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Topic 1b:  

Flow Analysis 

Some slides come from Prof. J. N. 

Amaral  (amaral@cs.ualberta.ca) 
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Topic 4: Flow Analysis 

• Motivation 

• Control flow analysis 

• Dataflow analysis 

• Advanced topics 
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Reading List 

• Slides  

• Dragon book: chapter 8.4, 8.5, Chapter 9 

• Muchnick’s book: Chapter 7 

• Other readings as assigned in class or 

homework 
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Basic block 

• Control Flow Analysis ─ Determine control structure 

of a program and build a Control Flow Graph. 

• Data Flow analysis ─ Determine the flow of scalar 

values and ceretain associated properties  

• Solution to the Flow analysis Problem: propagation 

of data flow information along a flow graph. 

Program 

Procedure 

Interprocedural 

Intraprocedural 

Local 

Flow analysis 

Data flow analysis 

Control flow analysis 

Flow Analysis 
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 Code optimization - a program transformation that 

preserves correctness and improves the performance 

(e.g., execution time, space, power) of the input 

program.  Code optimization may be performed at 

multiple levels of program representation: 

  1. Source code  

  2. Intermediate code 

  3. Target machine code   

 Optimized vs. optimal - the term “optimized” is used to 

indicate a relative performance improvement. 

Introduction to Code 

Optimizations 
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Motivation 

S1: A 2   (def of A) 

S2: B 10   (def of B) 

 

S3: C A + B  determine if C is a 
    constant 12? 

S4   Do I = 1,   C 

  A[I] = B[I] + D[I-1] 

. . . 
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Basic Blocks 

 Only the last statement of a basic block can be a 
branch statement and only the first statement of a 
basic block can be a target of a branch. However, 
procedure calls may need be treated with care 
within a basic block (Procedure call starts a new 
basic block) 

A basic block is a sequence of consecutive  

intermediate language statements in which flow of 

control can only enter at the beginning and leave at 

the end. 

(AhoSethiUllman, pp. 529) 
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Basic Block  

Partitioning Algorithm 

1. Identify leader statements (i.e. the first statements of 
basic blocks) by using the following rules: 

 (i) The first statement in the program is a leader 

 (ii) Any statement that is the target of a branch 
statement is a leader (for most IL’s. these are label 
statements) 

 (iii) Any statement that immediately follows a branch 
or return statement is a leader 

2. The basic block corresponding to a leader consists of 
the leader, and all statements up to but not including 
the next leader or up to the end of the program. 
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Example 

begin 

   prod := 0; 

   i := 1; 

   do begin 

         prod := prod + a[i] * b[i] 

         i = i+ 1; 

   end 

   while i <= 20 

end 

The following code computes the inner product of two vectors.  

(1)   prod := 0 

(2)   i := 1 

(3)   t1 := 4 * i 

(4)   t2 := a[t1] 

(5)   t3 := 4 * i 

(6)   t4 := b[t3] 

(7)   t5 := t2 * t4 

(8)   t6 := prod + t5 

(9)   prod := t6 

(10)   t7 := i + 1 

(11)   i := t7 

(12)  if i <= 20 goto (3) 

 (13)   … 

 

Source code. 

Three-address code. 
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Example 

begin 

   prod := 0; 

   i := 1; 

   do begin 

         prod := prod + a[i] * b[i] 

         i = i+ 1; 

   end 

   while i <= 20 

end 

The following code computes the inner product of two vectors.  

(1)   prod := 0 

(2)   i := 1 

(3)   t1 := 4 * i 

(4)   t2 := a[t1] 

(5)   t3 := 4 * i 

(6)   t4 := b[t3] 

(7)   t5 := t2 * t4 

(8)   t6 := prod + t5 

(9)   prod := t6 

(10)   t7 := i + 1 

(11)   i := t7 

(12)   if i <= 20 goto (3) 

(13)   … 
Source code. 

Three-address code. 

Rule (i) 
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Example 

begin 

   prod := 0; 

   i := 1; 

   do begin 

         prod := prod + a[i] * b[i] 

         i = i+ 1; 

   end 

   while i <= 20 

end 

The following code computes the inner product of two vectors.  

