
CPEG 421/621: Compiler Design: Optimization of Dense Matrix Multiplication
Handout: Project Part 1
Issue Date: 3 November, 2010
Due Date: 23 November, 2010

1 Problem

Matrix Multiplication algorithms have been studied extensively. The General Matrix Multi-
plication (GEMM) is the core of every linear algebra library (e.g. BLAS). Studies of Matrix
Multiplication (MM) focus mainly on: (1) Algorithms that decrease the naive complexity
of O(m3) (e.g. Strassen’s algorithm). (2) Implementations that take advantage of advanced
features of computer architectures to achieve higher performance. This project is oriented
towards the second area.

Our objective is to maximize the performance of the double precision dense matrix mul-
tiplication A×B = C, with each matrix of size m×m (square matrices) using algorithms of
running time O(m3) using the IBM Cyclops 64 (C64) many-core Architecture [1]. Operands
of MM are in on-chip memory (SRAM). The serial pseudo-code is shown on figure 1.

0: for i = 1 to m
1: for j = 1 to m
2: for k = 1 to m
3: C[i*m+j] += A[i*m+k]*B[k*m+j]

Figure 1: Serial MM pseudo-code

Throughout the design process proposed, specific features of C64 the will be used to
illustrate the advantages of a set of Compiler Optimizations.

2 Documents Required

This handout is also packed with the following documents:

1. Cyclops 64 Basic Instruction Set (sent by email).

2. Different Versions of code for Matrix multiplication on Cyclops 64. (sent by email).

3. Links to references to be downloaded from our repository. (at the end of the handout).

1



3 Procedure

3.1 Compiler, Simulator and Chip

• You need access to the CAPSL server atlantic.capsl.udel.edu. Contact the TA if you
need assistance.

• Add /opt/eti-c64/local/bin to your PATH variable in order to compile and simulate
programs for C64.

• The C64 compiler follows the same syntax of gcc. For example to compile a program
hello.c just use:

cyclops64-linux-elf-gcc -O3 hello.c -o hello.out

• The C64 simulator has several flags. For simulating the hello.out program you can
use:

cyclops64-linux-elf-sim –spsd –bw –icache -p80 ./hello.out

Where –spsd means single program single data, –bw includes the crossbar contention
of the chip, –icache models the instruction cache and -p80 uses 80 Processors. Notice
that a C64 chip has 80 Processors and each processor has two thread units.

Note 1: The flags –bw –icache increase the simulation time, you can avoid them for
debugging purposes but NOT for reporting results. Timing results of the simulator
with the flags –bw and –icache are near to timing on the real chip but highly optimized
code can produce very optimistic timing results on the simulator.

Note 2: If you need to make simulations for a different number of thread units, DO
NOT change the flag -p80 because it will change the memory and crossbar mapping
and produce different timing. You can include the number of threads/processors as
an input of your program.

Note 3: For additional flags you can use –help

• To run programs on the real chip you will have the help of people of ET International.
Ask the instructor about the procedure.

3.2 Simple Exercise

A partially optimized code for MM on C64 will be provided, you will simulate this code for
being familiar with the C64 tool chain and the MM.

1. You will receive different codes for MM, some of them have compiler optimizations.
Put the folders with different codes on the capsl server atlantic.capsl.udel.edu. We will
start with the folder mmPartition3. It contains 3 files mm.c, Makefile and Readme.txt

2. Read the Readme.txt file, it includes a short description of the program, how to
compile it using the Makefile and how to run it.

2



3. Open the Makefile and verify that you will use the CPPFLAGS -DMEASURE, -
DDEBUG, -DCOMPARE, -DNOSIMPLIFY.

4. Compile the program typing on your command line

make

5. Run the simulation typing

make sim

The program will print debug information like the partitions, and the ID of threads
finished. At the end, the resultant matrix C is printed with useful information like:

Total: seq = 838.610355, par = 838.610355 Elapsed cycles: 311576. # Mega Floating
Point Operations: 6.525. MFLOPS: 10.471.

Notice that the correctness of the algorithm is checked by checksum of sequential and
parallel computations, they have to be equal.

6. Edit the makefile for use only the -DMEASURE flag. Clean the folder files using the
command

make clean

Simulate again using

make sim

Now you are measuring the real performance of the MM.

