
Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Dependence Analysis and Loop
Transformations

CPEG421/621: Compiler Design

University of Delaware

1 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A Quick Overview

We already talked a bit about dependence in the context
of instruction scheduling. However dependence analysis
provides a more general framework to perform program
transformation. It is useful to provide information on:
• How and where to move a given (group of)

statement(s)
• How efficient a given transformation will be (i.e. how

profitable it is)
• If a transformation is legal in general

Dependence analysis is the instrument of choice to
perform loop transformations.

2 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Reading List

• The Dragon Book (Chapter 11, esp. Sections 11.3,
11.5, 11.6)

• S. Muchnick’s book on advanced compiler
technology (Chapter XXX)

• R. Allen’s and K. Kennedy’s book (esp. Chapters 2,3
for dependence theory; Chapters 5,6 for loop
transformations).

This lecture is mainly using the book by Allen & Kennedy.

3 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A Few Definitions

Data Dependence
There is a data dependence from statement S1 to
statement S2, denoted S1 → S2, and which reads
“statement S2 depends on statement S1” if and only if

1 Both statements access the same memory location
M, and at least one of them stores into it, and

2 There is a feasible run-time execution path from S1
to S2

4 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Types of Dependences (1/2)

They relate closely with read/write dependence used in
computer architecture books (such as Hennesy’s and
Patterson’s):
• True (or flow) dependence: S1δS2 (also written as

S1δ
f S2)

• Anti-dependence: S1δ
−1S2 (also written as S1δ

aS2)
• Output dependence: S1δ

oS2

5 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Types of Dependences:
illustrations (2/2)

True dependence: S1δS2

x = /∗ some source ∗ /
/∗ some d e s t i n a t i o n ∗ / = x

Anti-dependence: S1δ
−1S2

/∗ some d e s t i n a t i o n ∗ / = x
x = /∗ some source ∗ /

Output dependence: S1δ
oS2

x = /∗ some source ∗ /
x = /∗ some other source ∗ /

6 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Dependence in Loops
How do we apply our previous definitions to loops?

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +1] = a [i] + b [i] ;

}

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +2] = a [i] + b [i] ;

}

Some parameterization is necessary to describe loop
dependences. Considering regular loops, we say a loop
always has three components: a lower bound L, an upper
bound U, and a step S:

for (i n t i = L ; i < S; i += S) {
/∗ loop body here ∗ /

}

7 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Dependence in Loops
How do we apply our previous definitions to loops?

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +1] = a [i] + b [i] ;

}

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +2] = a [i] + b [i] ;

}

Some parameterization is necessary to describe loop
dependences. Considering regular loops, we say a loop
always has three components: a lower bound L, an upper
bound U, and a step S:

for (i n t i = L ; i < S; i += S) {
/∗ loop body here ∗ /

}

7 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Dependence in Loops
How do we apply our previous definitions to loops?

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +1] = a [i] + b [i] ;

}

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +2] = a [i] + b [i] ;

}

Some parameterization is necessary to describe loop
dependences. Considering regular loops, we say a loop
always has three components: a lower bound L, an upper
bound U, and a step S:

for (i n t i = L ; i < S; i += S) {
/∗ loop body here ∗ /

}

7 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Dependence in Loops
How do we apply our previous definitions to loops?

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +1] = a [i] + b [i] ;

}

for (i n t i = 0 ; i < N; ++ i) {
/∗ S1 ∗ / a [i +2] = a [i] + b [i] ;

}

Some parameterization is necessary to describe loop
dependences. Considering regular loops, we say a loop
always has three components: a lower bound L, an upper
bound U, and a step S:

for (i n t i = L ; i < S; i += S) {
/∗ loop body here ∗ /

}

7 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Iteration Number and Vector
(1/2)

Normalized iteration number
For an arbitrary, regular loop in which the loop index I
runs from L to S in steps of S, we define the (normalized)
iteration number i of a specific iteration as : (I − L + S)/S,
where I is the value of the index on that iteration.

Iteration Vector
Given a nest of n loops, the iteration vector~i of a
particular iteration of the innermost loop is defined as:
~i =

[
i1, i2, · · · , in

]
, where n is the innermost loop in the

loop nest.

