Compiler Techniques for Optimizing Dense Matrix Multiplication on a Many-Core Architecture

Elkin Garcia¹ Ioannis E. Venetis² Rishi Khan³ Kelly Livingston¹ Guang R. Gao¹

> Computer Architecture and Parallel Systems Laboratory Department of Electrical and Computer Engineering University of Delaware, Newark 19716, U.S.A. {egarcia,ggao}@capsl.udel.edu

Department of Computer Engineering and Informatics University of Patras, Rion 26500, Greece venetis@ceid.upatras.gr

ET International, Newark 19711, U.S.A. rishi@etinternational.com

November 3rd, 2010

э

・ ロ ト ・ 雪 ト ・ 目 ト ・

Introduction	
000	
0	

Background O Proposed Matrix Multiplication Algorithm

Experimental Evaluatio

・ ロ ト ・ 雪 ト ・ 目 ト ・

Conclusions

Introduction Motivation Objectives

Background IBM Cyclops-64 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm

Work Distribution Compiler Optimizations

Experimental Evaluation

Results

Conclusions

duction	Backgro
0	0
	0

Intro

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

Introduction Motivation Objectives

Background

IBM Cyclops-64 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm

Work Distribution Compiler Optimizations

Experimental Evaluation Results

Conclusions

roduction	Ba
00	0
	U

Experimental Evaluation

・ロット (雪) (日) (日)

Traditional Parallel Programming Methodologies

Goal: Improve performance.

Assumptions: Cache based parallel systems. Strategies: Cache tiling techniques exploit temporal locality.

- Tile size selection and padding.
- Data location and replacement in the cache is controlled by HW making fine control of these parameters difficult.
- Power consumption and chip die area constraints make increasing on-chip cache an untenable solution to the memory wall problem.

・ロト ・ 四ト ・ ヨト ・ ヨト

Traditional Parallel Programming Methodologies

Goal: Improve performance.

Assumptions: Cache based parallel systems. Strategies: Cache tiling techniques exploit temporal locality.

- Tile size selection and padding.
- Data location and replacement in the cache is controlled by HW making fine control of these parameters difficult.
- Power consumption and chip die area constraints make increasing on-chip cache an untenable solution to the memory wall problem.

ction	1

Introduc 000 ackground

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

New many-core-on-a-chip Systems

- Software managed memory hierarchy.
 - The programmer has the control of data movement.
 - Save die area of hardware cache controllers and over-sized caches.
 - More flexibility and opportunities to improve performance.
 - The programming at this moment is more complicated.
- Example: IBM Cyclops-64 (C64).

New methodologies for classical algorithmic problems are needed

tion	E

Introduc 000 ackground

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

・ ロ ト ・ 雪 ト ・ 目 ト ・

Conclusions

New many-core-on-a-chip Systems

- Software managed memory hierarchy.
 - The programmer has the control of data movement.
 - Save die area of hardware cache controllers and over-sized caches.
 - More flexibility and opportunities to improve performance.
 - The programming at this moment is more complicated.
- Example: IBM Cyclops-64 (C64).

New methodologies for classical algorithmic problems are needed

uction	Backgrou
	0
	0

Introd

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

What has been done?

Many well-known algorithms has been ported and optimized for many-core architectures applying and adapting strategies of cache-based parallel systems.

- Matrix Multiplication, LU Decomposition, FFT, etc.
- The optimizations for improving performance on cache-based parallel system are not necessarily feasible or convenient on software managed memory hierarchy systems.
- Memory access patterns reached by appropriate tiling substantially increase the performance of applications.

Backgrou
0
0

Introdu

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Conclusions

What has been done?

Many well-known algorithms has been ported and optimized for many-core architectures applying and adapting strategies of cache-based parallel systems.

- Matrix Multiplication, LU Decomposition, FFT, etc.
- The optimizations for improving performance on cache-based parallel system are not necessarily feasible or convenient on software managed memory hierarchy systems.
- Memory access patterns reached by appropriate tiling substantially increase the performance of applications.

duction	Backgr
)	0
	0

Introd

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Conclusions

Objectives

Propose a general methodology that provides a mapping of applications to software managed memory hierarchies. 3 strategies for increasing performance:

- 1. Balanced distribution of work among threads.
- 2. Optimal register file use. Study of Compiler Optimizations.

