
Contemporary Compilers
by Aaron Myles Landwehr

1 3/14/2012 CAPSL

LLVM

 Formally “Low Level Virtual Machine”

 A Compiler written in C++ (no exceptions or RTTI) – see here.

 Started in 2000 at University of Illinois at Urbana–Champaign.

 BSD-Style License (not a Copyleft license: no restrictions on how code is used)

 Started by Chris Lattner (now at Apple)

 Compiles IR into target ASM (or Machine Code)

• No linking though – yet: must use a separate linker (gnu ld, msvc link.exe, gold, OSX Linker, MCLinker).

 Primary compiler for OSX user-land and IOS (OSX Kernel is still GCC)

 Apple took interest for a number of reasons:

• LLVM has a less restictive license than GCC.

• Objective-C: low priority for gcc - stagnant.

• GCC more difficult to hack.

2 3/14/2012 CAPSL

http://stackoverflow.com/questions/5134975/what-can-make-c-rtti-undesirable

Clang

 Compiler Front end for LLVM.

 Compiles C, C++, Objective-C, and Objective-C++ into LLVM IR.

 Using Clang in conjunction with LLVM replaces the GCC stack.

3 3/14/2012 CAPSL

Why use LLVM?

 Modern Compiler (with an arguably modular design).

 Language Agnostic.

 Better documentation (compared to alternatives).

 Less restrictive license.

 Easier to extend, add optimizations, add new targets, etc.

4 3/14/2012 CAPSL

LLVM Toolchain at a High-Level

3/14/2012 5 CAPSL

C

Haskell

C++

Obj-C

…

Python

Ruby

LLVM
IR

Front-end
Compiler

llvm

Target
ASM Code

Target
Obj Code

Assembler

Linker

Target
ASM Code

Target
Obj Code

Executable
or Library

LLVM ASM (Intermediate Representation)

 A Static Single Assignment (SSA) based representation that provides type
safety, low-level operations, flexibility, and the capability of representing 'all'
high-level languages cleanly.

 Contains many instructions normally found in target assemblies:

 Binary operations:

• ret, br, add, sub, mul, udiv, sdiv, urem, srem, fadd, fsub, fmul, fdiv.

• Bitwise operations:

• shl, lshr(logical), ashr (arithmetic), and, or, xor

• Comparisons

• icmp, fcmp (perhaps, ASMs don’t normally have this form).

• Memory operations

• load, store, cmpxchg

6 3/14/2012 CAPSL

Other Instructions in the LLVM IR

 Contains many other operations:

 phi, select, call, va_arg, fence, getelementptr, switch, et cetera.

 Conversion operations:

 trunct, zext, sext, fptrunc, fpext, fptoui, fptosi, uitofp, sitofp, ptrtoint, inttoptr, bitcast

 Intrinsic functions

 memcpy, cos, sin, log, exp, pow, et cetera.

7 3/14/2012 CAPSL

IR Type System

 The IR is strongly typed .

 Instructions use these types:

 Integer

i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ...

 Float

• Half, float, double,

• fp128 (128-bit floating point value (112-bit mantissa)),

• x86_fp80 (80-bit floating point value (X87)),

• ppc_fp128 (128-bit floating point value (two 64-bits))

 Pointer, vector, structure, array, label, meta data.

 Others…

8 3/14/2012 CAPSL

LLVM IR Closer to High Level

 The IR supports global variables, functions, aliases, linkage types.

 Has more in common with a high level language than a normal assembly
language. Organized into modules that can be linked together:

; Declare the string constant as a global constant.
@.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"

; External declaration of the puts function
declare i32 @puts(i8* nocapture) nounwind

; Definition of main function
define i32 @main() { ; i32()*
 ; Convert [13 x i8]* to i8 *...
 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0

 ; Call puts function to write out the string to stdout.
 call i32 @puts(i8* %cast210)
 ret i32 0
}

9 3/14/2012 CAPSL

LLVM IR Example Module (Using ExampleOne)

 How to compile into LLVM IR:

 clang -O3 -emit-llvm -S exampleOne.c -o exampleOne.ll

 OR

 View the exampleOne.c and exampleOne.ll files in the additional materials.

10 3/14/2012 CAPSL

LLVM Infrastructure at a Low Level View

 Different Sections to be explained…

3/14/2012 11 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

LLVM Passes

For Optimizations, Analysis, and Transformations

3/14/2012 12 CAPSL

LLVM Analysis and Transform Passes

 Passes perform transformations and optimizations that make up the compiler.

 Perform analysis (to aid other transformations, or to aid the programmer).

 They can operate in two distinct phases:

 Before instruction selection (Operating on the LLVM IR).

• For applying machine independent optimizations and transformations.

 After Instruction Selection and Scheduling and Formation

• Operating on the Machine dependent Representation.

• Three types: SSA-based/Pre-RA, RA, non-SSA/Post-RA.

• For applying machine specific optimizations and transformations.

 Support for different types of passes: function, basic block, loop, regions, call
graph, etc.

 Mechanisms to handle pipelining passes, dependencies and interactions.

3/14/2012 13 CAPSL

Pass Phases

 One that operates on the high level IR.

