and/or latest starting time of
other instructions. We repeat these steps until we were able
to schedule all instructions. This is not always possible for
a given II. Every instruction has a budget. Everytime an in-
struction is scheduled, the budget is decreased. If the budget
of one instruction is depleted, the modulo scheduler gives up
and tries another II. To reduce compilation time, the search
space for a schedule is first pruned by searching for a valid
schedule with exponential increasing steps for II. Then we
perform a binary search in this pruned search space.

3.5 Modulo Variable Expansion

The modulo scheduler scheduled the instructions on the
premise that we don’t have any anti- or output-dependencies
for registers. To guarantee this, we need to provide an unique



Temporary Name (TN)2 set for every iteration. We perform
register renaming according to [12, 13]. First we calculate
the lifetime of every TN. The longest lifetime determines
how often we have to unroll the kernel.

Definition 3.4. kunroll = max
∀lt∈LT

⌈

lt

II

⌉

, whereLT is the set

of lifetimes of the modulo scheduled loop L.

Then, the kernel is unrolledkunroll times and every loop
iteration becomes a new TN set assigned (see Figure 9).
TNs in bold indicate loop-invariants and are therefore not
renamed.

Figure 9: Modulo Variable Expansion Example

3.6 Register Allocation

After modulo variable expansion, the lifetime of every TN is
calculated. The register allocator, which is based on [18],is
provided with the start cycle, end cycle,ω value andα value
of every TN. The start cycle defines when the TN has been
defined by an instruction. The end cycle is determined by in-
structions which use the TN and theω value.ω defines the
iteration distance as described in Section 3.2.α defines if an
value is live-out of the loop. Theα value shows, as forω, at
which iteration the value has been produced. First, all loop
invariant TNs are register allocated, thus reducing the avail-
able register set. Then we allocate the loop-variant TNs. The
lifetimes are sorted by start and end cycle. Then an interfer-
ence matrix of the lifetimes is calculated. Every lifetime is
initialized with the remaining free register set. Lifetimes are
allocated by picking the first free register in the remaining
register set. Then the register is removed from all interfering
lifetime’s register set. This process is continued until all TNs
are register allocated (unless we run out of registers). Reg-
isters are chosen by the “First Fit” approach as described in
[18], but with the extension that caller-save registers areused
first, and only if necessary callee-save registers. This regis-
ter allocator is only applicable to software-pipelined kernels
and is independent of the code generator’s normal register
allocators, which are the local register allocator (LRA) and
the global register allocator (GRA).

Minor changes in LRA and GRA are needed to support
software pipelining. In particular, LRA and GRA must pre-
serve the register assignment made by the software pipeliner.
In the case of LRA, LRA is simply not run for the software-
pipelined basic blocks. For GRA, the problem is harder. In

2 TNs are the internal representation of the compiler for any type of operand
of an instruction

the past, a non-open-sourced version of software pipelin-
ing used regions to delimit basic blocks which are register-
allocated by the software pipeliner. GRA would allocate all
basic blocks except those in the region. ”Glue copies” are
inserted at region boundaries to reconcile register assign-
ment differences across the boundary. These copies are nor-
mal register copies that have partial register assignment.It
is up to GRA to make the copy redundant by allocating the
same register to both sides. Redundant copies are removed
afterwards by the extended block optimizer (EBO). If GRA
cannot allocate the same register to both sides, the glue copy
becomes a real copy.

In the current implementation, instead of using regions,
GRA is modified to handle partial register allocation made
by earlier phases such as software pipelining. In a partial
allocation, some but not all variables have assigned registers.
When GRA runs, it builds live-ranges for all global variables
as usual. In the coloring step, GRA detects those live-ranges
that have assigned registers and prioritizes them first, so that
when they are colored, GRA can always color them with
their assigned register. In addition, for local variables (those
spanning one basic block) with assigned registers, GRA
removes their registers from the allocation set for that basic
block, thus preserving the allocation to these local variables.
With these modification, GRA can handle partial allocations
with minimal changes to the GRA algorithm.

3.7 Code Generator

The code generator performs the final step in the software
pipelining framework. There are several ways how the final
code can be generated. A list of several code generation
schemas can be found here [19]. Our approach is based
on the paper mentioned with one additional optimization
for architectures without branch prediction. We explain our
approach on the example in Figure 10a. The figure shows
the control flow graph (CFG) of the several BBs, which need
to be generated. Prologues, kernel and epilogues are marked
with a P, K and E, respectively. Jump blocks are marked with
JB. Arrows show the control flow between the BBs. T or F
on the arrows indicates if the branch is taken (T) or if it is a
fall-through (F). The small number next to the BB indicates
the actual order of the BBs in the assembly file. Lets assume
we have a kernel with 3 stages and the kernel needs to be
unrolled 3 times for MVE. Furthermore, we calculate that
we need 2 prologue stages and 2 epilogue stages.

