Topic-I-C

Dataflow Analysis

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

Motivation

We need to know variable def and use information
between basic blocks for:

constant folding

dead-code elimination

redundant computation elimination
code motion

iInduction variable elimination

build data dependence graph (DDG)
etc.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

Topics of DataFlow Analysis

2012/3/2

Reaching definition

Live variable analysis
ud-chains and du-chains
Available expressions
Others ..

\course\cpeg421-08s\Topic4-a.ppt

Definition and U_se_

1. Definition & Use
S:v1 = ...vz

S is a “definition” of v,
S is a “use” of v,

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

Compute Def and Use
Information of a Program P?

Case 1: P is a basic block ?

Case 2: P contains more than one basic
blocks ?

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

Points and Paths

@ Bl points in a basic block:
dy: i e m-1 - between statements
dy: j :.= n - before the first statement
SeH CHS i - after the last statement

In the example, how many points
basic block B1, B2, B3, and B5 have?

B6 B1 has four, B2, B3, and B5
have two points each.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 6

Points and Paths

B1
d,: i:=m-1 A path 1s a sequence of points
d: j:i=n Py, Py .., Py such that either:
ds: a:=ul (i) if p; immediately precedes S,

than p;,; immediately follows S.
(11) or p; 1s the end of a basic block and
Pi,1 1s the beginning of a successor block

In the example, is there a path from
the beginning of block B5 to the
beginning of block B6?

B6

Yes, it travels through the end point
of BS and then through all the points
in B2, B3, and B4.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 7

Reach and Kill

Kill
a definition d, of a variable v
dy: x:= ... is killed between p, and p,
I if in every path from p, to p,
there 1s another definition of v.
1 Reach
d,:x:= a definition d reaches a point p
if 3 apath d > p, and d 1s not killed
1 along the path

In the example, do d; and d, reach the
both dy, d, reach point @ points @ and @?
but only d, reaches point @

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

B1

BZ{:
53{:
34{:

Reach Example

SO: PROGRAM

S1: READ(L) 1
S2: N=0 O
S3: K=0

S4: M =1

S5: K=K+M ;
S6: C=K>L

S7: IF C THEN GOTO S11

S8: N=N+1

S9: M=M+ 2

S10: GOTO S5

S11: WRITE(N)

S12: END

The set of defs reaching the use of N in S8: {S2, S8}
def S2 reach S11 along statement path: (S2, S3, S4, S5, S6, S7, S11)

S8 reach S11 along statement path: (S8, S9, S10, S5, S6, S7, S11)

2012/3/2

\course\cpeg421-08s\Topic4-a.ppt

Example 1
Can d, reach point p;? d, | x:=exp1
X ;= exp1 '
if p>0 s;| ifp>0
X=X+ 1
a=b+c — S,| X=X+ 1
e=XxX+ 1 /pl
s;| a=b+c
It depends on what point v
p, represents!!! S, e=x+1

2012/3/2

Problem Formulation:

\course\cpeg421-08s\Topic4-a.ppt

10

Problem Formulation:

Example 2
S - ooint 0.7 d, | x:=expf
an d, and d, reach point p5" I./
s, | Ify>0
X = exp1l
while y > 0 do
a'=b+?2 Sj a=b+2
~— P3 p3 P
X = exp2 4 [x=exo2
c:=at1 4 >
end while s.| c=a+1

2012/3/2

\course\cpeg421-08sl_,

11

Data-Flow Analysis of
Structured Programs

Structured programs have an useful property: there is a single
point of entrance and a single exit point for each statement.

We will consider program statements that can be described
by the following syntax:

Statement — id := Expression
| Statement ; Statement
| iIf Expression then Statement else Statement
| do Statement while Expression
Expression — id + id
| id

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 12

Structured Programs

S:=id:=E
|S;S
This restricted syntax results in the | if E then S else S
forms depicted below for flowgraphs | do S while E
E:=id+id
@ | id

e If E goto S,

@ 9 9 If E goto S,

® o
S, S, if E then S, else S, do S, while E

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

13

2012/3/2

Data-Flow Values

1. Each program point associates with a data-flow
value

2. A data-flow value represents the possible program

states that can be observed for that program point.

3. The data-flow value depends on the goal of the
analysis.

Given a statement S, in(S) and out(S) denote
the data-flow values before and after S,
respectively.