(1)   prod := 0 

(2)   i := 1 

(3)   t1 := 4 * i 

(4)   t2 := a[t1] 

(5)   t3 := 4 * i 

(6)   t4 := b[t3] 

(7)   t5 := t2 * t4 

(8)   t6 := prod + t5 

(9)   prod := t6 

(10)   t7 := i + 1 

(11)   i := t7 

(12)   if i <= 20 goto (3) 

(13)   … 
Source code. 

Three-address code. 

Rule (i) 

Rule (ii) 
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Example 

begin 

   prod := 0; 

   i := 1; 

   do begin 

         prod := prod + a[i] * b[i] 

         i = i+ 1; 

   end 

   while i <= 20 

end 

The following code computes the inner product of two vectors.  

(1)   prod := 0 

(2)   i := 1 

(3)   t1 := 4 * i 

(4)   t2 := a[t1] 

(5)   t3 := 4 * i 

(6)   t4 := b[t3] 

(7)   t5 := t2 * t4 

(8)   t6 := prod + t5 

(9)   prod := t6 

(10)   t7 := i + 1 

(11)   i := t7 

(12)   if i <= 20 goto (3) 

(13)   … Source code. 

Three-address code. 

Rule (i) 

Rule (ii) 

Rule (iii) 
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Example 

Basic Blocks:  

(1)   prod := 0 

(2)   i := 1 

(3)   t1 := 4 * i 

(4)   t2 := a[t1] 

(5)   t3 := 4 * i 

(6)   t4 := b[t3] 

(7)   t5 := t2 * t4 

(8)   t6 := prod + t5 

(9)   prod := t6 

(10)   t7 := i + 1 

(11)   i := t7 

(12)   if i <= 20 goto (3) 

(13)   … 

B1 

B2 

B3 
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Transformations on 

Basic Blocks 

• Structure-Preserving Transformations: 

• common subexpression elimination 

• dead code elimination 

• renaming of temporary variables 

• interchange of two independent adjacent statements 

• Others … 
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Transformations on 

Basic Blocks 

The DAG representation of a  basic block lets 

compiler perform the code-improving 

transformations on the codes represented by 

the block. 
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Transformations on 

Basic Blocks 

Algorithm of the DAG construction for a basic block 

•    Create a node for each of the initial values of the variables in 

the basic block 

•    Create a node for each statement s, label the node by the 

operator in the statement s 

•   The children of a node N are those nodes corresponding to 

statements that are last definitions of the operands used in the 

statement associated with node N.  

Tiger book pp533 
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An Example of Constructing the DAG 

                                        Step (1): create node 4 and i0 

             Step (2): create node * 

                                        Step (3): attach identifier t1 

 

 

 

 

                                        

                               Step (1): create nodes labeled [], a 

            Step (2): find previously node(t1) 

            Step (3): attach label 

  

 Here we determine that: 

  node (4) was created 

  node (i) was created 

  node (*) was created      

* 
t1 

i0 4 

* 
t1,t3 

i0 4 

[ ] 
t2 

a0 

t1: = 4*i 

t2 := a[t1] 

t3 := 4*i 

just attach t3 to node * 
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Example of Common Subexpression Elimination 

    Detection:  

      Common subexpressions can be detected by noticing, as a new node m is 

about to be added, whether there is an existing node n with the same 

children, in the same order, and with the same operator. 

 if so, n computes the same value as m and may be used in its place. 

(1) a:= b + c 

(2) b:= a – d 

(3) c:= b + c 

(4) d:= a - d 

a:= b + c 

b:= a – d 

c:= b + c 

d:= b 

+ 

+ 

- 

b0 
c0 

d0 

c 

b,d 

a 

If a node N represents a common subexpression, N has more than 

one attached variables in the DAG. 
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Example of Dead Code Elimination 

if x is never referenced after the statement x = y+z, the  

statement can be safely eliminated. 
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Example of Renaming Temporary Variables 

(1) t := b + c    (1) u := b + c  rename 

+ 
t 

b0 c0 

+ 
u 

b0 c0 

Change (rename) 

 

     label 

    

a code in which each temporary is defined only once is called 

a single assignment form.  

if there is an statement t := b + c, we can change it to u := b + c 

and change all uses of t to u.  
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Example of Interchange of Statements 

t1 := b + c 
t2 := x + y 

Observation:  

   We can interchange the statements without 
affecting the value of the block if and only if 
neither x nor y is t1 and neither b nor c is t2, i.e. 
we have two DAG subtrees. 

