
621-10F/Topic-1d-SSA 1

Topic I (d):

Static Single Assignment Form

(SSA)

621-10F/Topic-1d-SSA 2

Reading List

Slides: Topic Ix

Other readings as assigned
in class

621-10F/Topic-1d-SSA 3

 ABET Outcome

 Ability to apply knowledge of SSA technique in

compiler optimization

 An ability to formulate and solve the basic SSA
construction problem based on the techniques
introduced in class.

 Ability to analyze the basic algorithms using SSA form to
express and formulate dataflow analysis problem

 A Knowledge on contemporary issues on this topic.

621-10F/Topic-1d-SSA 4

Roadmap

Motivation

Introduction:

SSA form

Construction Method

Application of SSA to Dataflow Analysis Problems

PRE (Partial Redundancy Elimination) and
SSAPRE

Summary

621-10F/Topic-1d-SSA 5

Prelude

SSA: A program is said to be in SSA form

iff

Each variable is statically defined exactly only

once, and

each use of a variable is dominated by that

variable’s definition.

So, is straight line code in SSA form ?

621-10F/Topic-1d-SSA 6

Example

 In general, how to

transform an arbitrary

program into SSA form?

 Does the definition of X2

dominate its use in the

example?

𝑿𝟏 

𝑿𝟐 

𝑿𝟑 𝝓 (𝑿𝟏, 𝑿𝟐)

𝑿𝟒 

621-10F/Topic-1d-SSA 7

SSA: Motivation

 Provide a uniform basis of an IR to solve a wide
range of classical dataflow problems

 Encode both dataflow and control flow
information

 A SSA form can be constructed and maintained
efficiently

 Many SSA dataflow analysis algorithms are
more efficient (have lower complexity) than
their CFG counterparts.

621-10F/Topic-1d-SSA 8

Algorithm Complexity

Assume a 1 GHz machine, and

an algorithm that takes f(n) steps (1 step = 1 nanosecond).

n 8 16 32 128 1024

lg n 3 ns 4 ns 5 ns 7 ns 10 ns

sqrt(n) 2.8 ns 4 ns 6 ns 11 ns 32 ns

n 8 ns 16 ns 32 ns 128 ns 1 s

n lg n 24 ns 64 ns 160 ns 896 ns 10 s

n2 64 ns 256 ns 1.0 s 16 s 1 ms

n3 512 ns 4 s 32.8 s 2 ms 1.1 sec

2n 256 ns 66 s 4 sec. 1022 year

n! 40 s 5.8 hours 1019 year

621-10F/Topic-1d-SSA 9

Interprocedural Analysis and Optimization

Loop Nest Optimization and Parallelization

Global (Scalar) Optimization

Backend

Code Generation

Front end

Good IR

Where SSA Is Used In Modern

Compilers ?

Middle-End

621-10F/Topic-1d-SSA 10

KCC Compiler Infrastructure

C++ Fortran C

fe90 gfec gfecc

Asm file

Very High WHIRL

High WHIRL

Middle WHIRL

Low WHIRL

Very Low WHIRL

CGIR

•Source to IR (Scanner →Parser →RTL →WHIRL)

•VHO (Very High WHIRL Optimizer)
•Standalone Inliner
•W2C/W2F

•IPA (inter-procedural analysis & opt)
•LNO (Loop unrolling/fission/fusion/tiling/peeling etc)
•PREOPT (point-to analysis etc)

•WOPT
 - SSAPRE (Partial Redundancy Elimination)
 - VNFRE (Value numbering based full redundancy elim.)
• RVI-1 (Register Variable Identification)

•RVI-2

•Some peephole opt

•Cflow (control flow opt)

•EBO (extended block opt.)

•PQS (predicate query system)

•Loop Opt (Unrolling + SWP)

•GCM (global code motion), HB sched (hyperblk schedule)

• GRA/LRA (global/local register alloc)

M
a
c
h
in

e
 M

o
d
e
l

F
ro

n
t e

n
d

M

id
d

le
 e

n
d

B

a
c
k
 e

n
d

621-10F/Topic-1d-SSA 11

Roadmap

Motivation

Introduction:

SSA form

Construction Method

Application of SSA to Dataflow Analysis Problems

PRE (Partial Redundancy Elimination) and
SSAPRE

Summary

621-10F/Topic-1d-SSA 12

Static Single-

Assignment Form

Each variable has only one definition in the program text.

This single static definition can be in a loop and

may be executed many times. Thus even in a

program expressed in SSA, a variable can be

dynamically defined many times.