8 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Iteration Number and Vector
(2/2)

For an n-level loop: ~i =
[
i1, i2, · · · , in

]
for (i n t i 1 = L1 ; i 1 < N1; i 1 += S1) {

for (i n t i 2 = L2 ; i 2 < N2; i 2 += S2) {
/∗ . . . Other loops go here ∗ /
for (i n t i n = Ln ; i < Nn; i n += Sn) {

/∗ S ∗ / /∗ innermost loop body ∗ /
}

}
}

What does S[(1,0)] represent in the following snippet?

for (i n t i = 0 ; i < 2; ++ i) {
for (i n t j = 0 ; j < 2; ++ j) {

S;
}

}

9 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Iteration Number and Vector
(2/2)

For an n-level loop: ~i =
[
i1, i2, · · · , in

]
for (i n t i 1 = L1 ; i 1 < N1; i 1 += S1) {

for (i n t i 2 = L2 ; i 2 < N2; i 2 += S2) {
/∗ . . . Other loops go here ∗ /
for (i n t i n = Ln ; i < Nn; i n += Sn) {

/∗ S ∗ / /∗ innermost loop body ∗ /
}

}
}

What does S[(1,0)] represent in the following snippet?

for (i n t i = 0 ; i < 2; ++ i) {
for (i n t j = 0 ; j < 2; ++ j) {

S;
}

}

9 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Another Example

#include <s t r i n g . h>
void matvec (i n t M, i n t N, double ∗C, double ∗A, double ∗v)
{

double (∗ c) [N] = (double (∗) [N]) C;
double (∗a) [N] = (double (∗) [N]) A ;
memset (C,0 , sizeof (double)∗M∗N) ;

for (i n t i = 0 ; i < M; ++ i)
for (i n t j = 0 ; j < N; ++ j)

c [i] [j] += a [i] [j] ∗ v [j] ;
}

What is the state of the computation in the loop when
~i =

[
3,5
]

? When~i =
[
0,4
]

?

10 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Another Example

#include <s t r i n g . h>
void matvec (i n t M, i n t N, double ∗C, double ∗A, double ∗v)
{

double (∗ c) [N] = (double (∗) [N]) C;
double (∗a) [N] = (double (∗) [N]) A ;
memset (C,0 , sizeof (double)∗M∗N) ;

for (i n t i = 0 ; i < M; ++ i)
for (i n t j = 0 ; j < N; ++ j)

c [i] [j] += a [i] [j] ∗ v [j] ;
}

What is the state of the computation in the loop when
~i =

[
3,5
]

? When~i =
[
0,4
]

?

10 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Theorem: Loop Dependence
Definition
Iteration~i precedes iteration~j , denoted~i <~j if and only if
the statements in~i are all executed before the statements
executed in~j . More formally:

~i <~j ⇔
{

1. ~i[1 : n − 1] <~j[1 : n − 1], or
2. ~i[1 : n − 1] =~j[1 : n − 1] ∧~in <~jn

(1)

Theorem
In a common n-level loop nest Ln, with two vectors~i , ~j in
it, and a common memory location M and δ∗ some
dependence:

∃δ∗ : S1δ
∗S2 ⇔

1. ~i <~j ∨~i =~j ∧ ∃path(S1 → S2) ∈ Ln

2. access(S1 → M)~i ∧ access(S2 → M)~j
3. write = access(S1 → M)~i ∨ write = access(S2 → M)~j

(2)

11 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Maintaining Program
Equivalence

Definition: Equivalence
Two computations are equivalent if, on the same input,
they produce identical values for output variables at the
time output statements are executed and the output
statements are executed in the same order.