\course\cpeg421-08s\Topic4-a.ppt

14

2012/3/2

Data-Flow Values
of Basic Block

Assume basic block B consists of
statement S¢, Sy, ..., S, (51 1s the first
statement of B and s,, is the last
statement of B), the data-flow values
immediately before and after B is
denoted as:
in(B) =in(sq)
out(B) = out(s,,)

\course\cpeg421-08s\Topic4-a.ppt

15

2012/3/2

Instances of Data-Flow
Problems

e Reaching Definitions
e Live-Variable Analysis

e DU Chains and UD Chains
e Available Expressions

To solve these problems we must take into
consideration the data-flow and the control
flow in the program. A common method to
solve such problems 1is to create a set of data-
flow equations.

\course\cpeg421-08s\Topic4-a.ppt 16

Iterative Method for
Dataflow Analysis

Establish a set of dataflow relations for
each basic block

Establish a set dataflow equations
between basic blocks

Establish an initial solution

[teratively solve the dataflow equations,
until a fixed pointis reached.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

2012/3/2

Generate set: gen(S)

In general, d € gen(S) if d reaches the
end of S independent of whether it
reaches the beginning of §S.

We restrict gen(S) contains only the
definition in §.

If S is a basic block, gen(S) contains all
the definitions inside the basic block that
are “visible” immediately after the block.

\course\cpeg421-08s\Topic4-a.ppt 18

Kill Set: kill(S)

d € kill(S) = d never reaches the end of S.

This is equivalent to say:
d reachesendof S=d €& kill(S)

dl
d2

é — |dd:a:=b+c // “

| kill(s) = D, — {dd}

O o

®
I i

Of course the statements dl1,d2, ..., dk all get killed except dd itself.

A basic block’s Kkill set is simply the union of all the
definitions Killed by its individual statements!

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 19

2012/3/2

Reaching Definitions

Problem Statement:

Given a program and a program point
determine the set of definitions reaching
this point in a program.

\course\cpeg421-08s\Topic4-a.ppt

20

Iterative Algorithm for
Reaching Definitions

dataflow equations
The set of definitions reaching the entry of basic block B:

in(B) = U out(P)

P € predecessor(B)

The set of definitions reaching the exit of basic block B:

out(B) = gen(B) U {in(B) — kill(B)}

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

21
(AhoSethiUllman, pp. 606)

Iterative Algorithm for
Reaching Definitions

Algorithm
1) out(ENTRY) = o ;
2) for (each basic block B other than ENTRY)

OUt(B) = 9 Need a flag to test if a out
3) while (changes to any out occur is changed! The initial

4) {fOl' (cach B other than ENTRY) value of the flag is true.

in(B) = Up epredecessors of B out(P);
out(B) = gen(B) U (in(B) — kill(b));

Dataflow Equations —
a simple case

: gen(S) = gen(Sy) U gen(Sy)
C;S) - & 3 () Kill(S) = kill(S,) N kill(S,)
i gen(S) = gen(Sy)
kill(S) = kill(S,)

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 23

n

- 4

._g o (j sl = 40 Da is the set of all
:E — [g a=p+c definitions in the

© X kill (S) = Da — {q} Program for

O Carlable a!

2) L~ Y
c o

o C;SD gen(s) = gen (S;) U (gen(S;) — Kill(S,))
q) —>

| -

. Kill [S] = Kill(S,) U (Kill(S;) — gen(S,))
—“—

n

C

O o

©

35

O

(D)

=

O

Y

9

©

A

2012/3/2

Date-flow equations for reaching definitions

Dataflow Equations

Ta—vic] out(S) = gen(S) U (in(S) — kill(S))

CE) () = G(Sy)
— in(S,) = out(S;)
() out(S) = out(S,)
— . n(S) = in(S;) = in(S
%3 OJ?(%))= éﬁg(ﬁz) U Z’L(t(%)z)
%} . <\§§D in(S) = in(S;) VU out(Sy)
out(S) = out(Sy)

\course\cpeg421-08s\Topic4-a.ppt 24

Dataflow Analysis:
An Example

Using RD (reaching def) as an example:

d,:| i=0

loop L

d,:

A

i=i+1

AV,

in(L) depends on out(L), and out(L) depends on in(L)!!

