
2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 1

CPEG 421/621

 - Fall 2010

Topics I

Fundamentals

Topic I: Outline

• Part I: Compiler Fundementals

• An Overview on Compiler Design

• Compiler Front-End and IR

• Middle-End: Analysis and Optimizations

• Back-End: Code Generation and Optimization

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 2

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 3

1. Processor architecture design flow

2. Compiler structure and design flow

3. Code generation design flow

Foundations for

Compiler Design

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 4

Why Study Compilers?

• Influences on programming language design

• Influences on computer design

• Compiling techniques are useful for software

development
─ Parsing techniques are often used

─ Learn practical data structures and algorithms

─ Basis for many tools such as text formatters, structure editors,

silicon compilers, design verification tools,…

Writing a compiler requires an understanding of

almost all important CS subfields

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 5

Architecture Models

 Vector architctures, SIMD

Instructional Level Parallelism (ILP)

superscalar

VLIW

Multithreaded Architectures

Chip multiprocessing (CMP, multi-core, many-core,

etc.)

GPGPUs

Reconfiguratble Archtitectures

What is the impact of these ideas on compilers?

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 6

Instruction Set

Architecture

Design

(Microarchitecture

Design-I)

System-Level

Design

RTL Level Design
(Microarchitecture

Design II)

Compiler

Design

Code

Optimizer

Hardware

Design

Switch
Level

Design

Circuit
Level
design

ISA
Simulator

System Level
Simulator

RTL
Level

Simulator

Switch
Level

Simulator

Circuit
Level

Simulator

Arch./Compiler
and System
Software
Design Toolset

Processor Architecture

Design Flow

Diagram

HDL (VHDL or Verilog)

Code

Generator

Toolchain
- Intel VTune™

- IBM Performance Evaluator

Debugger

What does a Compiler do

Anyway?

What does a Compiler do

Anyway? (Cont’d)

Compiler
.c
.c .c .exe

What does a Compiler do

Anyway? (Cont’d)

Compiler

.c
.c
.c

Linker
.o
.o
.o

.exe

What does a Compiler do

Anyway? (Cont’d)

Compiler

.c
.c
.c

Linker
.o
.o
.o

.exe

.a
.a
.a

What does a Compiler do

Anyway? (Cont’d)

.c
.c
.c

.a
.a
.a

.so
.so
.so

Compiler .a

.so

.exe

The Whole Compilation

Chain

Compiler

.c
.c
.c

Linker

.o
.o
.o

.exe

.a
.a
.a

Running

Program

Loader

.so
.so
.so

Inside a Compiler

Fr

S
c
a
n
n
in

g

P
a
rs

in
g

S
e
m

a
n

ti
c
 A

n
a

ly
s
is

O
p
ti
m

iz
a
ti
o

n
 1

O
p
ti
m

iz
a
ti
o
n
 N

S
e
le

c
t

S
c
h
e
d
u
le

A
llo

c
a
te

Front-End Middle-End Back-End

…

A Quick Look at the Front-End:

The Lexer

• Makes sure that every single “word” in the

programming language is well-formed

• Outputs tokens which describe to what

category each word in a given program

belongs to

• Think of it as a “spell checker”

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 14

A Quick Look at the Front-End:

The Parser

• Takes tokens as input

• Makes sure the tokens are inserted in a

valid sequence

• Think of it as a “grammatical checker”

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 15

The lexer and the parser make sure there the

input program is correct with respect to the

formal semantics of the language used by the

programmer

A Quick Look at the Front-End:

The Semantic Analyser

• Context-sensitive analysis (or semantic

analysis) checks that the output of the lexer and

parser has meaning.

• E.g. “This house is very clever” vs “This student is

very clever” both are grammatically correct, only

one has meaning

• It is useful at several levels:

• Correctness can be further ensured

• Can ensure safety through type-checking

• Can provide the middle-end and back-end with

useful information w.r.t. certain expressions

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 16

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 17

Interprocedural Analysis and Optimization

Loop Nest Optimization and Parallelization

Global (Scalar) Optimization

Backend

Code Generation

Front end

Good IR

A Good Compiler Infrastructure

Needed – A modern View

Middle-End

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 18

Middle-End Optimization

• Flow Analysis

Control flow analysis

Dataflow analysis

• Global scalar optimization

• Loop nest optimization

• Advanced topics:

Static Single Assignment form (SSA)

Application of SSA to scalar optimization

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 19

Backend Optimization (I)

• Instruction selection

• Instruction scheduling

• Register allocation

• Others

2012/2/7 \course\cpeg421-2010F\Topic-1.ppt 20

Backend Optimization (II)

• Loop optimization and scheduling

• Software pipelining

