
Compiler Techniques for Optimizing Dense
Matrix Multiplication on a Many-Core

Architecture

Elkin Garcia1 Ioannis E. Venetis2 Rishi Khan3 Kelly Livingston1

Guang R. Gao1

Computer Architecture and Parallel Systems Laboratory
Department of Electrical and Computer Engineering

University of Delaware, Newark 19716, U.S.A.
{egarcia,ggao}@capsl.udel.edu

Department of Computer Engineering and Informatics
University of Patras, Rion 26500, Greece

venetis@ceid.upatras.gr

ET International, Newark 19711, U.S.A.
rishi@etinternational.com

November 3rd, 2010



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Outline

Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Traditional Parallel Programming Methodologies

Goal: Improve performance.
Assumptions: Cache based parallel systems.
Strategies: Cache tiling techniques exploit temporal locality.

• Tile size selection and padding.

• Data location and replacement in the cache is controlled by HW
making fine control of these parameters difficult.

• Power consumption and chip die area constraints make increasing
on-chip cache an untenable solution to the memory wall problem.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Traditional Parallel Programming Methodologies

Goal: Improve performance.
Assumptions: Cache based parallel systems.
Strategies: Cache tiling techniques exploit temporal locality.

• Tile size selection and padding.

• Data location and replacement in the cache is controlled by HW
making fine control of these parameters difficult.

• Power consumption and chip die area constraints make increasing
on-chip cache an untenable solution to the memory wall problem.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

New many-core-on-a-chip Systems

• Software managed memory hierarchy.
• The programmer has the control of data movement.
• Save die area of hardware cache controllers and over-sized caches.
• More flexibility and opportunities to improve performance.
• The programming at this moment is more complicated.

• Example: IBM Cyclops-64 (C64).

New methodologies for classical algorithmic problems are needed



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

New many-core-on-a-chip Systems

• Software managed memory hierarchy.
• The programmer has the control of data movement.
• Save die area of hardware cache controllers and over-sized caches.
• More flexibility and opportunities to improve performance.
• The programming at this moment is more complicated.

• Example: IBM Cyclops-64 (C64).

New methodologies for classical algorithmic problems are needed



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

What has been done?

Many well-known algorithms has been ported and optimized for
many-core architectures applying and adapting strategies of
cache-based parallel systems.

• Matrix Multiplication, LU Decomposition, FFT, etc.

• The optimizations for improving performance on cache-based
parallel system are not necessarily feasible or convenient on
software managed memory hierarchy systems.

• Memory access patterns reached by appropriate tiling substantially
increase the performance of applications.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

What has been done?

Many well-known algorithms has been ported and optimized for
many-core architectures applying and adapting strategies of
cache-based parallel systems.

• Matrix Multiplication, LU Decomposition, FFT, etc.

• The optimizations for improving performance on cache-based
parallel system are not necessarily feasible or convenient on
software managed memory hierarchy systems.

• Memory access patterns reached by appropriate tiling substantially
increase the performance of applications.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Objectives

Propose a general methodology that provides a mapping of applications
to software managed memory hierarchies. 3 strategies for increasing
performance:

1. Balanced distribution of work among threads.
2. Optimal register file use. Study of Compiler Optimizations.

We used MM on C64 as a case of study because:

• It is simple: A basic MM is described by 3 for loops.
• It is memory and computational intensive: The basic MM is O(m3).



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

The IBM Cyclops-64 Architecture

Crossbar Network

SP SP

TU TU

FP

SR
AM

 
B

an
k

SP SP

TU TU

FP

SP SP

TU TU

FP···

SR
AM

 
B

an
k

SR
AM

 
B

an
k

SR
AM

 
B

an
k

SR
AM

 
B

an
k

SR
AM

 
B

an
k

···

Processor 1 Processor 2 Processor 80

Host 
Interface

A-Switch

DDR2 SDRAM 
Controller

Chip
Node

Off-Chip 
Memory

FPGA

Control 
Network

Gigabit 
Ethernet

HD

3D Mesh

Latency
Overall  Bandwidth

Load: 2 cycles; Store: 1 cycle

640GB/s 

Load: 57 cycles; Store: 28 cycles
16GB/s (Multiple load and Multiple store 

instructions);  2GB/s

Load: 31 cycles; Store: 15 cycles

320GB/s 

64
Registers

SP
16kB

GM
~2.5MB

Off-Chip
DRAM

1GB

Read: 1 cycle
Write: 1 cycle

1.92 TB/s

C64-Node Memory Hierarchy of C64.

• The complete C64 system is built out of tens of thousands of C64
processing nodes arranged in a 3-D mesh topology.

