
2012/3/12 \course\cpeg421-10F\Topic2a.ppt 1

Topic 2b

Basic Back-End Optimization

Instruction Selection

Instruction scheduling

Register allocation

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 2

 ABET Outcome

 Ability to apply knowledge of basic code generation techniques,

e.g. Instruction scheduling, register allocation, to solve code
generation problems.

 An ability to identify, formulate and solve loops scheduling
problems using software pipelining techniques

 Ability to analyze the basic algorithms on the above techniques and
conduct experiments to show their effectiveness.

 Ability to use a modern compiler development platform and tools
for the practice of above.

 A Knowledge on contemporary issues on this topic.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 3

Reading List Reading List

(1) K. D. Cooper & L. Torczon, Engineering a Compiler, Chapter 12

(2) Dragon Book, Chapter 10.1 ~ 10.4

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 4

A Short Tour on

Data Dependence

A Short Tour on

Data Dependence

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 5

Basic Concept and Motivation Basic Concept and Motivation

Data dependence between 2 accesses

The same memory location

Exist an execution path between them

At least one of them is a write

Three types of data dependencies

Dependence graphs

Things are not simple when dealing with loops

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 6

Data Dependencies

There is a data dependence between
statements Si and Sj if and only if

Both statements access the same memory
location and at least one of the statements
writes into it, and

There is a feasible run-time execution path
from Si to Sj

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 7

Types of Data Dependencies

 Flow (true) Dependencies - write/read (d)
x := 4;

…

y := x + 1;

 Output Dependencies - write/write (do)
x := 4;

 …

x := y + 1;

 Anti-dependencies - read/write (d-1)
y := x + 1;

…

x := 4;

d

-1

d--

0 d

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 8

(1) x := 4

(2) y := 6

(3) p := x + 2

(4) z := y + p

(5) x := z

(6) y := p

x := 4 y := 6

 p := x + 2

 z := y + p

 y := p x := z

Flow

An Example of Data Dependencies

Output

Anti

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 9

Data Dependence Graph (DDG)

 Forms a data dependence graph between statements

nodes = statements

edges = dependence relation (type label)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 10

Reordering Transformations using DDG

Given a correct data dependence graph,
any order-based optimization that does
not change the dependences of a
program is guaranteed not to change the
results of the program.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 11

Reordering Transformations

A reordering transformation is any program
transformation that merely changes the order
of execution of the code, without adding or
deleting any executions of any statements.

A reordering transformation preserves a
dependence if it preserves the relative
execution order of the source and sink of that
dependence.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 12

 Instruction Scheduling

 Loop restructuring

 Exploiting Parallelism
 Analyze array references to determine

whether two iterations access the same
memory location. Iterations I1 and I2 can
be safely executed in parallel if there is no
data dependency between them.

 …

Reordering Transformations (Con’t)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 13

Data Dependence Graph Data Dependence Graph

Example 1:

S1: A = 0

S2: B = A

S3: C = A + D

S4: D = 2

Sx d Sy  flow dependence

S1

S2

S3

S4

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 14

Example 2:

S1: A = 0

S2: B = A

S3: A = B + 1

S4: C = A

S1

S2

S3

S4

Data Dependence Graph Data Dependence Graph

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 15

Should we consider input
dependence?

Should we consider input
dependence?

= X

= X

Is the reading of the

same X important?

Well, it may be!

(if we intend to group the 2 reads

together for cache optimization!)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 16

 - register allocation
 - instruction scheduling
 - loop scheduling
 - vectorization
 - parallelization
 - memory hierarchy optimization

Applications of Data

Dependence Graph

Applications of Data

Dependence Graph

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 17

 Data Dependence in Loops

Problem: How to extend the concept to loops?

(s1) do i = 1,5

(s2) x := a + 1; s2 d-1 s3, s2 d s3

(s3) a := x - 2;

(s4) end do s3 d s2 (next iteration)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 18

Instruction Scheduling

 Modern processors can overlap the execution of

multiple independent instructions through

pipelining and multiple functional units.

Instruction scheduling can improve the

performance of a program by placing

independent target instructions in parallel or

adjacent positions.

Motivation

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 19

Instruction scheduling (con’t)

• Assume all instructions are essential, i.e., we

have finished optimizing the IR.