We used MM on C64 as a case of study because:

- It is simple: A basic MM is described by 3 for loops.
- It is memory and computational intensive: The basic MM is $O(m^3)$.

oduction	Background
0	0
	0

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

Introduction Motivation Objectives

Background IBM Cyclops-64 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm

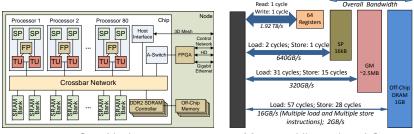
Work Distribution Compiler Optimizations

Experimental Evaluation Results

Conclusions

Introduction	Background	Proposed Matrix Multiplication Algorithm	Experimental Evaluation
000	•	00 000000000	00

The IBM Cyclops-64 Architecture



Memory Hierarchy of C64.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Latency

- The complete C64 system is built out of tens of thousands of C64 processing nodes arranged in a 3-D mesh topology.
- Each processing node consists of a C64 chip, external DRAM, and a small amount of external interface logic.
- Execution on a C64 chip is non-preemptive and there is no hardware virtual memory manager.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Classical Matrix Multiplication Algorithms

- Decrease the naïve complexity of $O(m^3)$: No architecture dependent (at all)
 - Strassen's algorithm: $O(m^{log7})$.
 - Coppersmith–Winograd algorithm: $O(m^{2.376})$.
- Efficient implementations: Architecture dependent.
 - Blocking Algorithms.
 - Explore the Architecture design space.
 - Example: Cannon's Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in detail.

・ロット (雪) (日) (日)

Classical Matrix Multiplication Algorithms

- Decrease the naïve complexity of $O(m^3)$: No architecture dependent (at all)
 - Strassen's algorithm: $O(m^{log7})$.
 - Coppersmith–Winograd algorithm: $O(m^{2.376})$.
- Efficient implementations: Architecture dependent.
 - Blocking Algorithms.
 - Explore the Architecture design space.
 - Example: Cannon's Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in detail.

uction	Backg
	0
	0

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

Introduction Motivation Objectives

Background

IBM Cyclops-64 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm

Work Distribution Compiler Optimizations

Experimental Evaluation Results

Conclusions

roduction	Backgrou
00	0
	0

Dense Matrix Multiplication

- $A \times B = C$ each of size $m \times m$ using algorithms of running time $O(m^3)$ using P Processors.
- Related sources that cause poor performance in many-core architectures:
 - 1. Inefficient or unnecessary synchronizations.
 - 2. Unbalanced work between threads.
 - Latency due to accessing slower memory levels or other kind of instructions.
 - 4. Stalls due to arbitration of shared resources.
- There is a trade-off between synchronization and work-balanced.

イロト 不良 とくほ とくほう 二日

rour

Experimental Evaluation

・ロット (雪) ・ (日) ・ (日)

Conclusions

Work Distribution

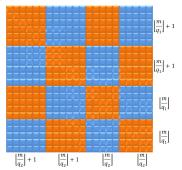
- For MM, each element $c_{i,j} \in C$ can be calculated independently.
 - Synchronizations are not needed.
- Optimal partition. Blocks size: $\frac{m^2}{P}$.
- Constrains:
 - Number of elements in each block has to be integer.
 - Blocks are rectangular.

Introduction	Background
000	0
0	0

Experimental Evaluation

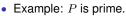
Conclusions

Optimal Work Distribution



Matrix C divided in P blocks C'. $q_1 \cdot q_2 = P$

- Minimize the difference between:
 - Maximum tile size $\left\lceil \frac{m}{q_1} \right\rceil \cdot \left\lceil \frac{m}{q_2} \right\rceil$ AND Optimal tile size $\frac{m^2}{P}$.
 - Optimum is reached when $q_1 = q_2 = \sqrt{P}$.
- In practice, we can turn off some processors if the maximum tile size can be decreased.



troduction	Backgrou
00	0
	0

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

High Cost Memory Operations

- High bandwidth of on-chip memory in many-core architectures is not enough.
- Programmer can take advantage of the new opportunities provided by software-managed memory hierarchies.
- Goal: Minimize the number of memory operations (*LD* and *ST*) between a bigger but slower memory level (SRAM) and a faster but smaller one (Registers).
- That may are function of:
 - The problem (Λ) .
 - The number of processors (*P*).
 - The tile parameters (*L*).
 - The sequence of traversing tiles (S).
 - The size of the faster memory R_{max}

uction	Backgr
	0
	0

Experimental Evaluation

イロト 不得 トイヨト イヨト

Conclusions

Optimization Problem Formulation

$$\begin{split} \min_{L,S} & LD\left(\Lambda,P,L,S\right) + ST\left(\Lambda,P,L,S\right) \\ s.t. & R\left(\Lambda,P,L,S\right) \leq R_{\max} \end{split}$$

