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CPEG 421/621 

 - Fall 2010 

Topics I 

Fundamentals 



Topic I: Outline 

• Part I: Compiler Fundementals 

• An Overview on Compiler Design 

• Compiler Front-End and IR 

•  Middle-End: Analysis and Optimizations 

• Back-End:  Code Generation and Optimization 
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1. Processor architecture design flow 

2. Compiler structure and design flow 

3. Code generation design flow 

Foundations for 

Compiler Design  
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Why Study Compilers? 

• Influences on programming language design 

• Influences on computer design 

• Compiling techniques are useful for software 

development 
─ Parsing techniques are often used  

─ Learn practical data structures and algorithms 

─ Basis for many tools such as text formatters, structure editors, 

silicon compilers, design verification tools,… 

Writing a compiler requires an understanding of 

almost all important CS subfields 
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Architecture Models 

     Vector architctures, SIMD 

Instructional Level Parallelism (ILP) 

superscalar 

VLIW 

Multithreaded Architectures 

Chip multiprocessing (CMP, multi-core, many-core, 

etc.) 

GPGPUs 

Reconfiguratble Archtitectures 

 
What is the impact of these ideas on compilers? 
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Inside a Compiler 
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Front-End Middle-End Back-End 

… 



A Quick Look at the Front-End: 

The Lexer 

• Makes sure that every single “word” in the 

programming language is well-formed 

• Outputs tokens which describe to what 

category each word in a given program 

belongs to 

• Think of it as a “spell checker” 
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A Quick Look at the Front-End: 

The Parser 

• Takes tokens as input 

• Makes sure the tokens are inserted in a 

valid sequence 

• Think of it as a “grammatical checker” 
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The lexer and the parser make sure there the 

input program is correct with respect to the 

formal semantics of the language used by the 

programmer 



A Quick Look at the Front-End: 

The Semantic Analyser 

• Context-sensitive analysis (or semantic 

analysis) checks that the output of the lexer and 

parser has meaning. 

• E.g. “This house is very clever” vs “This student is 

very clever”  both are grammatically correct, only 

one has meaning 

• It is useful at several levels: 

• Correctness can be further ensured 

• Can ensure safety through type-checking 

• Can provide the middle-end and back-end with 

useful information w.r.t. certain expressions 
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Interprocedural Analysis and Optimization 

Loop Nest Optimization and Parallelization 

Global (Scalar) Optimization 

Backend 

Code Generation 

Front end 

Good IR 

A Good Compiler Infrastructure 

Needed – A modern View 

Middle-End 
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Middle-End Optimization 

• Flow Analysis 

Control flow analysis 

Dataflow analysis 

• Global scalar optimization 

• Loop nest optimization 

• Advanced topics: 

Static Single Assignment form (SSA) 

Application of SSA to scalar optimization 
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Backend Optimization (I) 

• Instruction selection 

• Instruction scheduling 

• Register allocation 

• Others 

 

 



2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 20 

Backend Optimization (II) 

• Loop optimization and scheduling 

• Software pipelining 