The first BB (P) contains copies for loop-invariant vari-
ables and falls-through to the BB (P0), which starts the first
loop iteration. If the loop has just one iteration, then we jump
to P0’s designated epilogue BB (E4). Otherwise we con-
tinue with P2. P2 starts the second loop iteration. P2 also
has its designated epilogue E3. The BBs K0, K1 and K2
represent the unrolled kernel. Each BB uses a different reg-
ister set. The targeted architecture uses static branch predic-
tion, which assumes that every branch is taken. That is the
reason why the branches between the kernel BBs are for-



(a) Control Flow Graph

(b) BB Content

Figure 10: Code Generation Schema

ward jumps instead of fall-throughs. Every kernel BB fol-
lows a jump block (except the last one). If the loop is fin-
ished, then the kernel BBs K0 and K1 fall-through to their
jump blocks, which just contain an unconditional branch to
the kernels designated epilogue BB. Every kernel BB needs
its own epilogue, because every kernel uses a different reg-
ister set. Instead of the jump blocks we could have inserted
the epilogues itself, but for cache performance reasons we
introduced the jump blocks.

Figure 10b shows the content of the BBs in more detail.
A, B and C represent the 3 different stages of the kernel. The
number indicates which register set is used.

4. Experiments
4.1 Testbed

We tested our framework on the SiCortex Multiprocessor
system [22]. We used a small development system, which
is not available on the market, but the SiCortex Multiproces-
sor, which is the integral part of the system, is the same. The
SiCortex Multiprocessor was designed by SiCortex from the
silicon up and is based on the MIPS 5KF IP core. Each chip
has six cores. The MIPS64 5KF Core’s register file is com-
prised of 32 64-bit integer registers, 32 64-bit floating-point
registers, and several special purpose and control registers.
The L1 Data - and L1 Instruction cache have been config-
ured for 32 KB each, with 4-way set associativity and 32
byte cache lines. Each core is directly connected to a 256
KB L2 unified shared cache segment - totaling to 1.5 MB L2
shared cache for the whole chip. The L2 cache is 2-way set
associative and has a line size of 64 byte. A central cache
switch keeps the L2 cache segments coherent and provides
access to the memory system, I/O system and the DMA en-
gine. The core is compatible with the MIPS ABI’s n32 and
n64 and the MIPS V ISA. The MIPS64 5K manual [17] de-
scribes the instruction set, conventions and ABI, which are
used in this paper. The timing of certain floating-point in-
structions differ from the one described in the manual, due
to enhancements of the floating-point unit by SiCortex. The
timing of the integer instructions has not changed. The MIPS
core is an in-order, limited dual-issue processor. It can simul-
taneously issue one integer instruction and one arithmetic
floating point instruction, where as any kind of memory op-
eration can be seen as an integer instruction, because mem-
ory operations are handled by the execution unit. The first
version of the chip was running at the 500 MHz. Later ver-
sions of the chip are running at 700MHz.

4.2 Results

The experimental results show that even though the frame-
work has a maximum improvement of 15% for the 32bit CG
benchmark, it does also have some performance degrada-
tion for other benchmarks. However, this degradation is not
significant. In general, the improvement from SWP depends
on how much time each program spends in loops, and what



Figure 11: SiCortex System-on-Chip Multiprocessor

Figure 12: NAS Parallel Benchmark

Figure 13: SPEC 2006

percentage of those loops can be software-pipelined. Even
among software-pipelined loops, small loops tend to exhibit
larger percentage improvement than large loops. Loops with
a small number of iteration are not screened out during run-
time and exhibit therefore the overhead of the prologue and
epilogue. There are three main reasons why the results for
the other benchmarks are not better.

First, some of the main loops in these applications have
calls to mathematical operations, such as logarithms, expo-
nentiation, etc, which are not inlined by the Inter-Procedural

Optimizer (IPO). This results in loops which have multiple
basic blocks for which the software pipeliner has no support.
Normally, such functions are intrinsics or macros in different
architectures and libraries. In these cases, the actual opera-
tion code is replaced by a short sequence of ISA instructions
or with the body of the operation itself (in the case of macros
or inline functions).

Second, some of the kernels in these applications have
a very high register usage which in turn increases register
pressure. Since register spilling has not been implemented
yet for the software pipeliner, this limits the number of loops
which can be successfully software-pipelined. Hence, many
optimizing opportunities are lost due to the high register
pressure being prevalent in the bigger kernels.