+ 
t1 

b0 c0 

+ 
t2 

x0 y0 
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Example of Algebraic Transformations 

 Arithmetic Identities: 

x + 0 = 0 + x = x 

             x – 0 = x 

x * 1 = 1 * x = x 

             x / 1 = x 

  - Replace left-hand side with 
simples right hand side. 

 

 Associative/Commutative laws 

x + (y + z) = (x + y) + z 

x + y = y + x 

Reduction in strength: 

x ** 2 = x * x 

2.0 * x = x + x 

       x / 2 = x * 0.5 

 - Replace an expensive  
operator with a cheaper one. 

 

Constant folding 

2 * 3.14 = 6.28 

-Evaluate constant expression 
at compile time` 
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Control Flow Graph (CFG) 

 A control flow graph (CFG), or simply a flow graph, is a directed 

multigraph in which the nodes are basic blocks and edges represent 

flow of control (branches or fall-through execution). 
 

  • The basic block whose leader is the first statement is called the initial 

node or start node 

  • There is a directed edge from basic block B1 to basic B2 in the CFG  if: 
 

 (1) There is a branch from the last statement of B1 to the first 

         statement of B2, or 
 

 (2) Control flow can fall through from B1 to B2 because B2 

         immediately follows B1, and B1 does not end with an  

         unconditional branch 

 And, there is an END node. 
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Example 

(1)   prod := 0 
(2)   i := 1 

(3)   t1 := 4 * i 
(4)   t2 := a[t1] 
(5)   t3 := 4 * i 
(6)   t4 := b[t3] 
(7)   t5 := t2 * t4 
(8)   t6 := prod + t5 
(9)   prod := t6 
(10)   t7 := i + 1 
(11)   i := t7 
(12)   if i <= 20 goto (3) 

(13)   … 

B1 

B2 

B3 

Rule (2) 

Rule (1) Rule (2) 

Control Flow Graph:  

B1 

B2 

B3 
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CFGs are Multigraphs 

Note: there may be multiple edges from one basic block to another 
in a CFG.  
 
Therefore, in general the CFG is a multigraph.   
 
The edges are distinguished by their condition labels. 
 
 A trivial example is given below: 

[101] . . . 

[102] if i > n goto L1 Basic Block B1 

[103] label  L1: 

[104] . . . Basic Block B2 

False True 
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Identifying loops 

Question: Given the control flow graph of a procedure, how can  

     we identify loops? 

Answer: We use the concept of dominance. 
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Dominators 

 Node (basic block) D in a CFG dominates node N if 

every path from the start node to N goes through D. 

We say that node D is a dominator of node N. 

 

 Define DOM(N) = set of node N’s dominators, or the 

dominator set for node N. 

 

 Note: by definition, each node dominates itself i.e., N 

 DOM(N). 
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 Definition: Let G = (N, E, s) denote a flowgraph. 

                     and let n, n’  N. 
 

1. n dominates n’, written n    n’ :  

             each path from s  to n’ contains n. 

2. n properly dominates n’, written n < n’ :   

   n  n’ and n  n’. 

3. n directly (immediately) dominates n’, written n <d n’: 

            n < n’ and  

            there is no m   N  such that n < m < n’. 

4.  DOM(n) := {n’ : n’    n} is the set of dominators of n.  

Domination Relation 
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The domination relation is a partial ordering 

Reflexive 

      A   A 

Antisymmetric 

      A  B               B  A  

Transitive 

      A  B and B  C           A  C 

Domination Property 
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Computing Dominators 

Observe: if a dominates b, then 

• a = b, or 

• a is the only immediate predecessor of b, or 

• b has more than one immediate predecessor, all 

of  which are dominated by a. 

DOM(b) = {b} U    ∩    DOM(p) 
                            p  pred(b) 

Quiz: why here is the intersection 

operator instead of the union? 
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Domination relation: 

   

An Example 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 
  { (1, 1), (1, 2), (1, 3), (1, 4) … 
     (2, 3), (2, 4), … 
     (2, 10) 
     ... 
  } 

Direct domination: 
   

DOM: 

  1 <d 2, 2 <d 3, … 

  DOM(1)  = {1} 
  DOM(2)  = {1, 2} 
  DOM(10)  = {1, 2, 10} 
                                     … 

           DOM(8) ?            DOM(8) ={ 1,2,3,4,5,8} 
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Question 

 Assume node m is an 
immediate dominator of a 
node n, is m necessarily an 
immediate predecessor of n 
in the flow graph? 