621-10F/Topic-1d-SSA 13

Advantages of SSA

• Simpler dataflow analysis

• No need to use use-def/def-use chains, which

requires NM space for N uses and M

definitions

• SSA form relates in a useful way with

dominance structures.

621-10F/Topic-1d-SSA 14

SSA Form – An Example

SSA-form

 Each name is defined exactly once

 Each use refers to exactly one name

What’s hard

 Straight-line code is trivial

 Splits in the CFG are trivial

 Joins in the CFG are hard

Building SSA Form

 Insert Ø-functions at birth points

 Rename all values for uniqueness

*

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

?

[Curtesy: Slide 10-14 are from the book

from Prof. K. Cooper’s website]

621-10F/Topic-1d-SSA 15

Birth Points

(another notion due to Tarjan)

Consider the flow of values in this example:

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

The value x appears everywhere

It takes on several values.

• Here, x can be 13, y-z, or 17-4

• Here, it can also be a+b

If each value has its own name …

• Need a way to merge these
 distinct values

• Values are “born” at merge points

*

621-10F/Topic-1d-SSA 16

Birth Points

(another notion due to Tarjan)

Consider the flow of values in this example:

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

New value for x here
17 - 4 or y - z

New value for x here
13 or (17 - 4 or y - z)

New value for x here
a+b or ((13 or (17-4 or y-z))

621-10F/Topic-1d-SSA 17

Birth Points

(another notion due to Tarjan)

x  17 - 4

x  a + b

x  y - z

x  13

z  x * q

s  w - x

These are all birth points for values

• All birth points are join points

• Not all join points are birth points

• Birth points are value-specific …

Consider the value flow below:

621-10F/Topic-1d-SSA 18

Review

SSA-form

 Each name is defined exactly once

 Each use refers to exactly one name

What’s hard

 Straight-line code is trivial

 Splits in the CFG are trivial

 Joins in the CFG are hard

Building SSA Form

 Insert Ø-functions at birth points

 Rename all values for uniqueness

A Ø-function is a special kind
of copy that selects one of
its parameters.

The choice of parameter is
governed by the CFG edge
along which control reached
the current block.

Real machines do not
implement a Ø-function
directly in hardware.(not
yet!)

y1  ... y2  ...

y3  Ø(y1,y2)

*

621-10F/Topic-1d-SSA 19

Use-def Dependencies in

Non-straight-line Code

Many uses to many

defs

 Overhead in

representation

 Hard to manage

a =

a

a

a =

a

a =

621-10F/Topic-1d-SSA 20

Factoring Operator 𝝓

 Number of edges

reduced from 9 to 6

 A 𝝓 is regarded as def

(its parameters are uses)

 Many uses to 1 def

 Each def dominates all

its uses

a =

a

a

a =

a

a =

a = 𝝓a,a,a)

Factoring – when multiple edges cross a join point, create a

common node  that all edges must pass through

621-10F/Topic-1d-SSA 21

Rename to represent use-def edges

a2=

a4

a4

a3=

a4

a1 =

a4 = 𝝓a1,a2,a3)

• No longer

necessary to

represent the

use-def edges

explicitly

621-10F/Topic-1d-SSA 22

SSA Form in Control-

Flow Path Merges

b  M[x]
a  0

if b<4

a  b

c  a + b

B1

B2

B3

B4

Is this code in SSA form?

No, two definitions of a at B4 appear

 in the code (in B1 and B3)

How can we transform this code

into a code in SSA form?

We can create two versions of

a, one for B1 and another for B3.

621-10F/Topic-1d-SSA 23

SSA Form in Control-

Flow Path Merges

b  M[x]
a1  0

if b<4

a2  b

c  a? + b

B1

B2

B3

B4

But which version should we
use in B4 now?

We define a fictional function that
“knows” which control path was

taken to reach the basic block B4:

=
B3 from B4 at arrive we if a2

B2 from B4 at arrive we if a1
a2 a1, f ()

621-10F/Topic-1d-SSA 24

SSA Form in Control-

Flow Path Merges

b  M[x]
a1  0

if b<4

a2  b

a3  f(a2,a1)
c  a3 + b

B1

B2

B3

B4

But, which version should we

use in B4 now?