2012/3/2

Question:

What is the set of reaching
definitions at the exit of the loop L?

in (L) = {d}Vout(lL)

gen (L) = {d,}
kill (L) = {d,}

out(L) = gen(L) U {in(L) — kill(L)}

\course\cpeg421-08s\Topic4-a.ppt 25

Initialization Solution?
%)

out[L] =

First iteration d:[i=0
out(L) = gen(L) U (in (L) — kill(L)) :
= {d} U ({d}} — {d.}) \ /\
= {d,} .
Second iteration
out(L) = gen(L) U (in(L) — kill(L))

but now: / \/
in (L) = {d;} U out(L) = {d;} VU {d,}

d,: |—|+1

= 4 a
therefore: | s
out (L) = {dz}U({d dz} {d}) m(L)ge;(L{)dliU{;ﬁt(L)
= f Kill(L) = {dy}

out(L) = gen(L) U {in(L) — kill(L)}
So, we reached the fixed point!

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 26

Reaching Definitions:
Another Example

-

B1

d,: i:=m-1
d,: j:==n
d;: a:=u1

N

B2/d,: i:=i+1
d;: j:=j-1
B3
dg: a:= u2/
N/ |
B4/ d,: i:=u3

2012/3/2

Step 1: Compute gen and kill for each
basic block

gen(By) = {d,, d,, ds}
kill(B,) = {dy, ds, dg, d7}

gen(B,) = {d4,d5}
kill(B,) = {d1,d2,d7}

gen(Bz) = {d6}
kill(Bs) = {d3}

gen(B,) = {d7}
kill(B,) = {d1,d4)

\course\cpeg421-08s\Topic4-a.ppt 27

Reaching Definitions:
Another Example (Con’t)

! Step 2: For every basic block, make:

B1 d,: i:=m-1 out[B] = &
d,: j:=
d/\al ! Initialization:
B2/d,: i:=i+1 out(B,) = @
d;: j:=j-1
B3 out(B,) = O
I
ds: a:=u2
° \// ‘ OUt(Bg) =
B4/ d,: i:=u3
out(B,) = I

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

Reaching Definitions:
Another Example (Con’t)

! To simplify the representation, the in[B]
B1/d;: i:=m-1 and out[B] sets are represented by
dy: ji=n bit strings. Assuming the representation
e B U d,d,ds d,d-d.d, we obtain:
B2d: i:= i+l Initialization:
ds: j:=j-1
out(B;) = 9 Initial
B3 Block ™0B] | out[B]
dg: a:=u2 _ B; 000 0000
: ‘ wiHER =2 A 000 0000
. B; 000 0000
g ¢ 1550 out(B3) = O B4 000 0000
out(B,) = I

Notation: d,d,d; d,dsd.d,

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 29

gen(B,) = {d, d, ds}
kill(B;) = {d, ds, d, d;}
gen(B;) = {d, ds}
kill(By) = {d, d,, d-}
gen(B3) = {d¢}
kill(Bs) = {ds}
gen(B,) = {d;}
kill(B,) = {dy, d,}

B1| d,:

aching Definitions:
her Example (Con’t)

while a fixed point is not found:
-1 in(B) = Upe pred(B) out(P)
out(B) = gen(B) U (in(B) — kill(B))

Initial

in[B]

out[B]

000 0000

000 0000

000 0000

000 0000

First lteration

in[B]

out[B]

B4+ | 000 0000

111 0000

B> | 000 0000

000 1100

Bs | 000 0000

000 0010

B4 000 0000

000 0001

Notation: d,d,d; d,dsdsd,

2012/3/2

\course\cpeg421-08s\Topic4-a.ppt

out(B) =
gen(B)

30

gen(B,) = {d, d, ds}
kill(B;) = {d, ds, d, d;}
gen(B;) = {d, ds}
kill(By) = {d, d,, d-}
gen(B3) = {d¢}
kill(B3) = {ds}
gen(B,) = {d;}
kill(B,) = {dy, d,}

aching Definitions:
her Example (Con’t)

while a fixed point is not found:

B1 d1: 1:=m-1 in(B) — UP € pred(B) Out(P)
: L=_':I out(B) = gen(B) U (in(B) — kill(B))
First Iteration
Block ™81 | out[B]
B4+ | 000 0000|111 0000
B> | 000 0000 [000 1100
Bs | 000 0000 [000 0010
B4 | 000 0000 | 000 0001
Second lteration
SO T OUt[B]
B4+ | 000 0000|111 0000
B> | 111 0010 |001 1110
Bz |000 1100 | 000 1110
B4 |000 1100 | 000 0101

Notation: d,d,d; d,dsdsd,

2012/3/2

\course\cpeg421-08s\Topic4-a.ppt

gen[Bl] = {dll dZI d3}

kl”[Bl] = {d4l d5/ d6! d7}

gen[B2] = {d,, ds}
kill [B2] = {d,, d,, d;}
gen[B3] = {d¢}
kill [B3] = {d;}
gen[B4] = {d;}
kill [B4] = {d,, d,}

B1| d,: |

out[B] = gen[B] u (in[B]-kill[B])

aching Definitions:
ther Example (Con’t)

while a fixed point is not found:
in[B] = vout[P] wherePisa

predecessor of B

Block Second lteration
in[B] out[B]
B+ |000 0000 | 111 0000
B> |111 0010 | 001 1110
Bs |[000 1100|000 1110
B4 [000 1100|001 0111
Third Iteration
Block ™iniB1” | out[B]
B+ [000 0000|111 0000
B> |111 1110 | 001 1110
Bs |[001 1110 | 000 1110
B4 10011110 | 001 0111

Notation: d,d,d; d,dsdsd,

2012/3/2

we reached the fixed point!

\course\cpeg421-08s\Topic4-a.ppt

32

gen[Bl] = {dll dZI d3}
kl”[Bl] = {d4l d5/ d6! d7}
gen[B2] = {d,, ds}

kill [B2] = {d,, d,, d;}
gen[B3] = {d¢}
kill [B3] = {d5}
gen[B4] = {d,}
kill [B4] = {d;, d,}

B1| d,: |

out[B] = gen[B] u (in[B]-kill[B])

aching Definitions:
ther Example (Con’t)

while a fixed point is not found:
in[B] = vout[P] wherePisa

predecessor of B

Block

Third lteration

in[B]

out[B]

000 0000

111 0000

111 0010

001 1110

000 1100

000 1110

000 1100

001 0111

Forth Iteration

in[B]

out[B]

000 0000

111 0000

111 1110

001 1110

001 1110

000 1110

001 1110

001 0111

Notation: d,d,d; d,dsdsd,

we reached the fixed point!

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

33

Other Applications of Data
flow Analysis

Live Variable Analysis
DU and UD Chains
Available Expressions
Constant Propagation
Constant Folding
Others ..

Live Variable Analysis:
Another Example of Flow
Analysis

A variable V is live at the exit of a basic block n,
if there is a def-free path from n to an outward
exposed use of VV in a node n'.

“Live variable analysis problem” — determine the
set of variables which are live at the exit from
each program point.

Live variable analysis is a “backwards dataflow”
analysis, that is the analysis is done in a backwards
order .

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 35

Live Variable Analysis:
Another Example of Flow

Analysis
.) . The set of live variables at
L1:D:= 3/ line L2 is {b, c}, but the set
. e of live variables at line L1 is
L2:C .= 5/ only {b} since variable "c"

. o e . is updated in line 2. The
[3:a:=D+C value of variable "a" is

. never used, so the variable
golto L1, is never live.

Copy from Wikipedia, the free encyclopedia
2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 36

2012/3/2

Live Variable Analysis:
Def and use set

def (B): the set of variables defined in
basic block B prior to any use of that
variable in B

use(B): the set of variables whose values
may be used in B prior to any definition
of the variable.

\course\cpeg421-08s\Topic4-a.ppt 37

Live Variable Analysis

dataflow equations
The set of variables live at the entry of basic block B:

in(B) = use(B) U {out(B) —def(B)}

The set of variables live at the exit of basic block B:

out(B) = U in(S)

S € successors(B)

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 38

Iterative Algorithm for Live
Variable Analysis

Algorithm

1) out(EXIT) =0 ;
2) for (each basic block B other than EXIT)

in(B) = 0; Need a flag to test if A

. 66329 a in is changed! The
3) while (changes to any “in” occur initial value of the flag
4) for (each B other than EXIT) is true. y
d

out(B) = U in(S)
S € successors(B)
in(B) = use(B) U {out(B) — def (B)

h

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

39
(AhoSethiUllman, pp. 607)

Live Variable Analysis: a Quiz

Calculate the live variable sets in(B)
and out(B) for the program:

B1 d;: i:=m-1
d,: J:=n
d;: a:=uf
B2(d,: i:=i+1
ds: j:=j-1
B3
dg: a:= u2/
N/ y
B4|d,: i:=u3

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

D-U and U-D Chains

Many dataflow analyses need to find the use-sites
of each defined variable or the definition-sites of
each variable used in an expression.