- $\Lambda = MM$.
- $1 \le P \le P_{max}$
- $L = \{L_1, L_2\}.$
- $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

ъ

uction	Backgr
	0
	0

Experimental Evaluation

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusions

Optimization Problem Formulation

$$\begin{split} \min_{L,S} & LD\left(\Lambda,P,L,S\right) + ST\left(\Lambda,P,L,S\right) \\ s.t. & R\left(\Lambda,P,L,S\right) \leq R_{\max} \end{split}$$

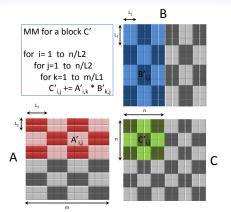
- $\Lambda = MM$.
- $1 \leq P \leq P_{max}$.
- $L = \{L_1, L_2\}.$
- $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

Introduction	Background
000	0

Experimental Evaluation

イロト 不得 トイヨト イヨト

Conclusions



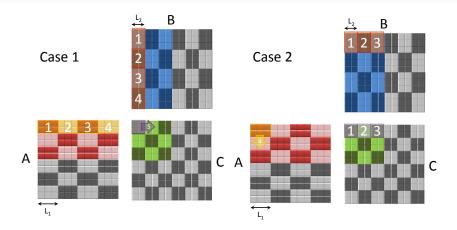
- Matrices A, B and C are partitioned in blocks A', B' and C' of sizes $n \times m$, $m \times n$ and $n \times n$.
- A', B' and C' are divided in tiles $A'_{i,j}$, $B'_{i,j}$ and $C'_{i,j}$ of sizes $L_2 \times L_1$, $L_1 \times L_2$ and $L_2 \times L_2$.

Introduction	Background
000	0

Experimental Evaluation

(a)

Conclusions



6 possible schemes of traversing tiles that produce 2 sequences.

- Case 1: Reuse tile $C'_{i,j}$.
- Case 2: Reuse tile $A'_{i,j}$ (or $B'_{i,j}$).

duction	Backgrou
0	0
	0

Experimental Evaluation

・ロット (雪) (日) (日)

Optimization Problem for MM

$$\min_{\substack{L \in \{L_1, L_2\}, \\ S \in \{S_1, S_2\}}} \quad f(m, P, L, S) = \begin{cases} \frac{2}{L_2}m^3 + m^2 & \text{if } S = S_1 \\ \left(\frac{2}{L_1} + \frac{1}{L_2}\right)m^3 + \left(\sqrt{P} - 1\right)m^2 & \text{if } S = S_2 \end{cases}$$

s.t. $2L_1L_2 + L_2^2 \le R_{\max}$

Analytical solution if $P \ge 4$ using KKT multipliers. Solution was found by branch and bound (1 iter.): $L_1 = 1, L_2 = \lfloor \sqrt{1 + R_{\text{max}}} - 1 \rfloor$

duction	Backgrou
0	0
	0

Experimental Evaluation

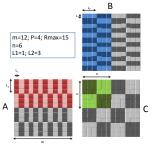
Conclusions

Optimization Problem for MM

$$\min_{\substack{L \in \{L_1, L_2\}, \\ S \in \{S_1, S_2\}}} f(m, P, L, S) = \begin{cases} \frac{2}{L_2}m^3 + m^2 & \text{if } S = S_1 \\ \left(\frac{2}{L_1} + \frac{1}{L_2}\right)m^3 + \left(\sqrt{P} - 1\right)m^2 & \text{if } S = S_2 \end{cases}$$
s.t. $2L_1L_2 + L_2^2 \le R_{\max}$

Analytical solution if $P \ge 4$ using KKT multipliers. Solution was found by branch and bound (1 iter.):

 $L_1 = 1, \ L_2 = \left\lfloor \sqrt{1 + R_{\max}} - 1 \right\rfloor$



ction	Backgro
	0
	0

Experimental Evaluation

・ロット (雪) ・ (日) ・ (日)

Conclusions

Real example: Cyclops-64

- Number of registers: 63
- Other Register used: 6
- $R_{max} = 57$
- $L_1 = 1$ and $L_2 = 6$
- Other tiling strategies that fully utilizes the registers:
 - Inner Product: $L_1 = 28$ and $L_2 = 1$
 - Square Tiling: $L_1 = 4$ and $L_2 = 4$