Definition: Reordering Transformation
A reordering transformation TR is any program
transformation that merely changes the order of
execution of the code, without adding or deleting any
execution of any statements

12 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example of Reordering
Transformations

The original code:

1 for (i n t i = 0 ; i < N; ++ i) {
2 S1 : x = a [i] ;
3 for (i n t j = 0 ; j < P; ++ j) {
4 S2 : b [i] [j] = x + 3 ∗ b [i] [j] ;
5 }
6 S3 : a [i] = b [i] [P−1];
7 }

The modified code:

1 for (i n t i = 0 ; i < N; ++ i) {
2 S3 : a [i] = b [i] [P−1];
3 for (i n t j = 0 ; j < P; ++ j) {
4 S2 : b [i] [j] = x + 3 ∗ b [i] [j] ;
5 }
6 S1 : x = a [i] ;
7 }

A reordering transformation can produce incorrect code!

13 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example of Reordering
Transformations

The original code:

1 for (i n t i = 0 ; i < N; ++ i) {
2 S1 : x = a [i] ;
3 for (i n t j = 0 ; j < P; ++ j) {
4 S2 : b [i] [j] = x + 3 ∗ b [i] [j] ;
5 }
6 S3 : a [i] = b [i] [P−1];
7 }

The modified code:

1 for (i n t i = 0 ; i < N; ++ i) {
2 S3 : a [i] = b [i] [P−1];
3 for (i n t j = 0 ; j < P; ++ j) {
4 S2 : b [i] [j] = x + 3 ∗ b [i] [j] ;
5 }
6 S1 : x = a [i] ;
7 }

A reordering transformation can produce incorrect code!
13 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Reordering Transformations

Definition
A reordering transformation TR preserves a dependence
if it preserves the relative execution order of the source
and sink of that dependence.

Fundamental Theorem of Dependence
Any reordering transformation TR that preserves every
dependence in a program preserves the meaning of that
program.

Definition
A transformation is said to be valid for the program to
which it applies if it preserves all dependences in the
program.

14 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Reordering Transformations

Definition
A reordering transformation TR preserves a dependence
if it preserves the relative execution order of the source
and sink of that dependence.

Fundamental Theorem of Dependence
Any reordering transformation TR that preserves every
dependence in a program preserves the meaning of that
program.

Definition
A transformation is said to be valid for the program to
which it applies if it preserves all dependences in the
program.

14 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Reordering Transformations

Definition
A reordering transformation TR preserves a dependence
if it preserves the relative execution order of the source
and sink of that dependence.

Fundamental Theorem of Dependence
Any reordering transformation TR that preserves every
dependence in a program preserves the meaning of that
program.

Definition
A transformation is said to be valid for the program to
which it applies if it preserves all dependences in the
program.

14 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A Summarizing Example

L0 : for (i n t i = 0 ; i < N; ++ i) {
L1 : for (i n t j = 0 ; j < 2; ++ j) {
S0 : a [i] [j] = a [i] [j] + B ;

}
S1 : t = a [i] [0] ;
S2 : a [i] [0] = a [i] [1] ;
S3 : a [i] [1] = t ;

}

• There is a dependence from S0 to S1, S2 and S3.
→ A dependence-based compiler could not accept to reorder loop L1

with the block {S1,S2,S3}

• However, the interchange leaves the same values in the array a.
→ a[i][0] and a[i][1] receive an identical update (B).

• Although there is no dependence between L1 and block {S1,S2,S3}
(and thus could be executed in parallel), there is no way to tell it from our
current dependence framework.

→ Our definition of valid transformation is stronger than our definition of
computation equivalence.

15 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A Summarizing Example

L0 : for (i n t i = 0 ; i < N; ++ i) {
L1 : for (i n t j = 0 ; j < 2; ++ j) {
S0 : a [i] [j] = a [i] [j] + B ;

}
S1 : t = a [i] [0] ;
S2 : a [i] [0] = a [i] [1] ;
S3 : a [i] [1] = t ;

}

• There is a dependence from S0 to S1, S2 and S3.
→ A dependence-based compiler could not accept to reorder loop L1

with the block {S1,S2,S3}
• However, the interchange leaves the same values in the array a.

→ a[i][0] and a[i][1] receive an identical update (B).
• Although there is no dependence between L1 and block {S1,S2,S3}

(and thus could be executed in parallel), there is no way to tell it from our
current dependence framework.

→ Our definition of valid transformation is stronger than our definition of
computation equivalence.