7. Now you will simulate a MM of 300x300 using 144 thread units. You can edit the
makefile or type

cyclops64-linux-elf-sim –spsd –bw –icache -p80 mm -p144 -n300

8. What is the maximum speed up and performance of this naive version?

9. Make a graph of performance vs number of threads (e.g. 1, 4, 9, ... , 144) for
different matrix sizes (e.g. 50, 100, 300) and comment your results. Is the performance
dependent of matrix size? if so, why?

10. Explain how can you make an optimal partition for using all the thread units available
on C64.

Hint: C64 has 160 threads units but 1 is used for the runtime and 3 are used for
communication with other chips. The maximum number of available threads is 156.

3.3 Optimized Dense Matrix Multiplication

The optimization of MM involves several stages. The instructor will provide several codes
that incrementally apply different Compiler Optimizations that you have to study, also you
have to implement some of them. The characteristics of the codes are:

3



• It works with square matrices of arbitrary size. If on-chip memory is full, the matrices
are allocated in off-chip memory and the performance will decrease.

• It is optimized for an square number of threads (1, 4, 9, ... , 144).

• It uses an optimum statical partition for load balancing.

• It uses assembly code for increasing performance.

• The performance is measured using:

Performance[MFLOPS] = 500[MHz]∗(2m3−m2)[FloatingPointOperations]
∆t[cycles]

Your goal is to increase as much as possible the performance of the MM with the char-
acteristics given in section 1. You will study the incremental performance of the following
compiler optimizations using the simulator and the real C64 chip. Follow these steps:

1. Assembly Implementation: Look the folder mmNoTiling. This MM version has
a naive assembly implementation of the function ProcessBlock. Read the code and
identify the three nested loops.

(a) What is the function of the code at the beginning and the end of the function
saving and loading the registers? Why is it necessary?

(b) Make a graph of performance vs number of threads (e.g. 1, 4, 9, ... , 144) for
different matrix sizes (e.g. 50, 100, 300) and comment your results. Compare
with the C version.

2. Register Tiling and Register Allocation: Look the folder mmTiling3. It includes
a MM that uses an optimum register tiling following [2]. This Tiling minimize the
number of memory operations maximizing the reuse of data. It will decrease the
access to on-chip memory and the stalls produced by memory latencies.

(a) Identify the points in the assembly that calculate the tiles. Write a pseudo-code
that describes the control flow of the function ProcessBlock.

(b) For C64, the optimum tile size on C is 6 × 6 without any spilling or use of
scratchpad memory. Discuss the pros and cons of using spilling for increasing
the performance of this version of MM.

(c) Suppose the number of register available for C64 is decreased so the maximum
tile size is 4× 4. Modify the code for using this a maximum tile size.

(d) Make a graph of performance vs number of threads (e.g. 1, 4, 9, ... , 144) for
different matrix sizes (e.g. 50, 100, 300) using the two tilings and comment your
results. Compare with previous versions.

3. Instruction Selection: One of the most important cases is the use of special assem-
bly functions for Load and Store. C64 provides the instructions multiple load (ldm
RT, RA, RB) and multiple store (stm RT, RA, RB) that combine several memory

4



operations into only one instruction. For the ldm instruction, starting from an ad-
dress in memory contained in RA, consecutive 64-bit values in memory are loaded
into consecutive registers, starting from RT through and including RB. Similarly,
stm instruction stores 64-bit values in memory consecutively from RT through and
including RB starting in the memory address contained in RA. The advantage in the
use of these instructions is that the normal load instruction issues one data transfer
request per element while the special one issues one request each 64-byte boundary. A
tiling that uses consecutive data in memory can improve the performance with these
kind of instructions [2].

Other examples are use of shifting instead of multiplications and divisions by powers
of 2 and the replacement of integer division and remainder operations by other integer
operations if it is possible.

(a) Modify the mmTiling3 code for a better instruction selection using the 6 × 6
tiling.

(b) Make a graph of performance vs number of threads (e.g. 1, 4, 9, ... , 144) for
different matrix sizes (e.g. 50, 100, 300) using that version and comment your
results. Compare with previous versions.

4. Instruction Scheduling: The correct interleaving of independent instructions to
alleviate stalls. Data dependencies can stall the execution of the current instruction
waiting for the result of one issued previously. We want to hide or amortize the
cost of critical instructions that increase the total computation time executing other
instructions that do not share variables or resources. The most common example
involves interleaving memory instructions with data instructions but there are other
cases: multiple integer operations can be executed while one floating point operation
like multiplication is computed [2].