Table: Number of memory operation for different tiling strategies

iction	Backgro
	0
	0

Experimental Evaluation

・ロット (雪) ・ (日) ・ (日)

Conclusions

Real example: Cyclops-64

- Number of registers: 63
- Other Register used: 6
- $R_{max} = 57$
- $L_1 = 1$ and $L_2 = 6$
- Other tiling strategies that fully utilizes the registers:
 - Inner Product: $L_1 = 28$ and $L_2 = 1$
 - Square Tiling: $L_1 = 4$ and $L_2 = 4$

Table: Number of memory operation for different tiling strategies

ction	Backgro
	0
	0

Experimental Evaluation

・ロット (雪) ・ (日) ・ (日)

Conclusions

Real example: Cyclops-64

- Number of registers: 63
- Other Register used: 6
- $R_{max} = 57$
- $L_1 = 1$ and $L_2 = 6$
- Other tiling strategies that fully utilizes the registers:
 - Inner Product: $L_1 = 28$ and $L_2 = 1$
 - Square Tiling: $L_1 = 4$ and $L_2 = 4$

Table: Number of memory operation for different tiling strategies

Memory Operations	Inner Product	Square	Optimal
Loads	$2m^3$	$\frac{1}{2}m^{3}$	$\frac{1}{3}m^{3}$
Stores	m^2	m^{2}	m^2

・ロット (雪) (日) (日)

Keep in mind for a Register Tiling Design

- 1. Goal: Maximize Reuse of data in registers (Diminish Memory Operations)
- 2. Register Allocation.
 - Spilling.
 - Scratchpad Memory.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Instruction Selection and Instruction Scheduling

Multiple Load (Idm) and Multiple Store (stm)

- Normal load instruction issues one data transfer request per element while the special one issues one request each 64-byte boundary.
- Useful for load tiles of A (6x1) and B (1x6) with A in column-major order and B in row-major order.

Instruction Scheduling

- Interleaving of independent instruction to alleviate stalls.
 - Memory Operations.
 - Data Operations.
 - Floating point Operations.
 - Integer Operations.

・ロット (雪) ・ (日) ・ (日)

Diminish/Hide Latencies of Instructions

- Data dependencies imposes partial ordering on execution.
- Instruction Scheduling hides or diminishes the cost of stalls produces by large latencies. (e.g. ldm, divs, rems, mull).
 - It could require Register Reallocation.
- Data Prefetching and Loop Unrolling.
 - Partial hiding of latencies will still hurt the performance. We cannot reach peak performance if we don't hide ALL latencies.
 - It definitely requires Retiling, Reallocation, Rescheduling.

uction	В
	C

ackground

Proposed Matrix Multiplication Algorithm

Experimental Evaluation

Conclusions

Data Prefetching and Loop Unrolling

· Guarantee total hiding of latencies.

C tile calculation of size $L_1 \times L_2$ without loop unrolling

 ${\it C}$ tile calculation of size ${\it L}_1\,\times\,{\it L}_2$ with loop unrolling

イロト 不良 とくほ とくほう 二日

The price is to increase the register pressure.

luction	Backgi
2	0
	0

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

Introduction Motivation Objectives

Background

IBM Cyclops-64 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm

Work Distribution Compiler Optimizations

Experimental Evaluation Results

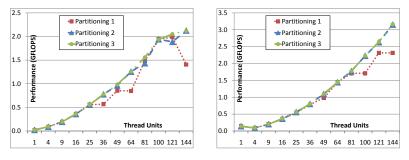
Conclusions

luction	Backgrou
	0
	0

Experimental Evaluation

Conclusions

Partitioning



Matrix Size 100×100

Matrix Size 488×488

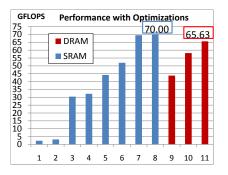
・ロット (雪) (日) (日)

- Partition1: Tile size is around the optimum $\left\lfloor \frac{m}{q_1} \right\rfloor \cdot \left\lfloor \frac{m}{q_2} \right\rfloor$ but it does NOT minimize the maximum tile size.
- Partition2: Minimize the maximum tile size but it does NOT distribute sizes uniformly.
- Partition3: Optimum partitioning and distribution.