 One that operates on the machine representation (Machine Passes).

3/14/2012 14 CAPSL

Normal
Passes

Machine
Pre-RA Code

Passes

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR
Machine
post-RA

Code Passes

Machine RA
Code Passes

Example Pass (using exampleTwo and
exampleThree)
1. clang -emit-llvm exampleTwo.c -S -o exampleTwo.ll

2. Demo CFG

 As a Loadable Module (AKA Not in Windows ;-)) – See here.

• opt -load /path/to/llvm/lib/LLVMAViewCFG.so - a-view-cfg exampleTwo.ll > /dev/null

 Integrated into Opt:

• opt -a-view-cfg exampleTwo.ll > /dev/null

3. Demo Dom

 opt -view-dom exampleTwo.ll > /dev/null

4. Demo phi nodes

1. clang -O1 -emit-llvm exampleThree.c -S -o exampleThree.ll

 opt -a-print-phi exampleThree.ll > /dev/null

3/14/2012 15 CAPSL

http://edll.sourceforge.net/

Example Pass (using exampleTwo and
exampleThree) Cont.
 View the additional materials:

 exampleTwo_CFG.dot – Control Flow Graph.

 exampleTwo_DOM.dot – Dominator Tree.

 exampleThree_PHI.txt – Phi Nodes.

 Additionally, look at the corresponding .ll files for the llvm IR.

3/14/2012 16 CAPSL

LLVM Target Independent Code
Generator

The Bulk of LLVM

3/14/2012 17 CAPSL

LLVM Target Independent Code Generator

 A framework that provides a suite of reusable components for translating
the LLVM internal representation to the machine code for a specified target.

18 3/14/2012 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Instruction Selection

 Instruction Selection is the process of translating LLVM code presented to
the code generator into target-specific machine instructions.

 LLVM uses a SelectionDAG based instruction selector.

 The nodes are of type SDNode (e.g. specialized classes inheriting from it).

• e.g. LoadSDNode, StoreSDNode, …

 Instruction Selection is done programmatically and with pattern matching.

19 3/14/2012 CAPSL

Example SelectionDAG (Uses exampleOne)

 View the additional materials:

 exampleOne_DAG.dot

 Programmatically:

• cgdb --args llc exampleOne.ll

• b DAGCombiner.cpp:Run

• run

• call DAG.viewGraph()

3/14/2012 20 CAPSL

Phases that Use the SelectionDAG

 Only two phases operate on the Selection DAG.

21 3/14/2012 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Instruction Selection Cont.

 Build initial DAG

 Simple translation into a DAG from the input IR (Contains illegal Ops).

 Optimize SelectionDAG

 Simplify the DAG. Programmatically done (and ad-hoc)

 See CodeGen/SelectionDAG/DAGCombiner.cpp

 Legalize SelectionDAG Types

 Eliminate any types that are not supported by the target.

 E.g. if the target doesn’t support 32 bit types, it may promote them to 64 bit types.

 See lib/Target/TARGETNAME/TARGETNAMEISelLowering.cpp

3/14/2012 22 CAPSL

Instruction Selection Cont. 2

 Optimize SelectionDAG

 Legalize SelectionDAG Ops

 Eliminate operations not natively supported by the target.

 See lib/Target/TARGETNAME/TARGETNAMEISelLowering.cpp

 Optimize SelectionDAG

 Select instructions from the DAG

 Takes a legal Target-independent SelectionDAG as input and outputs a Target
SelectionDAG.

 Done via Pattern Matching (mostly).

 In some cases it is easier to eliminate non-native operations during this phase.

 See lib/Target/TARGETNAME/*.td files.

3/14/2012 23 CAPSL

Scheduling and Formation

 This phase takes a Target SelectionDAG and assigns an order to the
operations.

 The scheduler can pick an order depending on various constraints of the machines.

 Once the order is established, the SelectionDAG is converted into a list of
Machine Instructions.

3/14/2012 24 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 25 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

SSA-based Machine Code Optimizations

 Modulo-scheduling* and peephole optimizations.

 Implemented as machine passes.

 See lib/CodeGen/PeepholeOptimizer.cpp

 This stage is where targets can and have implemented their own SSA-
based/pre-register allocation machine passes.

 * Doesn’t exist anymore – The original implementation was SPARC specific
and eventually was clobbered.

3/14/2012 26 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 27 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

 Transform the code from using an infinite virtual register file in SSA form to a
concrete register file used by the target.

 Introduces register spilling (including spill code).

 Removed unnecessary copy instructions and replaces Phi instructions.

 Implemented as machine passes.

 Register Allocators

 Fast – for debug builds, keeps values in registers and reuses registers as appropriate.

 Basic – Uses live ranges per register one at a time.

 Greedy – Highly tuned version of Basic that incorporates global live range spilling. (default)

 PBQP (Partitioned Boolean Quadratic Programming) – Uses a PBQP solver?

 Linear Scan – Old default register allocator (pre LLVM 3.0).

 See Lib/CodeGen/PhiElimination.cpp & lib/CodeGen/RegAlloc*.cpp

3/14/2012 28 CAPSL

Register Allocation

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 29 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Prolog/Epilog Code Insertion

 At this point the machine code has been generated for functions and the
amount of stack pass required is known.

