
2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 1

Topic 1b:

Flow Analysis

Some slides come from Prof. J. N.

Amaral (amaral@cs.ualberta.ca)

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 2

Topic 4: Flow Analysis

• Motivation

• Control flow analysis

• Dataflow analysis

• Advanced topics

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 3

Reading List

• Slides

• Dragon book: chapter 8.4, 8.5, Chapter 9

• Muchnick’s book: Chapter 7

• Other readings as assigned in class or

homework

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 4

Basic block

• Control Flow Analysis ─ Determine control structure

of a program and build a Control Flow Graph.

• Data Flow analysis ─ Determine the flow of scalar

values and ceretain associated properties

• Solution to the Flow analysis Problem: propagation

of data flow information along a flow graph.

Program

Procedure

Interprocedural

Intraprocedural

Local

Flow analysis

Data flow analysis

Control flow analysis

Flow Analysis

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 5

 Code optimization - a program transformation that

preserves correctness and improves the performance

(e.g., execution time, space, power) of the input

program. Code optimization may be performed at

multiple levels of program representation:

 1. Source code

 2. Intermediate code

 3. Target machine code

 Optimized vs. optimal - the term “optimized” is used to

indicate a relative performance improvement.

Introduction to Code

Optimizations

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 6

Motivation

S1: A 2 (def of A)

S2: B 10 (def of B)

S3: C A + B determine if C is a
 constant 12?

S4 Do I = 1, C

 A[I] = B[I] + D[I-1]

. . .

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 7

Basic Blocks

 Only the last statement of a basic block can be a
branch statement and only the first statement of a
basic block can be a target of a branch. However,
procedure calls may need be treated with care
within a basic block (Procedure call starts a new
basic block)

A basic block is a sequence of consecutive

intermediate language statements in which flow of

control can only enter at the beginning and leave at

the end.

(AhoSethiUllman, pp. 529)

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 8

Basic Block

Partitioning Algorithm

1. Identify leader statements (i.e. the first statements of
basic blocks) by using the following rules:

 (i) The first statement in the program is a leader

 (ii) Any statement that is the target of a branch
statement is a leader (for most IL’s. these are label
statements)

 (iii) Any statement that immediately follows a branch
or return statement is a leader

2. The basic block corresponding to a leader consists of
the leader, and all statements up to but not including
the next leader or up to the end of the program.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 9

Example

begin

 prod := 0;

 i := 1;

 do begin

 prod := prod + a[i] * b[i]

 i = i+ 1;

 end

 while i <= 20

end

The following code computes the inner product of two vectors.

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

 (13) …

Source code.

Three-address code.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 10

Example

begin

 prod := 0;

 i := 1;

 do begin

 prod := prod + a[i] * b[i]

 i = i+ 1;

 end

 while i <= 20

end

The following code computes the inner product of two vectors.

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

(13) …
Source code.

Three-address code.

Rule (i)

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 11

Example

begin

 prod := 0;

 i := 1;

 do begin

 prod := prod + a[i] * b[i]

 i = i+ 1;

 end

 while i <= 20

end

The following code computes the inner product of two vectors.

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

(13) …
Source code.

Three-address code.

Rule (i)

Rule (ii)

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 12

Example

begin

 prod := 0;

 i := 1;

 do begin

 prod := prod + a[i] * b[i]

 i = i+ 1;

 end

 while i <= 20

end

The following code computes the inner product of two vectors.

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

(13) … Source code.

Three-address code.

Rule (i)

Rule (ii)

Rule (iii)

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 13

Example

Basic Blocks:

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

(13) …

B1

B2

B3

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 14

Transformations on

Basic Blocks

• Structure-Preserving Transformations:

• common subexpression elimination

• dead code elimination

• renaming of temporary variables

• interchange of two independent adjacent statements

• Others …

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 15

Transformations on

Basic Blocks

The DAG representation of a basic block lets

compiler perform the code-improving

transformations on the codes represented by

the block.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 16

Transformations on

Basic Blocks

Algorithm of the DAG construction for a basic block

• Create a node for each of the initial values of the variables in

the basic block

• Create a node for each statement s, label the node by the

operator in the statement s

• The children of a node N are those nodes corresponding to

statements that are last definitions of the operands used in the

statement associated with node N.

Tiger book pp533

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 17

An Example of Constructing the DAG

 Step (1): create node 4 and i0

 Step (2): create node *

 Step (3): attach identifier t1

 Step (1): create nodes labeled [], a

 Step (2): find previously node(t1)

 Step (3): attach label

 Here we determine that:

 node (4) was created

 node (i) was created

 node (*) was created

*
t1

i0 4

*
t1,t3

i0 4

[]
t2

a0

t1: = 4*i

t2 := a[t1]

t3 := 4*i

just attach t3 to node *

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 18

Example of Common Subexpression Elimination

 Detection:

 Common subexpressions can be detected by noticing, as a new node m is

about to be added, whether there is an existing node n with the same

children, in the same order, and with the same operator.

 if so, n computes the same value as m and may be used in its place.