• Instruction scheduling attempts to reorder the

codes for maximum instruction-level

parallelism (ILP).

• It is one of the instruction-level optimizations

• Instruction scheduling (IS) in general is NP-

complete, so heuristics must be used.

Instruction

Schedular

Original Code Reordered Code

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 20

Instruction scheduling:

A Simple Example

a = 1 + x

b = 2 + y

c = 3 + z

Since all three instructions are independent, we can

execute them in parallel, assuming adequate hardware

processing resources.

time

a = 1 + x b = 2 + y c = 3 + z

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 21

Hardware Parallelism

Three forms of parallelism are found in

modern hardware:

•pipelining

•superscalar processing

•VLIW

•multiprocessing

Of these, the first three forms are

commonly exploited by today’s compilers’

instruction scheduling phase.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 22

Pipelining & Superscalar

Processing

Pipelining
 Decompose an instruction’s execution into a sequence of

stages, so that multiple instruction executions can be

overlapped. It has the same principle as the assembly

line.

Superscalar Processing
 Multiple instructions proceed simultaneously assisted by

hardware dynamic scheduling mechanism. This is

accomplished by adding more hardware, for parallel

execution of stages and for dispatching instructions to

them.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 23

A Classic Five-Stage Pipeline

IF RF EX ME WB

time

- instruction fetch

- decode and register fetch

- execute on ALU

- memory access

- write back to register file

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 24

Pipeline Illustration

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

time

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

The standard non-pipelined model

time

In a given cycle, each

instruction is in a different

stage, but every stage is active

The pipeline is “full” here

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 25

Parallelism in a pipeline

Example:
 i1: add r1, r1, r2

 i2: add r3 r3, r1

 i3: lw r4, 0(r1)

 i4: add r5 r3, r4

Consider two possible instruction schedules (permutations):
`

i1 i2 i3 i4

2 Idle Cycle

Schedule S1 (completion time = 6 cycles):

i1 i3 i2 i4
Schedule S2 (completion time = 5 cycles):

Assume:

Register instruction 1 cycle

Memory instruction 3 cycle

1 Idle Cycle

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 26

Superscalar Illustration

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

Multiple instructions in

the same pipeline stage at

the same time
IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

IF RF EX ME WB

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 27

Parallelism Constraints

Data-dependence constraints

 If instruction A computes a value that is

 read by instruction B, then B can’t

 execute before A is completed.

Resource hazards

 Finiteness of hardware function units

 means limited parallelism.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 28

Scheduling Complications

􀂃 Hardware Resources

 • finite set of FUs with instruction type, and width,

 and latency constraints

 • cache hierarchy also has many constraints

􀂃 Data Dependences

 • can’t consume a result before it is produced

 • ambiguous dependences create many challenges

􀂃 Control Dependences

 • impractical to schedule for all possible paths

 • choosing an “expected” path may be difficult

 • recovery costs can be non-trivial if you are wrong

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 29

Legality Constraint for

Instruction Scheduling

Question: when must we preserve the

 order of two instructions, i

 and j ?

Answer: when there is a dependence from i

 to j.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 30

Construct DDG with Weights

 Construct a DDG by assigning weights to

nodes and edges in the DDG to model the

pipeline as follows:

• Each DDG node is labeled a resource-reservation table whose

value is the resource-reservation table associated with the

operation type of this node.

• Each edge e from node j to node k is labeled with a weight

(latency or delay) de indicting that the destination node j must be

issued no earlier than de cycles after the source node k is

issued.

Dragon book 722

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 31

Example of a Weighted

Data Dependence Graph

 i1: add r1, r1, r2

 i2: add r3 r3, r1

 i3: lw r4, (r1)

 i4: add r5 r3, r4

i2

i3

i1 i4

1 1

3 1

ALU

ALU

ALU

Mem

Assume:

Register instruction 1 cycle

Memory instruction 3 cycle

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 32

Legal Schedules for Pipeline

 Consider a basic block with m instructions,

 i1, …, im.