uction	Backgi
	0
	0

Proposed Matrix Multiplication Algorithm OO OOOOOOOOOO

Impact of each optimization on the performance



 $m_{SRAM} = 488, m_{DRAM} = 5280$

- 1. Base Parallel Version.
- 2. +Optimized partitioning.
- 3. +Reg. Tiling (Manual).
- 4. +Multiple load/store inst. (Man.).
- 5. +Instruction Sched.(Man.).
- 6. +Dynamic Scheduling (Man.).
- 7. +Data Prefetching (Man.).
- 8. +Instruction Prefetching (Man.).
- 9. +Operands on DRAM.
- 10. +Dynamic Percolation (Man.)
- 11. +Optimized MemCpy and MemCpyTranspose (Man.)

・ロット (雪) (日) (日)

Power consumption: $66W \rightarrow 993$ MFLOPS/W

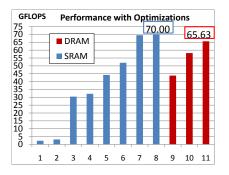
Green500list: Most energy-efficient supercomputers in the world

- Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov'09).
- Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun'10).

uction	Backgi
	0
	0

Proposed Matrix Multiplication Algorithm OO OOOOOOOOOO

Impact of each optimization on the performance



 $m_{SRAM} = 488, m_{DRAM} = 5280$

- 1. Base Parallel Version.
- 2. +Optimized partitioning.
- 3. +Reg. Tiling (Manual).
- 4. +Multiple load/store inst. (Man.).
- 5. +Instruction Sched.(Man.).
- 6. +Dynamic Scheduling (Man.).
- 7. +Data Prefetching (Man.).
- 8. +Instruction Prefetching (Man.).
- 9. +Operands on DRAM.
- 10. +Dynamic Percolation (Man.)
- 11. +Optimized MemCpy and MemCpyTranspose (Man.)

・ロット (雪) (日) (日)

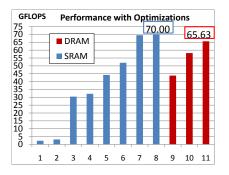
Power consumption: $66W \rightarrow 993 \text{ MFLOPS/W}$

Green500list: Most energy-efficient supercomputers in the world

- Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov'09).
- Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun'10).

uction	Backg
	0
	0

Impact of each optimization on the performance



 $m_{SRAM} = 488, m_{DRAM} = 5280$

- 1. Base Parallel Version.
- 2. +Optimized partitioning.
- 3. +Reg. Tiling (Manual).
- 4. +Multiple load/store inst. (Man.).
- 5. +Instruction Sched.(Man.).
- 6. +Dynamic Scheduling (Man.).
- 7. +Data Prefetching (Man.).
- 8. +Instruction Prefetching (Man.).
- 9. +Operands on DRAM.
- 10. +Dynamic Percolation (Man.)
- 11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption: $66W \rightarrow 993 \text{ MFLOPS/W}$

Green500list: Most energy-efficient supercomputers in the world

- Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov'09).
- Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun'10).

duction	Backgro
)	0
	0

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

Introduction Motivation Objectives

Background

IBM Cyclops-64 Classical MM Algorithms

Proposed Matrix Multiplication Algorithm

Work Distribution Compiler Optimizations

Experimental Evaluation Results

Conclusions

oduction	Backgrou
00	0
	0

Experimental Evaluation

・ロト ・雪 ト ・ ヨ ト

Conclusions

Conclusions

- Software-managed memory hierarchies provide more flexibility and opportunities for increasing performance that have not been explored at all.
- Compiler Optimizations at register level are essential for increasing performance. Most of them are highly correlated.
- Compiler optimizations applied provide evidence of the power efficiency of C64: power consumption measurements show a maximum efficiency of 993 MFLOPS/W for the problem under consideration.
- Dynamic strategies deserve more attention. This case of study has inspired promising techniques such as the **codelet model**.

ntroduction	Backgrou
000	0

Experimental Evaluation

・ロット (雪) (日) (日)

Conclusions

Future work

- Apply this methodology to other linear algebra algorithmic problems like matrix inversion and linear solver (Linpack). Expand to multiple chips.
- How can we apply these optimizations for increasing energy efficiency? Does maximum performance imply maximum energy efficiency?

Introduction	Background	Proposed Matrix Multiplication Algorithm	Experimental Evaluation	Conclusions
000	0	00 000000000	00	

Thank you

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