• Each processing node consists of a C64 chip, external DRAM, and
a small amount of external interface logic.

• Execution on a C64 chip is non-preemptive and there is no
hardware virtual memory manager.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Classical Matrix Multiplication Algorithms

• Decrease the naı̈ve complexity of O(m3): No architecture
dependent (at all)

• Strassen’s algorithm: O(mlog7).
• Coppersmith–Winograd algorithm: O(m2.376).

• Efficient implementations: Architecture dependent.
• Blocking Algorithms.
• Explore the Architecture design space.
• Example: Cannon’s Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in
detail.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Classical Matrix Multiplication Algorithms

• Decrease the naı̈ve complexity of O(m3): No architecture
dependent (at all)

• Strassen’s algorithm: O(mlog7).
• Coppersmith–Winograd algorithm: O(m2.376).

• Efficient implementations: Architecture dependent.
• Blocking Algorithms.
• Explore the Architecture design space.
• Example: Cannon’s Algorithm for 3D mesh.

Many-core architecture design space has not yet been explored in
detail.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Dense Matrix Multiplication

• A×B = C each of size m×m using algorithms of running time
O(m3) using P Processors.

• Related sources that cause poor performance in many-core
architectures:

1. Inefficient or unnecessary synchronizations.
2. Unbalanced work between threads.
3. Latency due to accessing slower memory levels or other kind of

instructions.
4. Stalls due to arbitration of shared resources.

• There is a trade-off between synchronization and work-balanced.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Work Distribution

• For MM, each element ci,j ∈ C can be calculated independently.
• Synchronizations are not needed.

• Optimal partition.
Blocks size: m2

P .
• Constrains:

• Number of elements in each block has to be integer.
• Blocks are rectangular.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Optimal Work Distribution

Matrix C divided in P blocks C′. q1 · q2 = P

• Minimize the difference between:
• Maximum tile size

⌈
m
q1

⌉
·
⌈

m
q2

⌉
AND Optimal tile size m2

P
.

• Optimum is reached when q1 = q2 =
√

P .
• In practice, we can turn off some processors if the maximum tile

size can be decreased.
• Example: P is prime.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

High Cost Memory Operations

• High bandwidth of on-chip memory in many-core architectures is
not enough.

• Programmer can take advantage of the new opportunities provided
by software-managed memory hierarchies.

• Goal: Minimize the number of memory operations (LD and ST )
between a bigger but slower memory level (SRAM) and a faster but
smaller one (Registers).

• That may are function of:
• The problem (Λ).
• The number of processors (P ).
• The tile parameters (L).
• The sequence of traversing tiles (S).
• The size of the faster memory Rmax



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Optimization Problem Formulation

min
L,S

LD (Λ, P, L, S) + ST (Λ, P, L, S)

s.t. R (Λ, P, L, S) ≤ Rmax

• Λ = MM .
• 1 ≤ P ≤ Pmax.
• L = {L1, L2}.
• S = {S1, S2, S3, S4, S5, S6}



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Optimization Problem Formulation

min
L,S

LD (Λ, P, L, S) + ST (Λ, P, L, S)

s.t. R (Λ, P, L, S) ≤ Rmax

• Λ = MM .
• 1 ≤ P ≤ Pmax.
• L = {L1, L2}.
• S = {S1, S2, S3, S4, S5, S6}



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

L1

L2

A C

B

L2

L1

A’i,j C’i,j

B’i,j

MM for a block C’

for  i= 1  to  n/L2
for j=1  to  n/L2

for k=1  to  m/L1
C’i,j += A’i,k * B’k,j

n

n

m

• Matrices A, B and C are partitioned in blocks A′, B′ and C′ of sizes
n×m, m× n and n× n.

• A′, B′ and C′ are divided in tiles A′i,j , B′
i,j and C′

i,j of sizes L2 × L1,
L1 × L2 and L2 × L2.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

L1

L2

A C

B

L1

L2

A C

B

1 2 3 4

1

2

3

4

5 1 2 3

1 2 3

4

Case 1                                                   Case 2

6 possible schemes of traversing tiles that produce 2 sequences.

• Case 1: Reuse tile C′
i,j .

• Case 2: Reuse tile A′i,j (or B′
i,j).