 A legal sequence, S, for the basic block on a

pipeline consists of:

 A permutation f on 1…m such that f(j)

identifies the new position of instruction j in the

basic block. For each DDG edge form j to k, the

schedule must satisfy f(j) <= f(k)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 33

Legal Schedules for Pipeline
(Con’t)

 Instruction start-time

An instruction start-time satisfies the following conditions:

• Start-time (j) >= 0 for each instruction j

• No two instructions have the same start-time value

• For each DDG edge from j to k,

 start-time(k) >= completion-time (j)

where

 completion-time (j) = start-time (j)

 + (weight between j and k)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 34

 We also define:

 make_span(S) = completion time of schedule S

 = MAX ({ completion-time (j)})

Legal Schedules for Pipeline
(Con’t)

1 ≤ j ≤ m

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 35

Example of Legal

Schedules

 Start-time 0 1 2 4

 Start-time 0 1 2 5

i1 i2 i3 i4

2 Idle Cycle

Schedule S1 (completion time = 6 cycles):

i1 i3 i2 i4
Schedule S2 (completion time = 5 cycles):

1 Idle Cycle

Assume:

Register instruction 1 cycle

Memory instruction 3 cycle

i1: add r1, r1, r2
i2: add r3 r3, r1
i3: lw r4, (r1)
i4: add r5 r3, r4

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 36

Instruction Scheduling

(Simplified)

 Given an acyclic weighted
data dependence graph G
with:
• Directed edges: precedence

• Undirected edges: resource
constraints

Determine a schedule S

such that the length of the schedule is minimized!

1

2 3

4 5

6

d12

d23

d13

d35 d34

d45

d56
d46

d26

d24

Problem Statement:

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 37

Simplify Resource

Constraints

 Assume a machine M with n functional units or a

“clean” pipeline with k stages.

 What is the complexity of a optimal scheduling

algorithm under such constraints ?

 Scheduling of M is still hard!

• n = 2 : exists a polynomial time algorithm
 [CoffmanGraham]

• n = 3 : remain open, conjecture: NP- hard

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 38

General Approaches of

Instruction Scheduling

List Scheduling

Trace scheduling

Software pipelining

 ……

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 39

Trace Scheduling

A technique for scheduling instructions across
basic blocks.

The Basic Idea of trace scheduling

 􀂃 Uses information about actual program
behaviors to select regions for scheduling.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 40

Software Pipelining

A technique for scheduling instructions across
loop iterations.

 The Basic Idea of software pipelining

􀂃 Rewrite the loop as a repeating pattern

that overlaps instructions from different

iterations.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 41

List Scheduling

A most common technique for scheduling
instructions within a basic block.
The Basic Idea of list scheduling

 􀂃 All instructions are sorted according to some priority
function.

 Also Maintain a list of instructions that are ready to execute

 (i.e. data dependence constraints are satisfied)

 􀂃 Moving cycle-by-cycle through the schedule template:

 • choose instructions from the list & schedule them
(provided that machine resources are available)

 • update the list for the next cycle

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 42

List Scheduling (Con’t)

 􀂃 Uses a greedy heuristic approach

 􀂃 Has forward and backward forms

 􀂃 Is the basis for most algorithms that perform
scheduling over regions larger than a single
block.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 43

Heuristic Solution:

Greedy List Scheduling Algorithm

1. Build a priority list L of the instructions in non-
decreasing order of some rank function.

2. For each instruction j, initialize

 pred-count[j] := #predecessors of j in DDG

3. Ready-instructions := {j | pred-count[j] = 0 }

4. While (ready-instructions is non-empty) do j :=
first ready instruction according to the order in
priority list, L; Output j as the next instruction in the
schedule;

Consider resource constraints beyond a single clean pipeline

Consider resource constraints beyond a single clean pipeline

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 44

 Ready-instructions := ready-instructions- { j };

 for each successor k of j in the DDG do

 pred-count[k] := pred-count[k] - 1;

 if (pred-count[k] = 0) then

 ready-instructions := ready-instruction

 + { k };

 end if

 end for

 end while

Con’d

Heuristic Solution:

Greedy List Scheduling Algorithm

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 45

Special Performance

Bounds

 For a single two stage pipeline,

 m = 1 and k = 2 ==>

 (here m is the number of pipelines, and k is the number of pipeline

stages per pipeline)

 makespan (greedy)/makespan(OPT) <= 1.5

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 46

Properties of List

Scheduling

• The result is within a factor of two from the

optimal for pipelined machines (Lawler87)