Def-Use (D-U), and Use-Def (U-D) chains are efficient
data structures that keep this information.

Notice that when a code is represented in Static
Single-Assignment (SSA) form (as in most modern
compilers) there is no need to maintain

D-U and U-D chains.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 41

UD Chain

An UD chain 1s a list of all definitions
that can reach a given use of a variab!

) oo

A UD chain: UD(S,,,v) = (51, ...,5,).

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

C.

42

2012/3/2

DU Chain

A DU chain 1s a list of all uses that can be
reached by a given definition of a variable. DU
Chain 1s a counterpart of a UD Chain.

[Slr e . [

A DU chain: DU(S;,v) = (S, ..., Sk).

\course\cpeg421-08s\Topic4-a.ppt

43

Use of DU/UD Chains in

Dependence analysis
Live variable analysis
Alias analysis

Analysis for various
transformations

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 44

Available Expressions

An expression x + y is available at a point p if:
1. Every path from the start node to p evaluates x + y.

2. After the last evaluation prior to reaching p, there are
no subsequent assignments to x or y.

We say that a basic block kills expression x + y if it may

assign x or y, and does not subsequently recompute
X +y.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 45

Available Expression:
Example

S2: TEMP=A*B
S1. TEMP =A*B B2 Y=TEMP + C
Bl X=TEMP + C

/

B3 [53: C= 1]

J

B4 [S4:Z=TEMP+C-D*ED

Yes. It is generated in all paths leading
to B4 and it is not killed after its generation in any path.
Thus the redundant expression can be eliminated.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 46

Available Expression:
Example

S3:Y=A*B
A*B B2 | s4:w=y + C
X + C

S1: X
Bl S2: 7

S6:T=A*B
B4 [S7:V= D*T]

Yes. It is generated in all paths leading
to B4 and it is not killed after its generation in any path.
Thus the redundant expression can be eliminated.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 47

Available Expression:
Example

S1: temp=A*B) [53: temp = A * B}
B1| S2:Z=temp +C S4:}=temp + C
B3 [55: C= 1}

B4 [S6: T =temp]

S7:V=D*T

Yes. It is generated in all paths leading
to B4 and it is not killed after its generation in any path.
Thus the redundant expression can be eliminated.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 48

Available Expressions:
gen and kill set

Assume U Is the "universal” set of all
expressions appearing on the right of one or
more statements in a program.

eqen(B) [the set of expressions
generated by B

erii(B): the set of expressions in U
killed in B.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 49

Calculate the Generate Set
of Available Expressions

l No generated expression

&

) P S: 0
X= y+Z
< q S’: add y+z to S; delete expressions
involving x from S
S
< &
a=b+c
< b+c
b=a-d
< d-dc,a-d
c=b+c
« a—d,b+c
d=a-d
: @-d

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

Iterative Algorithm for
Available Expressions

dataflow equations

The set of expressions available at the entry of basic block B:

in(B) = ﬂ out(P)

Pepredecessors(B)

The set of expressions available at the exit of basic block B:
Out(B) — egen(B) U { in(B) — CLill (B)}

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

51
(AhoSethiUllman, pp. 606)

Iterative Algorithm for
Reaching Definitions

Algorithm

1. out(ENTRY) = 0©;
2. For each basic block B other than ENTRY

out(B) =U
3. While changes to any out occur
4 for each B other than ENTRY

d

Need a flag to test if
a out is changed! The
initial value of the flag

in(B) = ﬂ out(P)
P € predecessors(B)

Out(B) — egen(B) U { in(B) _ ekill(B)}
)

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

52
(AhoSethiUllman, pp. 607)

2012/3/2

Detecting global common
subexpressions

\course\cpeg421-08s\Topic4-a.ppt

53

More Useful Data-
Flow Frameworks

Constant propagation is the process of
substituting the values of known constants
in expressions at compile time.