We define a fictional function that

“knows” which control path was

taken to reach the basic block B4:

() =
B3 from B4 at arrive we if a2

B2 from B4 at arrive we if a1
a1 a2, f

621-10F/Topic-1d-SSA 25

A Loop Example

a  0

b  a+1
c  c+b
a  b*2
if a < N

return

a1  0

a3  f(a1,a2)
b2  f(b0,b2)
c2  f(c0,c1)
b2  a3+1
c1  c2+b2
a2  b2*2
if a2 < N

return
f(b0,b2) is not necessary because b0 is

never used. But the phase that generates

f functions does not know it.

Unnecessary functions

are eliminated by dead code elimination.

Note: only a,c are first used in

the loop body before it is redefined.

For b, it is redefined right at the

beginning!

621-10F/Topic-1d-SSA 26

The f function

How can we implement a f function that “knows”

which control path was taken?

Answer 1: We don’t!! The f function is used only

to connect use to definitions during

optimization, but is never implemented.

Answer 2: If we must execute the f function, we can

implement it by inserting MOVE instructions

in all control paths.

621-10F/Topic-1d-SSA 27

Roadmap

Motivation

Introduction:

SSA form

Construction Method

Application of SSA to Dataflow Analysis Problems

PRE (Partial Redundancy Elimination) and
SSAPRE

Summary

621-10F/Topic-1d-SSA 28

Criteria For Inserting

f Functions

We could insert one f function for each variable

at every join point(a point in the CFG with more

than one predecessor). But that would be wasteful.

What should be our criteria to insert a f function

for a variable a at node z of the CFG?

Intuitively, we should add a function f if

there are two definitions of a that can reach

the point z through distinct paths.

621-10F/Topic-1d-SSA 29

A naïve method

Simply introduce a 𝜙-function at each
“join” point in CFG

But, we already pointed out that this is
inefficient – too many useless 𝜙-functions
may be introduced!

What is a good algorithm to introduce
only the right number of 𝜙-functions ?

621-10F/Topic-1d-SSA 30

Path Convergence

Criterion

Insert a f function for a variable a at a node z if

all the following conditions are true:

1. There is a block x that defines a

2. There is a block y  x that defines a

3. There is a non-empty path Pxz from x to z

4. There is a non-empty path Pyz from y to z

5. Paths Pxz and Pyz don’t have any nodes in

 common other than z

6. ?

The start node contains an implicit definition

of every variable.

621-10F/Topic-1d-SSA 31

Iterated Path-

Convergence Criterion

The f function itself is a definition of a.
Therefore the path-convergence criterion

is a set of equations that must be satisfied.

while there are nodes x, y, z satisfying conditions 1-5
 and z does not contain a f function for a
do insert a f(a, a, …, a) at node z

This algorithm is extremely costly, because it

requires the examination of every triple of

nodes x, y, z and every path leading from

x to y.

Can we do better? – a topic for more discussion

621-10F/Topic-1d-SSA 32

Concept of dominance

Frontiers

X 

Blocks

dominate

d by bb1

bb1

bbn

Border between

dorm and not-

dorm

(Dominance
Frontier)

An Intuitive View

621-10F/Topic-1d-SSA 33

Dominance Frontier

 The dominance frontier DF(x) of a node x
is the set of all node z such that x
dominates a predecessor of z, without
strictly dominating z.

Recall: if x dominates y and x ≠ y, then

x strictly dominates y

621-10F/Topic-1d-SSA 34

Calculate The Dominance Frontier

1

2 9

13

3

4

6 7 10 11

12
8

5

How to Determine the Dominance Frontier of Node 5?

An Intuitive Way

1. Determine the dominance region of

node 5:

2. Determine the targets of edges

crossing from the dominance

region of node 5

 {5, 6, 7, 8}

These targets are the dominance

frontier of node 5

DF(5) = { 4, 5, 12, 13}

NOTE: node 5 is in DF(5) in this case – why ?

621-10F/Topic-1d-SSA 35

Are we done ?

Not yet!

See a simple example ..

621-10F/Topic-1d-SSA 36

Putting program into SSA form

  needed only at dominance frontiers of defs

(where it stops dominating)

 Dominance frontiers pre-computed based on

control flow graph

 Two phases:

1. Insert  ’s at dominance frontiers of each def

(recursive)

2. Rename the uses to their defs’ name

• Maintain and update stack of variable versions in

pre-order traversal of dominator tree

621-10F/Topic-1d-SSA 37

Example

Phase 1:  Insertion
a =

a =

a = fa,a)

a = fa,a)

1

2

3

4

Steps:

def at BB 3 → Φ at BB 4

Φ def at BB 4 → Φ at BB 2

621-10F/Topic-1d-SSA 38

Example

a1 =

a =

Phase 2: Rename

a = fa,a1)

a = fa,a)