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Optimization Problem for MM

min
L∈{L1,L2},
S∈{S1,S2}

f (m, P, L, S) =

{
2

L2
m3 + m2 if S = S1(
2

L1
+ 1

L2

)
m3 +

(√
P − 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax

Analytical solution if P ≥ 4 using KKT multipliers.
Solution was found by branch and bound (1 iter.):
L1 = 1, L2 =

⌊√
1 + Rmax − 1

⌋



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Optimization Problem for MM

min
L∈{L1,L2},
S∈{S1,S2}

f (m, P, L, S) =

{
2

L2
m3 + m2 if S = S1(
2

L1
+ 1

L2

)
m3 +

(√
P − 1

)
m2 if S = S2

s.t. 2L1L2 + L2
2 ≤ Rmax

Analytical solution if P ≥ 4 using KKT multipliers.
Solution was found by branch and bound (1 iter.):
L1 = 1, L2 =

⌊√
1 + Rmax − 1

⌋
L2

A C

B
L1

m=12; P=4; Rmax=15
n=6
L1=1; L2=3

n

n

L1

L2

m



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Real example: Cyclops-64

• Number of registers: 63
• Other Register used: 6
• Rmax = 57
• L1 = 1 and L2 = 6
• Other tiling strategies that fully utilizes the registers:

• Inner Product: L1 = 28 and L2 = 1
• Square Tiling: L1 = 4 and L2 = 4

Table: Number of memory operation for different tiling strategies

Memory Operations Inner Product Square Optimal

Loads 2m3 1
2
m3 1

3
m3

Stores m2 m2 m2



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Real example: Cyclops-64

• Number of registers: 63
• Other Register used: 6
• Rmax = 57
• L1 = 1 and L2 = 6
• Other tiling strategies that fully utilizes the registers:

• Inner Product: L1 = 28 and L2 = 1
• Square Tiling: L1 = 4 and L2 = 4

Table: Number of memory operation for different tiling strategies

Memory Operations Inner Product Square Optimal

Loads 2m3 1
2
m3 1

3
m3

Stores m2 m2 m2



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Real example: Cyclops-64

• Number of registers: 63
• Other Register used: 6
• Rmax = 57
• L1 = 1 and L2 = 6
• Other tiling strategies that fully utilizes the registers:

• Inner Product: L1 = 28 and L2 = 1
• Square Tiling: L1 = 4 and L2 = 4

Table: Number of memory operation for different tiling strategies

Memory Operations Inner Product Square Optimal

Loads 2m3 1
2
m3 1

3
m3

Stores m2 m2 m2



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Keep in mind for a Register Tiling Design

1. Goal: Maximize Reuse of data in registers (Diminish Memory
Operations)

2. Register Allocation.
• Spilling.
• Scratchpad Memory.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Instruction Selection and Instruction Scheduling

Multiple Load (ldm) and Multiple Store (stm)
• Normal load instruction issues one data transfer request per

element while the special one issues one request each 64-byte
boundary.

• Useful for load tiles of A (6x1) and B (1x6) with A in column-major
order and B in row-major order.

Instruction Scheduling
• Interleaving of independent instruction to alleviate stalls.

• Memory Operations.
• Data Operations.

• Floating point Operations.
• Integer Operations.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Diminish/Hide Latencies of Instructions

• Data dependencies imposes partial ordering on execution.
• Instruction Scheduling hides or diminishes the cost of stalls

produces by large latencies. (e.g. ldm, divs, rems, mull).
• It could require Register Reallocation.

• Data Prefetching and Loop Unrolling.
• Partial hiding of latencies will still hurt the performance. We cannot

reach peak performance if we don’t hide ALL latencies.
• It definitely requires Retiling, Reallocation, Rescheduling.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Data Prefetching and Loop Unrolling
• Guarantee total hiding of latencies.

S1: c[1..L1][1..L2] = 0
S2: for k = 1 to m, k + +
S3: a[1..L1][1] = A[i..i + L1][k]
S4: b[1][1..L2] = B[k][j..j + L2]
S5: c[1..L1][1..L2]+ = a[1..L1][1] × b[1][1..L2]
S : end for
S6: C[i..i + L1][j..j + L2] = c[1..L1][1..L2]

C tile calculation of size L1 × L2 without loop unrolling

S1 : c[1..L1][1..L2] = 0
S2 : a[1..L1][1] = A[i..i + L1][1]
S3 : b[1][1..L2] = B[1][j..j + L2]
S4 : for k = 1 to m, k + +
S5 : a[1..L1][2] = A[i..i + L1][k + 1]
S6 : b[2][1..L2] = B[k + 1][j..j + L2]
S7 : c[1..L1][1..L2]+ = a[1..L1][1] × b[1][1..L2]
S8 : k + +, if k == m then break
S9 : a[1..L1][1] = A[i..i + L1][k + 1]
S10: b[1][1..L2] = B[k + 1][j..j + L2]
S11: c[1..L1][1..L2]+ = a[1..L1][2] × b[2][1..L2]
S : end for
S12: C[i..i + L1][j..j + L2] = c[1..L1][1..L2]

