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Traditional Parallel Programming Methodologies

Goal: Improve performance.
Assumptions: Cache based parallel systems.
Strategies: Cache tiling techniques exploit temporal locality.

• Tile size selection and padding.

• Data location and replacement in the cache is controlled by HW
making fine control of these parameters difficult.

• Power consumption and chip die area constraints make increasing
on-chip cache an untenable solution to the memory wall problem.
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New many-core-on-a-chip Systems

• Software managed memory hierarchy.
• The programmer has the control of data movement.
• Save die area of hardware cache controllers and over-sized caches.
• More flexibility and opportunities to improve performance.
• The programming at this moment is more complicated.

• Example: IBM Cyclops-64 (C64).

New methodologies for classical algorithmic problems are needed
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What has been done?

Many well-known algorithms has been ported and optimized for
many-core architectures applying and adapting strategies of
cache-based parallel systems.

• Matrix Multiplication, LU Decomposition, FFT, etc.

• The optimizations for improving performance on cache-based
parallel system are not necessarily feasible or convenient on
software managed memory hierarchy systems.

• Memory access patterns reached by appropriate tiling substantially
increase the performance of applications.
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Objectives

Propose a general methodology that provides a mapping of applications
to software managed memory hierarchies. 3 strategies for increasing
performance:

1. Balanced distribution of work among threads.
2. Optimal register file use. Study of Compiler Optimizations.

We used MM on C64 as a case of study because:

• It is simple: A basic MM is described by 3 for loops.
• It is memory and computational intensive: The basic MM is O(m3).
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The IBM Cyclops-64 Architecture
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C64-Node Memory Hierarchy of C64.

• The complete C64 system is built out of tens of thousands of C64
processing nodes arranged in a 3-D mesh topology.

• Each processing node consists of a C64 chip, external DRAM, and
a small amount of external interface logic.

• Execution on a C64 chip is non-preemptive and there is no
hardware virtual memory manager.
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Classical Matrix Multiplication Algorithms

• Decrease the naı̈ve complexity of O(m3): No architecture
dependent (at all)

• Strassen’s algorithm: O(mlog7).
• Coppersmith–Winograd algorithm: O(m2.376).

• Efficient implementations: Architecture dependent.
• Blocking Algorithms.
• Explore the Architecture design space.
• Example: Cannon’s Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in
detail.
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Dense Matrix Multiplication

• A×B = C each of size m×m using algorithms of running time
O(m3) using P Processors.

• Related sources that cause poor performance in many-core
architectures:

1. Inefficient or unnecessary synchronizations.
2. Unbalanced work between threads.
3. Latency due to accessing slower memory levels or other kind of

instructions.
4. Stalls due to arbitration of shared resources.

• There is a trade-off between synchronization and work-balanced.
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Work Distribution

• For MM, each element ci,j ∈ C can be calculated independently.
• Synchronizations are not needed.

• Optimal partition.
Blocks size: m2

P .
• Constrains:

• Number of elements in each block has to be integer.
• Blocks are rectangular.
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Optimal Work Distribution

Matrix C divided in P blocks C′. q1 · q2 = P

• Minimize the difference between:
• Maximum tile size

⌈
m
q1

⌉
·
⌈

m
q2

⌉
AND Optimal tile size m2

P
.

• Optimum is reached when q1 = q2 =
√

P .
• In practice, we can turn off some processors if the maximum tile

size can be decreased.
• Example: P is prime.
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High Cost Memory Operations

• High bandwidth of on-chip memory in many-core architectures is
not enough.

• Programmer can take advantage of the new opportunities provided
by software-managed memory hierarchies.

• Goal: Minimize the number of memory operations (LD and ST )
between a bigger but slower memory level (SRAM) and a faster but
smaller one (Registers).

• That may are function of:
• The problem (Λ).
• The number of processors (P ).
• The tile parameters (L).
• The sequence of traversing tiles (S).
• The size of the faster memory Rmax
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Optimization Problem Formulation

min
L,S

LD (Λ, P, L, S) + ST (Λ, P, L, S)

s.t. R (Λ, P, L, S) ≤ Rmax

• Λ = MM .
• 1 ≤ P ≤ Pmax.
• L = {L1, L2}.
• S = {S1, S2, S3, S4, S5, S6}
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B’i,j

MM for a block C’

for  i= 1  to  n/L2
for j=1  to  n/L2

for k=1  to  m/L1
C’i,j += A’i,k * B’k,j

n

n

m

• Matrices A, B and C are partitioned in blocks A′, B′ and C′ of sizes
n×m, m× n and n× n.

• A′, B′ and C′ are divided in tiles A′i,j , B′
i,j and C′

i,j of sizes L2 × L1,
L1 × L2 and L2 × L2.
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6 possible schemes of traversing tiles that produce 2 sequences.

• Case 1: Reuse tile C′
i,j .