15 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A Summarizing Example

L0 : for (i n t i = 0 ; i < N; ++ i) {
L1 : for (i n t j = 0 ; j < 2; ++ j) {
S0 : a [i] [j] = a [i] [j] + B ;

}
S1 : t = a [i] [0] ;
S2 : a [i] [0] = a [i] [1] ;
S3 : a [i] [1] = t ;

}

• There is a dependence from S0 to S1, S2 and S3.
→ A dependence-based compiler could not accept to reorder loop L1

with the block {S1,S2,S3}
• However, the interchange leaves the same values in the array a.

→ a[i][0] and a[i][1] receive an identical update (B).
• Although there is no dependence between L1 and block {S1,S2,S3}

(and thus could be executed in parallel), there is no way to tell it from our
current dependence framework.

→ Our definition of valid transformation is stronger than our definition of
computation equivalence.

15 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Distance and Direction
Vectors (1/2)

Definition: Distance Vector
Let S1 on iteration vector~i and S2 on iteration vector~j be two statements so
that there is some dependence S1δ

∗S2 on the loop nest Ln. Then the
dependence distance vector ~d of length n is defined as:

~d~i,~j =
~d(~i,~j) =~j −~i (3)

i.e.
d(~i,~j)k = jk − jk , ∀k : 1 ≤ k ≤ n (4)

Definition: Direction Vector
Let S1 on iteration vector~i and S2 on iteration vector~j be two statements so
that there is some dependence S1δ

∗S2 on the loop nest Ln. Then the
dependence direction vector ~D of length n is defined as:

D(~i,~j)k =

” < ” if d(~i,~j)k > 0
” = ” if d(~i,~j)k = 0
” > ” if d(~i,~j)k < 0

(5)

16 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Distance and Direction
Vectors (1/2)

Definition: Distance Vector
Let S1 on iteration vector~i and S2 on iteration vector~j be two statements so
that there is some dependence S1δ

∗S2 on the loop nest Ln. Then the
dependence distance vector ~d of length n is defined as:

~d~i,~j =
~d(~i,~j) =~j −~i (3)

i.e.
d(~i,~j)k = jk − jk , ∀k : 1 ≤ k ≤ n (4)

Definition: Direction Vector
Let S1 on iteration vector~i and S2 on iteration vector~j be two statements so
that there is some dependence S1δ

∗S2 on the loop nest Ln. Then the
dependence direction vector ~D of length n is defined as:

D(~i,~j)k =

” < ” if d(~i,~j)k > 0
” = ” if d(~i,~j)k = 0
” > ” if d(~i,~j)k < 0

(5)

16 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example for Distance and
Direction Vectors

Consider the following code:

for (i n t i = 0 ; i < N; ++ i) {
for (i n t j = 0 ; i < M; ++ j) {

for (i n t k = 0; i < L ; ++k) {
S1 : a [i + 1] [j] [k−1] = a [i] [j] [k] + 10;

}
}

}

What are the distance and direction vectors?

~d =
[
1 0 −1

]
~D =

[
< = >

]

17 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example for Distance and
Direction Vectors

Consider the following code:

for (i n t i = 0 ; i < N; ++ i) {
for (i n t j = 0 ; i < M; ++ j) {

for (i n t k = 0; i < L ; ++k) {
S1 : a [i + 1] [j] [k−1] = a [i] [j] [k] + 10;

}
}

}

What are the distance and direction vectors?
~d =

[
1 0 −1

]
~D =

[
< = >

]

17 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Distance and Direction
Vectors (2/2)

Direction Vector Transformation
Let T be a transformation that is applied to a loop nest
and that does not rearrange the statements in the body of
the loop. Then the transformation is valid if, after it is
applied, none of the direction vectors for dependences
with source and sink in the nest has a leftmost non-“=”
that is “>”.