Note : we are considering basic block scheduling here Note : we are considering basic block scheduling here

• Complexity: O(n^2) --- where n is the

number of nodes in the DDG

• In practice, it is dominated by DDG

building which itself is also O(n^2)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 47

A Heuristic Rank Function

Based on Critical paths

1. Compute EST (Earliest Starting Times) for each node in the
augmented DDG as follows:

 EST[START] = 0

 EST{y] =

 MAX ({EST[x] + node-weight (x) + edge-weight (x,y) |

 there exists an edge from x to y })

2. Set CPL := EST[END], the critical path length of the augmented
DDG.

3. Similarly, compute LST (Latest Starting Time of All nodes);

4. Set rank (i) = LST [i] - EST [i], for each instruction i

 (all instructions on a critical path will have zero rank)

NOTE: there are other heurestics NOTE: there are other heurestics

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 48

Example of Rank Computation

Node, x EST[X] LST[x] rank
(x)

Start 0 0 0

i1 0 0 0

i2 1 2 1

i3 1 1 0

i4 3 3 0

END 4 4 0

 ==> Priority list = (i1, i3, i4, i2)

i2

i3

i1 i4

0 0

1

1

1

END
0

START

0

0

0

1 0 1

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 49

Summary

Instruction Scheduling for a Basic Block

1. Build the data dependence graph (DDG) for the basic
block

• Node = target instruction

• Edge = data dependence (flow/anti/output)

2. Assign weights to nodes and edges in the DDG so as
to model target processor e.g., for a two-stage
pipeline

• Node weight = 1, for all nodes

• Edge weight = 1 for edges with load/store
instruction as source node; edge weight = 0 for all
other edges

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 50

Summary

3. A legal schedule for a weighted DDG must

obey all ordering and timing constraints of the

weighted DDG

4. Goal: find a legal schedule with minimum

completion time

Con’d

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 51

Other Heurestics for Ranking

Number of successors ?

Number of total decendents ?

Latency ?

Last use of a variable ?

Others ?

Note: these heuristics help break ties, but none
dominates the others.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 52

Hazards Preventing

Pipelining

• Structural hazards

• Data dependent hazard

• Control hazard

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 53

Local vs. Global Scheduling

1. Straight-line code (basic block) – Local scheduling

2. Acyclic control flow – Global scheduling

• Trace scheduling

• Hyperblock/superblock scheduling

• IGLS (integrated Global and Local Scheduling)

3. Loops - a solution for this case is loop

unrolling+scheduling, another solution is

 software pipelining or modulo scheduling i.e., to rewrite

the loop as a repeating pattern that overlaps instructions

from different iterations.

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 54

Smooth Info

flow into Backend

in Open64

Smooth Info

flow into Backend

in Open64

WHIRL

IGLS
GRA/LRA

WHIRL-to-TOP

CGIR

Hyperblock Formation
Critical Path Reduction

Inner Loop Opt
Software Pipelining

Extended
basic block
optimization

Control
Flow
optimization

Code Emission

Executable

In
fo

rm
a

ti
o
n

 f
ro

m
 F

ro
n

t
en

d

(a
li

a
s,

 s
tr

u
ct

u
re

,
et

c.
)

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 55

Flowchart of Code

Generator

WHIRL

Process Inner Loops: unrolling,
EBO

Loop prep, software pipelining

IGLS: pre-pass

GRA, LRA, EBO

IGLS: post-pass

Control Flow Opt

Code Emission

WHIRL-to-TOP Lowering

CGIR: Quad Op List

Control Flow Opt I
EBO

Hyperblock Formation
Critical-Path Reduction

Control Flow Opt II

EBO

EBO:
Extended
basic block
optimization
peephole,
etc.

PQS:
Predicate
Query
System

2012/3/12 \course\cpeg421-10F\Topic2a.ppt 56

Software Pipelining

vs

Normal Scheduling

a SWP-amenable
 loop candidate ?

Inner loop processing

software pipelining

Code Emission

IGLS

GRA/LRA

IGLS

No
Yes

Failure/not profitable

Success