(1) a:= b + c

(2) b:= a – d

(3) c:= b + c

(4) d:= a - d

a:= b + c

b:= a – d

c:= b + c

d:= b

+

+

-

b0
c0

d0

c

b,d

a

If a node N represents a common subexpression, N has more than

one attached variables in the DAG.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 19

Example of Dead Code Elimination

if x is never referenced after the statement x = y+z, the

statement can be safely eliminated.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 20

Example of Renaming Temporary Variables

(1) t := b + c (1) u := b + c rename

+
t

b0 c0

+
u

b0 c0

Change (rename)

 label

a code in which each temporary is defined only once is called

a single assignment form.

if there is an statement t := b + c, we can change it to u := b + c

and change all uses of t to u.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 21

Example of Interchange of Statements

t1 := b + c
t2 := x + y

Observation:

 We can interchange the statements without
affecting the value of the block if and only if
neither x nor y is t1 and neither b nor c is t2, i.e.
we have two DAG subtrees.

+
t1

b0 c0

+
t2

x0 y0

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 22

Example of Algebraic Transformations

 Arithmetic Identities:

x + 0 = 0 + x = x

 x – 0 = x

x * 1 = 1 * x = x

 x / 1 = x

 - Replace left-hand side with
simples right hand side.

 Associative/Commutative laws

x + (y + z) = (x + y) + z

x + y = y + x

Reduction in strength:

x ** 2 = x * x

2.0 * x = x + x

 x / 2 = x * 0.5

 - Replace an expensive
operator with a cheaper one.

Constant folding

2 * 3.14 = 6.28

-Evaluate constant expression
at compile time`

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 23

Control Flow Graph (CFG)

 A control flow graph (CFG), or simply a flow graph, is a directed

multigraph in which the nodes are basic blocks and edges represent

flow of control (branches or fall-through execution).

 • The basic block whose leader is the first statement is called the initial

node or start node

 • There is a directed edge from basic block B1 to basic B2 in the CFG if:

 (1) There is a branch from the last statement of B1 to the first

 statement of B2, or

 (2) Control flow can fall through from B1 to B2 because B2

 immediately follows B1, and B1 does not end with an

 unconditional branch

 And, there is an END node.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 24

Example

(1) prod := 0
(2) i := 1

(3) t1 := 4 * i
(4) t2 := a[t1]
(5) t3 := 4 * i
(6) t4 := b[t3]
(7) t5 := t2 * t4
(8) t6 := prod + t5
(9) prod := t6
(10) t7 := i + 1
(11) i := t7
(12) if i <= 20 goto (3)

(13) …

B1

B2

B3

Rule (2)

Rule (1) Rule (2)

Control Flow Graph:

B1

B2

B3

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 25

CFGs are Multigraphs

Note: there may be multiple edges from one basic block to another
in a CFG.

Therefore, in general the CFG is a multigraph.

The edges are distinguished by their condition labels.

 A trivial example is given below:

[101] . . .

[102] if i > n goto L1 Basic Block B1

[103] label L1:

[104] . . . Basic Block B2

False True

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 26

Identifying loops

Question: Given the control flow graph of a procedure, how can

 we identify loops?

Answer: We use the concept of dominance.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 27

Dominators

 Node (basic block) D in a CFG dominates node N if

every path from the start node to N goes through D.

We say that node D is a dominator of node N.

 Define DOM(N) = set of node N’s dominators, or the

dominator set for node N.

 Note: by definition, each node dominates itself i.e., N

 DOM(N).

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 28

 Definition: Let G = (N, E, s) denote a flowgraph.

 and let n, n’ N.

1. n dominates n’, written n n’ :

 each path from s to n’ contains n.

2. n properly dominates n’, written n < n’ :

 n n’ and n n’.

3. n directly (immediately) dominates n’, written n <d n’:

 n < n’ and

 there is no m N such that n < m < n’.

4. DOM(n) := {n’ : n’ n} is the set of dominators of n.

Domination Relation

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 29

The domination relation is a partial ordering

Reflexive

 A A

Antisymmetric

 A B B A

Transitive

 A B and B C A C

Domination Property

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 30

Computing Dominators

Observe: if a dominates b, then

• a = b, or

• a is the only immediate predecessor of b, or

• b has more than one immediate predecessor, all

of which are dominated by a.

DOM(b) = {b} U ∩ DOM(p)
 p pred(b)

Quiz: why here is the intersection

operator instead of the union?