 The compiler inserts the prolog and epilog code for functions.

 Frame-pointer elimination and stack packing optimizations are done here.

 See lib/Target/TARGETNAME/TARGETNAMEFrameLowering.cpp

3/14/2012 30 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 31 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Late Code Optimizations

 Optimizations that operate on the final machine code go here.

 Spill code scheduling and peephole optimizations.

 Implemented by the Target in lib/Target/TARGETNAME/* in different files
as machine passes.

 This stage is where targets can and have implemented their own non-SSA
based/post-register allocation machine passes.

3/14/2012 32 CAPSL

LLVM Infrastructure at a Low Level View

 Where we are next…

3/14/2012 33 CAPSL

Instruction
Selection

Scheduling
and

Formation

SSA-based
Machine Code
Optimizations

Register
Allocation

Code
Emission

Late Machine
Code

Optimizations

Prolog/Epilog
Code

Insertion

IR Passes

LLVM IR

Code Emission

 The stage where the code is emitted as either assembly or machine code.

 See lib/Target/TARGETNAME/TARGETNAMEASMPrinter.cpp (for asm)

 See lib/Target/TARGETNAME/TARGETNAMEMCInstLower.cpp (for obj)

 See lib/Codegen/TargetLoweringObjectFileImpl.cpp

 Etc.

3/14/2012 34 CAPSL

LLVM Testing

3/14/2012 35 CAPSL

LLVM Testing

 Contains two types:

 Regression

• Found under the test directory and organized under many different categories.

• Target specific tests are under test/CodeGen/TARGETNAME/*

• Can be run individually using llvm-lit or to check all tests run “make check”.

 Whole Program

• Uses the llvm test-suite.

• Found in a separate SVN.

• Programs written in C or C++.

• Single source, multisource, and external benchmarks (SPEC2000, etc).

• The suite contains reference outputs of the programs.

3/14/2012 36 CAPSL

Regression Test Format

3/14/2012 37 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Regression Test Format

3/14/2012 38 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Normal LLVM IR

Regression Test Format

3/14/2012 39 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Check statements that the output
generated from the IR checked

against.

Regression Test Format

3/14/2012 40 CAPSL

; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s

define void @sub1(i32* %p, i32 %v) {
entry:

; CHECK: sub1:
; CHECK: subl

%0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
ret void

}

Run Line.

Close to the end

3/14/2012 41 CAPSL

LLVM Tools

 clang

 Frontend for c, c++, obj-c, obj-c++.

 llc

 Backend – i.e. LLVM.

 opt

 Tool to run and debug passes.

 llvm-lit

 Tool to run tests.

3/14/2012 42 CAPSL

Building LLVM (and Clang)
1. Choose a wise location for your source since it cannot be moved after compilation.

2. Install g++ and cmake (from a package manager).

3. Checkout LLVM

 svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm

4. Checkout Clang

 cd llvm/tools

 svn co http://llvm.org/svn/llvm-project/cfe/trunk clang

5. Create a build directory (not inside of the src directory)

 mkdir build_dir

 cd build_dir

6. Run cmake from the build directory

 cmake -DCMAKE_BUILD_TYPE:STRING=Debug /path/to/llvm/src

7. Compile

 make all

 make check

8. There should now be bin and lib directories (found in the main directory).

1. Add the bin and lib directories to your PATH and LD_LIBRARY_PATH variables.

3/14/2012 43 CAPSL

Explanation about Building LLVM (and Clang)

 Why ‘make all’?

 We want llvm-lit to run individual tests and other developer tools.

 Normally the internal utils are not built by llvm which means you would manually have to
install python modules and tools to get llvm-lit to work.

 Trust me, you don’t want to have to do that.

 Why ‘make check’?

 This generates a configuration file for llvm-lit.

 You technically don’t even need to wait for this command to complete beyond the first few
steps.

 Why NOT ‘make install’?

 None of the utils will install and only the stuff needed for running llvm will.

 So you would need to add the bin and lib directories to your path variables anyway.

3/14/2012 44 CAPSL

What to take away

 A contemporary compiler infrastructure eases programmer burden for
newbies and seasoned veterans alike.

 Through providing well-defined mechanisms to

 Implement new targets (target description (td, c++)).

 Implement transformations and optimizations (passes).

 Implement new reg schedulers (register as pass, see lib/CodeGen/RegAllocBasic.cpp)

 Test regressions (llvm-lit) and whole programs (test-suite).

 Visualize data (CFGs, DAGS, Dom trees).

 Documentation

 This gives you structure and methodology.

 You can too!

3/14/2012 45 CAPSL

Bibliography

 http://llvm.org/docs/

 http://llvm.org/docs/Passes.html

 http://llvm.org/pubs/2002-08-09-LLVMCompilationStrategy.html

 http://stackoverflow.com/questions/5134975/what-can-make-c-rtti-
undesirable

 http://edll.sourceforge.net/

 Jürgen Ributzka

 Ryan Taylor

3/14/2012 46 CAPSL