 
  Answer: NO! 

Example: 

consider 

nodes 5 and 

8. 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 
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Dominance Intuition 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S Imagine a source of light 
at the start node, and that 
the edges are optical fibers 

To find which nodes are  
dominated by a given node a,  
place an opaque barrier at a  
and observe which nodes  
became dark. 



2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 34 

Dominance Intuition 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S The start node dominates all  
nodes in the flowgraph. 
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Dominance Intuition 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 

Which nodes are dominated 
by node 3? 
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Dominance Intuition 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 

Node 3 dominates nodes 
3, 4, 5, 6, 7, 8, and 9. 

Which nodes are dominated 
by node 3? 
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Dominance Intuition 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 

Which nodes are dominated 
by node 7? 
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Dominance Intuition 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 

Which nodes are dominated 
by node 7? 

Node 7 only dominates 
itself. 
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Immediate Dominators and 

Dominator Tree 

 Node M is the immediate dominator of node N ==> 

Node M must be the last dominator of N on any path 

from the start node to N. 

 

 Therefore, every node other than the start node must 

have a unique immediate dominator (the start node has 

no immediate dominator.) 

What does this mean ? 
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A Dominator Tree 

A dominator tree is a useful way to represent the  
dominance relation.  
 
In a dominator tree the start node s is the root, 
and each node d dominates only its descendants 
in the tree. 
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Dominator Tree (Example) 

1 

2 

3 

4 

5 

6 7 

8 

9 

10 

S 

1 

2 

3 

4 

5 

7 8 6 

9 

10 

A flowgraph (left) and its dominator tree (right) 
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Natural Loops 

•  Back-edges - an edge (B, A), such that  

   A < B (A properly dominates B).   

•  Header  --A single-entry node which dominates all 

nodes in a subgraph. 

• Natural loops: given a back edge (B, A), a natural 

loop of (B, A) with entry node A is the graph: A 

plus all nodes which is dominated by A and can 

reach B without going through A.  
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Find Natural Loops 

a 

b 

start One way to find natural loops is: 

1) find a back edge (b,a)  

2) find the nodes that are  
    dominated by a. 

3) look for nodes that can reach 
    b among the nodes dominated 
    by a. 
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  - Alg. 9.46 (Aho et. al., pp665) 

Algorithm to finding Natural Loops 

Input: A flow graph G and a back edge n -> d 

Output: the natural loop of n ->d 

• Initial a loop L with nodes n and d: L={n, d}; 

• Mark d as “visible” so that the following search does 

not reach beyond d; 

• Perform a depth-first search on the control-flow graph 

starting with node n; 

• Insert all the nodes visited in this search into loop L.  
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An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

1 

2 

3 

4 

7 

5 6 

8 

9 10 

(9,1) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

(8,3) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

(8,3) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

(8,3) {3,4,5,6,7,8,10} 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

(8,3) {3,4,5,6,7,8,10} 

(4,3) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

(8,3) {3,4,5,6,7,8,10} 

(4,3) 

Back edge Natural loop 
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1 

2 

3 

4 

7 

5 6 

8 

9 10 

An Example 

Find all back edges in this graph 
and the natural loop associated  
with each back edge 

(9,1) Entire graph 

(10,7) {7,8,10} 

(7,4) {4,5,6,7,8,10} 

(8,3) {3,4,5,6,7,8,10} 

(4,3) {3,4,5,6,7,8,10} 

Back edge Natural loop 
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Reducible Flow Graphs 

Def: a CFG = {V, E} is reducible iff E can be  
 partitioned into two classes: 

1. Forward edges: form an acyclic graph where every 
node  is reachable from the initial node 

2. Back edges 

 

Motivation: Structured programs always “reducible”   

(note: programs with gotos are still often reducible) 

 

Intuition: No jumps into the middle of loops. 
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Step1:    compute “dom” relation 

Step2:    identify all back edges 

Step3:    remove all back edges and derive G’ 

Step4:    check if G’ is acyclic 
 
 

Example: 1 

2 3 

Bad cycle:  

can be entered  

from 2 different  

places 

How to check if a 

graph G is reducible? 
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Intuitive: no bad loops. 

In fact, all loops in structured programs 

are natural loops 
 

In practice: 

Structured programs only produce 

reducible graphs. 

Loops in Reducible 

Flow Graphs 