• Case 2: Reuse tile A′i,j (or B′
i,j).
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Optimization Problem for MM

min
L∈{L1,L2},
S∈{S1,S2}

f (m, P, L, S) =

{
2

L2
m3 + m2 if S = S1(
2

L1
+ 1

L2

)
m3 +

(√
P − 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax

Analytical solution if P ≥ 4 using KKT multipliers.
Solution was found by branch and bound (1 iter.):
L1 = 1, L2 =

⌊√
1 + Rmax − 1

⌋



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Optimization Problem for MM

min
L∈{L1,L2},
S∈{S1,S2}

f (m, P, L, S) =

{
2

L2
m3 + m2 if S = S1(
2

L1
+ 1

L2

)
m3 +

(√
P − 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax

Analytical solution if P ≥ 4 using KKT multipliers.
Solution was found by branch and bound (1 iter.):
L1 = 1, L2 =

⌊√
1 + Rmax − 1

⌋
L2

A C

B
L1

m=12; P=4; Rmax=15
n=6
L1=1; L2=3

n

n

L1

L2

m



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Real example: Cyclops-64

• Number of registers: 63
• Other Register used: 6
• Rmax = 57
• L1 = 1 and L2 = 6
• Other tiling strategies that fully utilizes the registers:

• Inner Product: L1 = 28 and L2 = 1
• Square Tiling: L1 = 4 and L2 = 4

Table: Number of memory operation for different tiling strategies

Memory Operations Inner Product Square Optimal

Loads 2m3 1
2
m3 1

3
m3

Stores m2 m2 m2
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Keep in mind for a Register Tiling Design

1. Goal: Maximize Reuse of data in registers (Diminish Memory
Operations)

2. Register Allocation.
• Spilling.
• Scratchpad Memory.
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Instruction Selection and Instruction Scheduling

Multiple Load (ldm) and Multiple Store (stm)
• Normal load instruction issues one data transfer request per

element while the special one issues one request each 64-byte
boundary.

• Useful for load tiles of A (6x1) and B (1x6) with A in column-major
order and B in row-major order.

Instruction Scheduling
• Interleaving of independent instruction to alleviate stalls.

• Memory Operations.
• Data Operations.

• Floating point Operations.
• Integer Operations.
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Diminish/Hide Latencies of Instructions

• Data dependencies imposes partial ordering on execution.
• Instruction Scheduling hides or diminishes the cost of stalls

produces by large latencies. (e.g. ldm, divs, rems, mull).
• It could require Register Reallocation.

• Data Prefetching and Loop Unrolling.
• Partial hiding of latencies will still hurt the performance. We cannot

reach peak performance if we don’t hide ALL latencies.
• It definitely requires Retiling, Reallocation, Rescheduling.
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Data Prefetching and Loop Unrolling
• Guarantee total hiding of latencies.

S1: c[1..L1][1..L2] = 0
S2: for k = 1 to m, k + +
S3: a[1..L1][1] = A[i..i + L1][k]
S4: b[1][1..L2] = B[k][j..j + L2]
S5: c[1..L1][1..L2]+ = a[1..L1][1] × b[1][1..L2]
S : end for
S6: C[i..i + L1][j..j + L2] = c[1..L1][1..L2]

C tile calculation of size L1 × L2 without loop unrolling

S1 : c[1..L1][1..L2] = 0
S2 : a[1..L1][1] = A[i..i + L1][1]
S3 : b[1][1..L2] = B[1][j..j + L2]
S4 : for k = 1 to m, k + +
S5 : a[1..L1][2] = A[i..i + L1][k + 1]
S6 : b[2][1..L2] = B[k + 1][j..j + L2]
S7 : c[1..L1][1..L2]+ = a[1..L1][1] × b[1][1..L2]
S8 : k + +, if k == m then break
S9 : a[1..L1][1] = A[i..i + L1][k + 1]
S10: b[1][1..L2] = B[k + 1][j..j + L2]
S11: c[1..L1][1..L2]+ = a[1..L1][2] × b[2][1..L2]
S : end for
S12: C[i..i + L1][j..j + L2] = c[1..L1][1..L2]

C tile calculation of size L1 × L2 with loop unrolling

The price is to increase the register pressure.
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• Partition1: Tile size is around the optimum
⌊

m
q1

⌋
·
⌊

m
q2

⌋
but it does

NOT minimize the maximum tile size.
• Partition2: Minimize the maximum tile size but it does NOT

distribute sizes uniformly.
• Partition3: Optimum partitioning and distribution.
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Impact of each optimization on the performance
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Performance with Optimizations

DRAM

SRAM

GFLOPS

70.00
65.63

mSRAM = 488, mDRAM = 5280

1. Base Parallel Version.

2. +Optimized partitioning.

3. +Reg. Tiling (Manual).

4. +Multiple load/store inst. (Man.).

5. +Instruction Sched.(Man.).

6. +Dynamic Scheduling (Man.).

7. +Data Prefetching (Man.).

8. +Instruction Prefetching (Man.).

9. +Operands on DRAM.

10. +Dynamic Percolation (Man.)

11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption:
66W→ 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

• Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov’09).

• Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun’10).
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Conclusions

• Software-managed memory hierarchies provide more flexibility and
opportunities for increasing performance that have not been
explored at all.

• Compiler Optimizations at register level are essential for increasing
performance. Most of them are highly correlated.

• Compiler optimizations applied provide evidence of the power
efficiency of C64: power consumption measurements show a
maximum efficiency of 993 MFLOPS/W for the problem under
consideration.

• Dynamic strategies deserve more attention. This case of study has
inspired promising techniques such as the codelet model.
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Future work

• Apply this methodology to other linear algebra algorithmic problems
like matrix inversion and linear solver (Linpack). Expand to multiple
chips.

• How can we apply these optimizations for increasing energy
efficiency? Does maximum performance imply maximum energy
efficiency?
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Thank you
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