(a) Modify the previous version of the code for a better instruction scheduling.

(b) Make a graph of performance vs number of threads (e.g. 1, 4, 9, ... , 144) for
different matrix sizes (e.g. 50, 100, 300) using that version and comment your
results. Compare with previous versions.

5. Data Prefetching and Loop Unrolling: The Instruction Scheduling may hide only
partially the latencies of fetching the operands from on-chip memory to registers. To
eliminate stalls due to latency, prefetching operands into registers using loop unrolling
in the calculation of the tile can improve significantly the performance. It also implies
new register allocation given the increase of register pressure. Be aware of the trade
offs between the data prefetching and the register tiling, you may need to change the
tile in order to take advantage of these techniques [3].

(a) Modify the previous version of the code for making Data Prefetching Unrolling
once the loop that calculates the tile.

5



(b) Make a graph of performance vs number of threads (e.g. 1, 4, 9, ... , 144) for
different matrix sizes (e.g. 50, 100, 300) using that version and comment your
results. Compare with previous versions.

Useful information about MM on C64 can be found in [4, 2, 3]

3.4 What to hand in

• A report with all the experiences, answer of questions, design choices and analysis
made for each incremental optimization with graphs of Performance vs Number of
Thread Units for different matrix sizes for each case.

• The programs designed with their corresponding makefile.

Team Work and Project Management

You need to establish a team methodology as in a real world design project. It is mandatory
that you elect a project team leader whose function, among other things, is to call the design
meetings. In your first project review meeting, you should partition the work so each team
member should have a clear responsibility and a fair portion of the workload. You should
also have a plan for weekly design review meetings (expected 4-5 times in total).

Ethics for Team Work

Although discussion of the project in general terms is to be expected, members of different
groups should not exchange source code or project implementation details. Also, it is
expected that the contributions of each member of group will be clearly detailed, so care
should be taken to make sure that each person contributes a fair amount. Therefore, your
team strategy should be geared to prevent bottlenecks where group progress is entirely
dependent on one person. A well-considered strategy and a clearly defined interface may
mitigate such difficulties.

References

[1] M. Denneau and H. S. Warren Jr., “64-bit Cyclops: Principles of Operation,” IBM
Watson Research Center, Yorktown Heights, NY, Tech. Rep., April 2005.

[2] E. Garcia, I. E. Venetis, R. Khan, and G. Gao, “Optimized Dense Matrix Multiplication
on a Many-Core Architecture,” in Proceedings of the Sixteenth International Conference
on Parallel Computing (Euro-Par 2010), Part II, ser. Lecture Notes in Computer
Science, vol. 6272. Ischia, Italy: Springer, 2010, pp. 316–327. [Online]. Available:
http://www.capsl.udel.edu/pub/doc/papers/ElkinGarcia-EuroPar2010.pdf

6

http://www.capsl.udel.edu/pub/doc/papers/ElkinGarcia-EuroPar2010.pdf


[3] E. Garcia, R. Khan, K. Livingston, I. E. Venetis, and G. Gao, “Dynamic percolation -
mapping dense matrix multiplication on a many-core architecture,” CAPSL Technical
Memo 98, June 2010. [Online]. Available: ftp://ftp.capsl.udel.edu/pub/doc/memos/
memo098.pdf

[4] Z. Hu, J. del Cuvillo, W. Zhu, and G. R. Gao, “Optimization of Dense Matrix
Multiplication on IBM Cyclops-64: Challenges and Experiences,” in 12th International
European Conference on Parallel Processing (Euro-Par 2006), Dresden, Germany, Aug.
2006, pp. 134–144. [Online]. Available: http://www.capsl.udel.edu/pub/doc/papers/
EuroPar-2006.pdf

7

ftp://ftp.capsl.udel.edu/pub/doc/memos/memo098.pdf
ftp://ftp.capsl.udel.edu/pub/doc/memos/memo098.pdf
http://www.capsl.udel.edu/pub/doc/papers/EuroPar-2006.pdf
http://www.capsl.udel.edu/pub/doc/papers/EuroPar-2006.pdf

	Problem
	Documents Required
	Procedure
	Compiler, Simulator and Chip
	Simple Exercise
	Optimized Dense Matrix Multiplication
	What to hand in