Third, the target architecture supports only one outstand-
ing L1 cache miss. All other following loads or stores must
hit in L1 cache, otherwise the processor will stall until the
data of the first cache miss has been transfered to L1 cache.
The current target description does not model this behav-
ior correctly, resulting in a non-optimal schedule with un-
expected stalls. Furthermore, prefetch instructions, which
should prevent or reduce L1 cache misses, are ignored by the
target architecture if there is already an outstanding L1 cache
miss. Due to this, wrong latencies and resource requirements
are passed on to the software pipeliner, preventing it from
generating a better schedule.

Even with these limitations, the current implementation
still delivers some marginal performance improvement with-
out degrading the overall performance picture. The maxi-
mum performance gain was seen to be 15 percent. On the
other hand, the maximum performance degradation was
seen to be 7 percent. The software pipeliner has reached
production-quality and will be released by SiCortex this
April.

5. Related Work
There are several scheduling techniques under the umbrella
of software pipelining. One of the best known and most re-
searched is modulo scheduling. Optimal methods [2, 6, 23]
have been researched and proposed, but their high com-
putational complexity, due to NP-completeness, prevents
their use in mainstream compilers. Nevertheless, they are
an important instrument to validate heuristic based modulo
scheduler. Well known heuristic methods are Iterative Mod-
ulo Scheduling (IMS) [20, 21], Slack Modulo Scheduling
(Slack) [10], Swing Modulo Scheduling (SMS) [14], Hyper-
node Reduction Modulo Scheduler (HRMS) [15], and others
[7, 23, 5, 12, 13]. A comparison of several heuristic based
modulo scheduling techniques can be found here [4].

Iterative Modulo Scheduling (IMS) schedules instruction
iteratively in order given by the priority function which con-
siders the height of the instruction in the DDG. If an in-
struction can’t be placed in the partial schedule, the algo-
rithm backtracks, unscheduled already placed instructions



and tries a different placement of the instructions. This ap-
proach does not try to shorten lifetimes and may produce
schedules with higher register pressure then other lifetime-
sensitive methods.

Slack Modulo Scheduling (Slack) schedules operation
also based on a priority function. The priority function con-
siders the slack of the instruction and if it using a critical
hardware resource. The slack is simply the difference of the
earliest and latest starting time of a given instruction, which
does change during the scheduling process. Furthermore it
uses additional heuristics and a bi-directional scheduling ap-
proach to shorten register-lifetime. If an instruction can’t be
placed in the partial schedule, then the conflicting instruc-
tions and its successors and predecessors are removed from
the schedule.

Swing Modulo scheduling (SMS) schedules a sorted
list of instructions without any backtracking, making this
method less computationally expensive. The instructions are
sorted depending on the recurrence circuit they belong to and
the RecMII which is associated with it. Additional heuristics
are applied to produce a schedule with low register pressure.

Hypernode Reduction Modulo Scheduling (HRMS) uses
a preordering phase which sorts the instructions before
scheduling. Elementary circuits are converted during this
process to hypernodes, starting with the circuit with the
largest RecMII. Nodes which are converted to hypernodes
are added to the scheduling list. After the preordering phase
the instructions are scheduled without backtracking.

6. Conclusion and Future Work
We have laid out the foundation of the software pipelining
framework and run it through our test harness to provide a
robust implementation. We hope other target architecturesof
the Open64 compiler will benefit from having the software
pipelining feature and we welcome any contributions from
the Open64 community to further enhance our open-sourced
SWP framework.

An important area of improvement is to increase the per-
centage of loops that can be software-pipelined. Many im-
portant loops could not be software-pipelined, because we
were running out of registers. We hope to achieve this by
adding register spilling to the software pipelining frame-
work.

An other importand problem we need to address is the
correct scheduling of cache misses. Currently, the Open64
compiler assumes that every load is a hit in L1 cache. We
need to identify already outside of the software pipelining
framework which loads are likely to miss and adjust their
load latency and resource requirements. In this way, not only
the modulo scheduler, but also the normal list scheduler
can take advantage of this information to generate a better
schedule. Only minor changes to the software pipelining
framework will be necessary in this case.

Further steps include the generation of a preconditioning
loop to filter out loops with small number of iterations,
to reduce the overhead of SWP for these loops. This also
enables new code generation schemas, which may reduce
the code size of the generated SWP schedule.

We also plan to implement other modulo scheduling tech-
niques and verify the results against an integer linear pro-
gramming based scheduler, as it has been done before for
the MIPSpro compiler [23].
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