1

2

3

4

1

2

3 4

dominator tree

a1

stack for a

621-10F/Topic-1d-SSA 39

Example

a1 =

a =

Phase 2: Rename

a2 = fa,a1)

a = fa2,a)

1

2

3

4

1

2

3 4

dominator tree
a1

a2

621-10F/Topic-1d-SSA 40

Example

a1 =

a3 =

Phase 2: Rename

a2 = fa,a1)

a = fa2,a3)

1

2

3

4

1

2

3 4

dominator tree

a1

a2

a3

621-10F/Topic-1d-SSA 41

Example

a1 =

a3 =

Phase 2: Rename

a2 = fa4,a1)

a4 = fa2,a3)

1

2

3

4

1

2

3 4

dominator tree

a1

a2

a4

621-10F/Topic-1d-SSA 42

Roadmap

Motivation

Introduction:

SSA form

Construction Method

Application of SSA to Dataflow Analysis Problems

PRE (Partial Redundancy Elimination) and
SSAPRE

Summary

621-10F/Topic-1d-SSA 43

Simple Constant

Propagation in SSA

If there is a statement v  c, where c is a constant,

then all uses of v can be replaced for c.

A f function of the form v  f(c1, c2, …, cn) where all

ci’s are identical can be replaced for v  c.

Using a work list algorithm in a program in SSA form,

we can perform constant propagation in linear time

In the next slide we assume that x, y, z are variables

and a, b, c are constants.

621-10F/Topic-1d-SSA 44

Linear Time Optimizations

in SSA form

Copy propagation: The statement x  f(y) or the statement

x  y can be deleted and y can substitute every use of x.

Constant folding: If we have the statement x  a  b, we can

evaluate c  a  b at compile time and replace the

statement for x  c

Constant conditions: The conditional

if a < b goto L1 else L2

can be replaced for goto L1 or goto L2, according to the

compile time evaluation of a < b, and the CFG, use lists,

adjust accordingly

Unreachable Code: eliminate unreachable blocks.

621-10F/Topic-1d-SSA 45

Dead-Code Elimination

in SSA Form

Because there is only one definition for each

variable, if the list of uses of the variable

is empty, the definition is dead.

When a statement v x  y is eliminated because

v is dead, this statement should be removed from

the list of uses of x and y. Which might cause

those definitions to become dead.

Thus we need to iterate the dead code elimination

algorithm.

621-10F/Topic-1d-SSA 46

A Case Study: Dead Store

Elimination

Steps:

1. Assume all defs are dead and all statements not
required

2. Mark following statements required:

a. Function return values

b. Statements with side effects

c. Def of global variables

3. Variables in required statements are live

4. Propagate liveness backwards iteratively through:

a. use-def edges – when a variable is live, its def
statement is made live

b. control dependences

621-10F/Topic-1d-SSA 47

Control Dependence

 Statements in branched-to

blocks depend on the

conditional branch

 Equivalent to post-

dominance frontier

(dominance frontier of the

inverted control flow graph)

If (i < n)

x =

621-10F/Topic-1d-SSA 48

Example of dead store elimination

i3 = fi2,i1)

s3 = fs2,s1)

i2 = i3 +1

s2 = s3 * s3

if (i3 < 10)

s1 =

return s2

Nothing is dead

Propagation steps:

1. return s2 → s2

2. s2 → s2 = s3 * s3

3. s3 → s3 = f(s2,s1)

4. s1 → s1 =

5. return s2 → if (i2 < 10)

[control dependence]

6. i2 → i2 = i3 + 1

7. i3 → i3 = f(i2,i1)

8. i1 → i1 =

i1 =

621-10F/Topic-1d-SSA 49

Example of dead store elimination

All statements not required; whole loop deleted

i3 = fi2,i1)

s3 = fs2,s1)

i2 = i3 +1

s2 = s3 * s3

if (i3 < 10)

s1 =

empty

i1 =

621-10F/Topic-1d-SSA 50

Advantages of SSA-based optimizations

Dependency information built-in

 No separate phase required to compute dependency
information

Transformed output preserves SSA form

 Little overhead to update dependencies

Efficient algorithms due to:

 Sparse occurrence of nodes

 Complexity dependent only on problem size (independent
of program size)

 Linear data flow propagation along use-def edges

 Can customize treatment according to candidate

Can re-apply algorithms as often as needed

No separation of local optimizations from global optimizations