What are the distance and direction vectors for the following loop?

for (i n t i = 0 ; i < 10; ++ i) {
for (i n t j = 0 ; j < 100; ++ j) {

S1 : a [i] [j] = b [i] [j] + X ;
S2 : c [i] [j] = a [i][99− j] + Y ;
}

}

From j = 0 to 48 ~D =
[
= <

]
When j = 49 ~D =

[
= =

]
From j = 50 to 99 ~D =

[
= >

]

18 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Distance and Direction
Vectors (2/2)

Direction Vector Transformation
Let T be a transformation that is applied to a loop nest
and that does not rearrange the statements in the body of
the loop. Then the transformation is valid if, after it is
applied, none of the direction vectors for dependences
with source and sink in the nest has a leftmost non-“=”
that is “>”.

What are the distance and direction vectors for the following loop?

for (i n t i = 0 ; i < 10; ++ i) {
for (i n t j = 0 ; j < 100; ++ j) {

S1 : a [i] [j] = b [i] [j] + X ;
S2 : c [i] [j] = a [i][99− j] + Y ;
}

}

From j = 0 to 48 ~D =
[
= <

]
When j = 49 ~D =

[
= =

]
From j = 50 to 99 ~D =

[
= >

]

18 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Carried and
Loop-Independent Dependences

If we consider two statements, S1 and S2, in a loop nest
Ln, and assuming there is a dependence S1δ

∗S2 over a
memory location M, then we have one of:
• Loop-Carried Dependence: S1 accesses M in one

iteration, and S2 accesses M in a subsequent
iteration.

• Loop-Independent Dependence: S1 and S2 both
access M on the same iteration, but S1 precedes S2
during execution of the loop iteration.

19 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Carried Dependences (1/2)

A simple example:

for (i n t i = 0 ; i < N; ++ i) {
S1 : a [i +1] = f [i] ;
S2 : f [i +1] = a [i] ;
}

Definition: Loop-Carried Dependence
Let~i and~j be two iteration vectors. Let S1 and S2 be two statements. Then
S1δ
∗S2 is a loop-carried dependence on memory location M

⇐⇒

1. S1 accesses M on~i
2. S2 accesses M on~j
3. ~d > 0

(6)

(Remember: ~d > 0⇔ ~D contains a “<” as the left-most non-“=” component.)

20 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Carried Dependences (1/2)

A simple example:

for (i n t i = 0 ; i < N; ++ i) {
S1 : a [i +1] = f [i] ;
S2 : f [i +1] = a [i] ;
}

Definition: Loop-Carried Dependence
Let~i and~j be two iteration vectors. Let S1 and S2 be two statements. Then
S1δ
∗S2 is a loop-carried dependence on memory location M

⇐⇒

1. S1 accesses M on~i
2. S2 accesses M on~j
3. ~d > 0

(6)

(Remember: ~d > 0⇔ ~D contains a “<” as the left-most non-“=” component.)

20 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Carried Dependences (2/2)

Definition: Backward and Forward Dependencies
Let S1δ

∗S2 be a loop-carried dependence. It is said to be
backward if S2 appears before S1 in the loop body or if S1
and S2 appear in the same statement. If S2 appears after
S1 in the loop body it is a forward dependence.

Definition: Level of a Loop-Carried Dependence
The level of a loop-carried dependence is the index of the
leftmost non-“=” of ~D for the dependence.

21 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example for Loop-Carried
Dependences

What is the direction vector and level of the following
loop?

for (i n t i = 0 ; i < 10; ++ i) {
for (i n t j = 0 ; j < 10; ++ j) {

for (i n t k = 0; k < 10; ++k) {
S1 : a [i] [j] [k +1] = a [i] [j] [k] ;

}
}

}

~D =
[
= = <

]
Level = 3.

22 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example for Loop-Carried
Dependences

What is the direction vector and level of the following
loop?

for (i n t i = 0 ; i < 10; ++ i) {
for (i n t j = 0 ; j < 10; ++ j) {

for (i n t k = 0; k < 10; ++k) {
S1 : a [i] [j] [k +1] = a [i] [j] [k] ;

}
}

}

~D =
[
= = <

]
Level = 3.

22 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Dependence Preservation

Definition
A dependence is said to be satisfied if transformations
that fail to preserve it are precluded.
In other words: if we only keep transformations that
preserve the initial dependences in a program, then the
dependence is satisfied.