C tile calculation of size L1 × L2 with loop unrolling

The price is to increase the register pressure.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Partitioning

0.0

0.5

1.0

1.5

2.0

2.5

1 4 9 16 25 36 49 64 81 100 121 144

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Thread Units

Partitioning 1

Partitioning 2

Partitioning 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 4 9 16 25 36 49 64 81 100 121 144

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

Thread Units

Partitioning 1

Partitioning 2

Partitioning 3

Matrix Size 100× 100 Matrix Size 488× 488

• Partition1: Tile size is around the optimum
⌊

m
q1

⌋
·
⌊

m
q2

⌋
but it does

NOT minimize the maximum tile size.
• Partition2: Minimize the maximum tile size but it does NOT

distribute sizes uniformly.
• Partition3: Optimum partitioning and distribution.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Impact of each optimization on the performance

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

1 2 3 4 5 6 7 8 9 10 11

Performance with Optimizations

DRAM

SRAM

GFLOPS

70.00
65.63

mSRAM = 488, mDRAM = 5280

1. Base Parallel Version.

2. +Optimized partitioning.

3. +Reg. Tiling (Manual).

4. +Multiple load/store inst. (Man.).

5. +Instruction Sched.(Man.).

6. +Dynamic Scheduling (Man.).

7. +Data Prefetching (Man.).

8. +Instruction Prefetching (Man.).

9. +Operands on DRAM.

10. +Dynamic Percolation (Man.)

11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption:
66W→ 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

• Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov’09).

• Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun’10).



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Impact of each optimization on the performance

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

1 2 3 4 5 6 7 8 9 10 11

Performance with Optimizations

DRAM

SRAM

GFLOPS

70.00
65.63

mSRAM = 488, mDRAM = 5280

1. Base Parallel Version.

2. +Optimized partitioning.

3. +Reg. Tiling (Manual).

4. +Multiple load/store inst. (Man.).

5. +Instruction Sched.(Man.).

6. +Dynamic Scheduling (Man.).

7. +Data Prefetching (Man.).

8. +Instruction Prefetching (Man.).

9. +Operands on DRAM.

10. +Dynamic Percolation (Man.)

11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption:
66W→ 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

• Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov’09).

• Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun’10).



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Impact of each optimization on the performance

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75

1 2 3 4 5 6 7 8 9 10 11

Performance with Optimizations

DRAM

SRAM

GFLOPS

70.00
65.63

mSRAM = 488, mDRAM = 5280

1. Base Parallel Version.

2. +Optimized partitioning.

3. +Reg. Tiling (Manual).

4. +Multiple load/store inst. (Man.).

5. +Instruction Sched.(Man.).

6. +Dynamic Scheduling (Man.).

7. +Data Prefetching (Man.).

8. +Instruction Prefetching (Man.).

9. +Operands on DRAM.

10. +Dynamic Percolation (Man.)

11. +Optimized MemCpy and MemCpyTranspose (Man.)

Power consumption:
66W→ 993 MFLOPS/W

Green500list: Most energy-efficient supercomputers in the world

• Top 1-3: 722.98 MFLOPS/W Top 4-5: 458.33 MFLOPS/W (Nov’09).

• Top 1-3: 773.38 MFLOPS/W Top 4: 492.64 MFLOPS/W (Jun’10).



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Introduction
Motivation
Objectives

Background
IBM Cyclops-64
Classical MM Algorithms

Proposed Matrix Multiplication Algorithm
Work Distribution
Compiler Optimizations

Experimental Evaluation
Results

Conclusions



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Conclusions

• Software-managed memory hierarchies provide more flexibility and
opportunities for increasing performance that have not been
explored at all.

• Compiler Optimizations at register level are essential for increasing
performance. Most of them are highly correlated.

• Compiler optimizations applied provide evidence of the power
efficiency of C64: power consumption measurements show a
maximum efficiency of 993 MFLOPS/W for the problem under
consideration.

• Dynamic strategies deserve more attention. This case of study has
inspired promising techniques such as the codelet model.



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Future work

• Apply this methodology to other linear algebra algorithmic problems
like matrix inversion and linear solver (Linpack). Expand to multiple
chips.

• How can we apply these optimizations for increasing energy
efficiency? Does maximum performance imply maximum energy
efficiency?



Introduction Background Proposed Matrix Multiplication Algorithm Experimental Evaluation Conclusions

Thank you


	Principal
	Introduction
	Motivation
	Objectives

	Background
	IBM Cyclops-64
	Classical MM Algorithms

	Proposed Matrix Multiplication Algorithm
	Work Distribution
	Compiler Optimizations

	Experimental Evaluation
	Results

	Conclusions