Constant folding is a compiler optimization
technique where constant sub-expressions are
evaluated at compiler time.

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 54

Constant Folding
Example

i=32%48-1530 — ;=g

Constant folding can be implemented :

* In a compiler’s front end on the IR tree
(before it is translted into three-address
codes

* In the back end, as an adjunct to
constant propagation

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 55

2012/3/2

Constant Propagation
Example

int x = 14;
inty=7-x/2;

returny * (28 / x + 2);
lConstant propagation
int x = 14;

inty=7-14/ 2;
returny * (28 / 14 +

2);
l Constant folding

int x = 14;
inty=0;
return 0;

\course\cpeg421-08s\Topic4-a.ppt

56

2012/3/2

Summary

 Basic Blocks

« Control Flow Graph (CFG)

- Dominator and Dominator Tree

- Natural Loops

- Program point and path

- Dataflow equations and the iterative method
- Reaching definition

- Live variable analysis

- Available expressions

\course\cpeg421-08s\Topic4-a.ppt

57

Remarks of Mathematical
Foundations on Solving Dataflow
Equations

As long as the dataflow value domain is “nice” (e.g. semi-lattice)

And each function specified by the dataflow equation is “nice” --
then iterative application of the dataflow equations at each node will
eventually terminate with a stable solution (a fix point).

For mathematical foundation -- read

* Ken Kenedy: “A Survey of Dataflow Analysis Techniques”, In Programm Flow Analysis:
Theory and Applications, Ed. Muchnik and Jones, Printice Hall, 1981.

* Muchnik’s book: Section 8.2, pp 223

For a good discussion: also read 9.3 (pp 618-632) in new Dragon Book

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 58

2012/3/2

Algorithm Convergence

Intuitively we can observe that the algorithm converges
to a fix point because the out(B) set never decreases
in size.

It can be shown that an upper bound on the number of
iterations required to reach a fix point is the number of
nodes in the flow graph.

Intuitively, if a definition reaches a point, it can only reach the
point through a cycle free path, and no cycle free path
can be longer than the number of nodes in the graph.

Empirical evidence suggests that for real programs the
number of iterations required to reach a fix point
is less then five.

\course\cpeg421-08s\Topic4-a.ppt

59

More remarks

If a data-flow framework meets “good”
conditions then it has a unique fixed-point
solution

The iterative algorithm finds the (best) answer

The solution does not depend on order of
computation

Algorithm can choose an order that converges
quickly

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 60

Ordering the Nodes to
Maximize Propagation

Postorder Reverse Postorder

Visit children first Visit parents first

Reverse postorder visits predecessors before visiting a node
Use reverse preorder for backward problems
Reverse postorder on reverse CFG is reverse preorder

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

61

Iterative solution to general
data-flow frameworks

INPUT: A data-flow framework with the following
components:
1. A data-flow graph, with specially labeled ENTRY and EXIT nodes,
2. A direction of the data-flow D,
3. A set of values V,
4. A meet operator A,

5. A set of functions F, where /zin Fis the transfer function for block
B, and

6. A constant value ventry Or VEXIT /7 V, representing the boundary
condition for forward and backward frameworks, respectively.

OUTPUT: Values in V for IN[8] and OUT][5] for each block 5
in the data-flow graph.

(From p925 in Dragon Book Edition 2)

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 62

Iterative algorithm for a
forward data-flow problem

OUT(ENTRY) = V yrzrs

for (each basic block B other than ENTRY)
OUT(B) = T;

while (changes to any OUT occur)
for (each basic block B other than ENTRY) {

IN(B) = ﬂ OUT(P);
P € predecessors(B)

OUT(B) = fp(IN(B))
}

(From p926 in Dragon Book Edition 2)

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt 63

Iterative algorithm for a
backward data-flow problem

IN(EXIT) = Vgxr;

for (each basic block B other than EXIT)
IN(B) = T;

while (changes to any IN occur)

for (each basic block B other than EXIT) {

OUT(B) = nS esuccessors(B) IN (S)
IN(B) = fp(OUT(B));

(From p926 in Dragon Book Edition 2)

2012/3/2 \course\cpeg421-08s\Topic4-a.ppt