Theorem
A reordering transformation TR preserves all level-k
dependences if and only if
• The iteration order of the level-k loop is preserved
• No loop is interchanged at level < k to a position

inside the level-k loop
• Not loop is interchanged at level > k to a position

outside the level-k loop

23 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(1/3)

Back to our example:

for (i n t i = 0 ; i < N; ++ i) {
S1 : a [i +1] = f [i] ;
S2 : f [i +1] = a [i] ;
}

for (i n t i = 0 ; i < N; ++ i) {
S2 : f [i +1] = a [i] ;
S1 : a [i +1] = f [i] ;
}

Is this transformation (on the right) legal?

Yes.

24 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(1/3)

Back to our example:

for (i n t i = 0 ; i < N; ++ i) {
S1 : a [i +1] = f [i] ;
S2 : f [i +1] = a [i] ;
}

for (i n t i = 0 ; i < N; ++ i) {
S2 : f [i +1] = a [i] ;
S1 : a [i +1] = f [i] ;
}

Is this transformation (on the right) legal? Yes.

24 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(2/3)

A more complicated example. What loops can we legally
interchange?

for (i n t i = 0 ; k < 10; ++ i)
for (i n t j = 0 ; j < 10; ++ j)

for (i n t k = 0; k < 10; ++k)
a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

~d =
[
3 2 1

]
~D =

[
< < <

]
/∗ Look at the dependences once we u n r o l l the loop ∗ /
for (i n t i = 0 ; k < 10; ++ i) {

for (i n t j = 0 ; j < 10; ++ j) {
for (i n t k = 0; k < 10; k += 2) {

a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;
a [k + 4] [j + 3] [i +2] = a [k + 1] [j + 1] [i +1] + B;

}
}

}

25 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(2/3)

A more complicated example. What loops can we legally
interchange?

for (i n t i = 0 ; k < 10; ++ i)
for (i n t j = 0 ; j < 10; ++ j)

for (i n t k = 0; k < 10; ++k)
a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

~d =
[
3 2 1

]
~D =

[
< < <

]

/∗ Look at the dependences once we u n r o l l the loop ∗ /
for (i n t i = 0 ; k < 10; ++ i) {

for (i n t j = 0 ; j < 10; ++ j) {
for (i n t k = 0; k < 10; k += 2) {

a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;
a [k + 4] [j + 3] [i +2] = a [k + 1] [j + 1] [i +1] + B;

}
}

}

25 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(2/3)

A more complicated example. What loops can we legally
interchange?

for (i n t i = 0 ; k < 10; ++ i)
for (i n t j = 0 ; j < 10; ++ j)

for (i n t k = 0; k < 10; ++k)
a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

~d =
[
3 2 1

]
~D =

[
< < <

]
/∗ Look at the dependences once we u n r o l l the loop ∗ /
for (i n t i = 0 ; k < 10; ++ i) {

for (i n t j = 0 ; j < 10; ++ j) {
for (i n t k = 0; k < 10; k += 2) {

a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;
a [k + 4] [j + 3] [i +2] = a [k + 1] [j + 1] [i +1] + B;

}
}

}

25 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(3/3)

~d =
[
3 2 1

]
~D =

[
< < <

]
for (i n t i = 0 ; k < 10; ++ i)

for (i n t j = 0 ; j < 10; ++ j)
for (i n t k = 0; k < 10; ++k)

a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

for (i n t i = 0 ; i < 10; ++ i)
for (i n t k = 9; k >= 0; k −= 1)

for (i n t j = 0 ; j < 10; j += 1)
a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

26 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Applying All This to Loops
(3/3)

~d =
[
3 2 1

]
~D =

[
< < <

]
for (i n t i = 0 ; k < 10; ++ i)

for (i n t j = 0 ; j < 10; ++ j)
for (i n t k = 0; k < 10; ++k)

a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

for (i n t i = 0 ; i < 10; ++ i)
for (i n t k = 9; k >= 0; k −= 1)

for (i n t j = 0 ; j < 10; j += 1)
a [k + 3] [j + 2] [i +1] = a [k] [j] [i] + B ;

26 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Independent
Dependences (1/3)

A dependence is loop-independent if it arises as a result
of relative statement position.