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 31

Domination relation:

An Example

1

2

3

4

5

6 7

8

9

10

S
 { (1, 1), (1, 2), (1, 3), (1, 4) …
 (2, 3), (2, 4), …
 (2, 10)
 ...
 }

Direct domination:

DOM:

 1 <d 2, 2 <d 3, …

 DOM(1) = {1}
 DOM(2) = {1, 2}
 DOM(10) = {1, 2, 10}
 …

 DOM(8) ? DOM(8) ={ 1,2,3,4,5,8}

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 32

Question

 Assume node m is an
immediate dominator of a
node n, is m necessarily an
immediate predecessor of n
in the flow graph?

 Answer: NO!

Example:

consider

nodes 5 and

8.

1

2

3

4

5

6 7

8

9

10

S

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 33

Dominance Intuition

1

2

3

4

5

6 7

8

9

10

S Imagine a source of light
at the start node, and that
the edges are optical fibers

To find which nodes are
dominated by a given node a,
place an opaque barrier at a
and observe which nodes
became dark.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 34

Dominance Intuition

1

2

3

4

5

6 7

8

9

10

S The start node dominates all
nodes in the flowgraph.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 35

Dominance Intuition

1

2

3

4

5

6 7

8

9

10

S

Which nodes are dominated
by node 3?

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 36

Dominance Intuition

1

2

3

4

5

6 7

8

9

10

S

Node 3 dominates nodes
3, 4, 5, 6, 7, 8, and 9.

Which nodes are dominated
by node 3?

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 37

Dominance Intuition

1

2

3

4

5

6 7

8

9

10

S

Which nodes are dominated
by node 7?

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 38

Dominance Intuition

1

2

3

4

5

6 7

8

9

10

S

Which nodes are dominated
by node 7?

Node 7 only dominates
itself.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 39

Immediate Dominators and

Dominator Tree

 Node M is the immediate dominator of node N ==>

Node M must be the last dominator of N on any path

from the start node to N.

 Therefore, every node other than the start node must

have a unique immediate dominator (the start node has

no immediate dominator.)

What does this mean ?

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 40

A Dominator Tree

A dominator tree is a useful way to represent the
dominance relation.

In a dominator tree the start node s is the root,
and each node d dominates only its descendants
in the tree.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 41

Dominator Tree (Example)

1

2

3

4

5

6 7

8

9

10

S

1

2

3

4

5

7 8 6

9

10

A flowgraph (left) and its dominator tree (right)

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 42

Natural Loops

• Back-edges - an edge (B, A), such that

 A < B (A properly dominates B).

• Header --A single-entry node which dominates all

nodes in a subgraph.

• Natural loops: given a back edge (B, A), a natural

loop of (B, A) with entry node A is the graph: A

plus all nodes which is dominated by A and can

reach B without going through A.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 43

Find Natural Loops

a

b

start One way to find natural loops is:

1) find a back edge (b,a)

2) find the nodes that are
 dominated by a.

3) look for nodes that can reach
 b among the nodes dominated
 by a.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 44

 - Alg. 9.46 (Aho et. al., pp665)

Algorithm to finding Natural Loops

Input: A flow graph G and a back edge n -> d

Output: the natural loop of n ->d

• Initial a loop L with nodes n and d: L={n, d};

• Mark d as “visible” so that the following search does

not reach beyond d;

• Perform a depth-first search on the control-flow graph

starting with node n;

• Insert all the nodes visited in this search into loop L.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 45

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

1

2

3

4

7

5 6

8

9 10

(9,1)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 46

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 47

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 48

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 49

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 50

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 51

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 52

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 53

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

(8,3)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 54

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

(8,3)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 55

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

(8,3) {3,4,5,6,7,8,10}

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 56

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

(8,3) {3,4,5,6,7,8,10}

(4,3)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 57

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

(8,3) {3,4,5,6,7,8,10}

(4,3)

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 58

1

2

3

4

7

5 6

8

9 10

An Example

Find all back edges in this graph
and the natural loop associated
with each back edge

(9,1) Entire graph

(10,7) {7,8,10}

(7,4) {4,5,6,7,8,10}

(8,3) {3,4,5,6,7,8,10}

(4,3) {3,4,5,6,7,8,10}

Back edge Natural loop

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 59

Reducible Flow Graphs

Def: a CFG = {V, E} is reducible iff E can be
 partitioned into two classes:

1. Forward edges: form an acyclic graph where every
node is reachable from the initial node

2. Back edges

Motivation: Structured programs always “reducible”

(note: programs with gotos are still often reducible)

Intuition: No jumps into the middle of loops.

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 60

Step1: compute “dom” relation

Step2: identify all back edges

Step3: remove all back edges and derive G’

Step4: check if G’ is acyclic

Example: 1

2 3

Bad cycle:

can be entered

from 2 different

places

How to check if a

graph G is reducible?

2012/2/14 \course\cpeg421-10F\Topic1-b.ppt 61

Intuitive: no bad loops.

In fact, all loops in structured programs

are natural loops

In practice:

Structured programs only produce

reducible graphs.

Loops in Reducible

Flow Graphs