Definition: Loop-Independent Dependence
Let~i and~j be two iteration vectors. Let S1 and S2 be two
statements. Then S1δ

∗S2 is a loop-independent
dependence on memory location M

⇔

{
1. S1 accesses M on~i , S2 accesses M on~j , and~i =~j
2. ∃path(S1 → S2) ∈~i

(7)

27 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Independent
Dependences (2/3)

for (i n t i = 0 ; i < 10; ++ i) {
S1 : a [i] = /∗ some value ∗ /
S2 : /∗ some value ∗ / = a [i] ;
}

for (i n t i = 0 ; i < 10; ++ i) {
S1 : a [i] = /∗ some value ∗ /
S2 : /∗ some value ∗ / = a[9− i] ;
}

28 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Independent Dependences
(3/3)

Theorem
Let S1 and S2 two statements. If S1δ

∗S2 is
loop-independent, any reordering transformation TR that
does not move statement instances between iterations
and preserves the relative order of S1 and S2 in the loop
body preserves that dependence.

/∗ O r i g i n a l code ∗ /
for (i = 0 ; i < N; ++ i)
{

S1 : a [i] = b [i] + C;
S2 : d [i] = a [i] + E ;
}

/∗ Transformed code ∗ /
d [0] = a [0] + E;
for (i = 1 ; i < N; ++ i)
{

S1 : a [i −1] = b [i −1] + C;
S2 : d [i] = a [i] + E ;
}
a [n−1] = b [n−1] + C;

Is this transformation valid?

No.

29 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop-Independent Dependences
(3/3)

Theorem
Let S1 and S2 two statements. If S1δ

∗S2 is
loop-independent, any reordering transformation TR that
does not move statement instances between iterations
and preserves the relative order of S1 and S2 in the loop
body preserves that dependence.

/∗ O r i g i n a l code ∗ /
for (i = 0 ; i < N; ++ i)
{

S1 : a [i] = b [i] + C;
S2 : d [i] = a [i] + E ;
}

/∗ Transformed code ∗ /
d [0] = a [0] + E;
for (i = 1 ; i < N; ++ i)
{

S1 : a [i −1] = b [i −1] + C;
S2 : d [i] = a [i] + E ;
}
a [n−1] = b [n−1] + C;

Is this transformation valid? No.

29 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Iteration Reordering

Theorem: Iteration Reordering
A transformation T that reorders the iterations of a level-k
loop, without making any other changes, is valid if the
loop carries no dependence.

30 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Simple Dependence Testing

Theorem
Let ~α and ~β be iteration vectors within the iteration space of the
following loop nest:

for (i 1 = L1 ; i 1 < U1; i 1 += S1) {
for (i 2 = L2 ; i 2 < U2; i 2 += S2) {

/∗ . . . ∗ /
for (i n = Ln ; i n < Un; i n += Sn) {

S1 : a [f1 (i1 , i2 , . . . , i n)] [f2 (i1 , i2 , . . . , i n)] [. . .] [fn (i1 , i2 , . . . , i n)] = . . . ;
S2 : . . . = a [g1 (i1 , i2 , . . . , i n)] [g2 (i1 , i2 , . . . , i n)] [. . .] [gn (i1 , i2 , . . . , i n)] ;

}
}

}

∃S1δ∗S2⇔ ∃ ~α, ~β :

{
1. ~α < ~β lexicographically
2. fi (~α) = gi (~β)∀i , 1 ≤ i ≤ m

(8)

31 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example with a Single
Subscript

for (i = 0 ; i < N; ++ i) {
S: a [i +1] = a [i] + B ;
}

To test for true dependence on this loop:
• Assume that the left-hand side of statement S

accesses memory location M on iteration I0
• Assume that the right-hand side accesses the same

location ∆I iterations later.
⇒ a[I0 + 1] and a[I0 + ∆I] must both refer to the

same M.
⇒ I0 + 1 = I0 + ∆I
⇒ ∆I = 1

If we assume that N > 0, and since ∆I > 0 then ~D =
[
<
]

32 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example with a Single
Subscript

for (i = 0 ; i < N; ++ i) {
S: a [i +1] = a [i] + B ;
}

To test for true dependence on this loop:
• Assume that the left-hand side of statement S

accesses memory location M on iteration I0
• Assume that the right-hand side accesses the same

location ∆I iterations later.
⇒ a[I0 + 1] and a[I0 + ∆I] must both refer to the

same M.
⇒ I0 + 1 = I0 + ∆I
⇒ ∆I = 1

If we assume that N > 0, and since ∆I > 0 then ~D =
[
<
]

32 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example with Multiple
Subscripts

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

for (k = 0 ; k < 100; ++k)
S : a [i + 1] [j] [k] = a [i] [j] [k +1] + B;

I0 + 1 = I0 + ∆I
J0 = J0 + ∆J
K0 = K0 + ∆K + 1

⇐⇒

∆I = 1
∆J = 0
∆K = −1

~D =
[
<,=, >

]

33 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example with Multiple
Subscripts

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

for (k = 0 ; k < 100; ++k)
S : a [i + 1] [j] [k] = a [i] [j] [k +1] + B;

I0 + 1 = I0 + ∆I
J0 = J0 + ∆J
K0 = K0 + ∆K + 1

⇐⇒

∆I = 1
∆J = 0
∆K = −1

~D =
[
<,=, >

]

33 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example with Multiple
Subscripts

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

for (k = 0 ; k < 100; ++k)
S : a [i + 1] [j] [k] = a [i] [j] [k +1] + B;

I0 + 1 = I0 + ∆I
J0 = J0 + ∆J
K0 = K0 + ∆K + 1

⇐⇒

∆I = 1
∆J = 0
∆K = −1

~D =
[
<,=, >

]

33 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Example with Multiple
Subscripts

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

for (k = 0 ; k < 100; ++k)
S : a [i + 1] [j] [k] = a [i] [j] [k +1] + B;

I0 + 1 = I0 + ∆I
J0 = J0 + ∆J
K0 = K0 + ∆K + 1

⇐⇒

∆I = 1
∆J = 0
∆K = −1

~D =
[
<,=, >

]
33 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A More Complicated Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i + 1] [j] = a [i] [5] + B ;

{
I0 + 1 = I0 + ∆I
J0 = 5

⇐⇒

{
∆I = 1
∆J = 5

~D =
[
<, ∗

]

34 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A More Complicated Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i + 1] [j] = a [i] [5] + B ;

{
I0 + 1 = I0 + ∆I
J0 = 5

⇐⇒

{
∆I = 1
∆J = 5

~D =
[
<, ∗

]

34 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A More Complicated Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i + 1] [j] = a [i] [5] + B ;

{
I0 + 1 = I0 + ∆I
J0 = 5

⇐⇒

{
∆I = 1
∆J = 5

~D =
[
<, ∗

]

34 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

A More Complicated Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i + 1] [j] = a [i] [5] + B ;

{
I0 + 1 = I0 + ∆I
J0 = 5

⇐⇒

{
∆I = 1
∆J = 5

~D =
[
<, ∗

]

34 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Yet Another Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i +1] = a [i] + B [j] ;

~Da =
[
<, ∗

]

for (j = 0 ; j < 100; ++ j)
for (i = 0 ; i < 100; ++ i)

a [i +1] = a [i] + B [j] ;

~Da =
[
∗, <

]
~Da = {

[
<,<

] [
=, <

] [
>,<

]
}

• [<,<] is a level-1 true dependence
• [=, <] is a level-2 true dependence
• [>,<] is a level-1 anti-dependence. It exists because of the following

iteration numbers: j = 0 and i = 1, and j = 1 and i = 0

35 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Yet Another Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i +1] = a [i] + B [j] ;

~Da =
[
<, ∗

]

for (j = 0 ; j < 100; ++ j)
for (i = 0 ; i < 100; ++ i)

a [i +1] = a [i] + B [j] ;

~Da =
[
∗, <

]
~Da = {

[
<,<

] [
=, <

] [
>,<

]
}

• [<,<] is a level-1 true dependence
• [=, <] is a level-2 true dependence
• [>,<] is a level-1 anti-dependence. It exists because of the following

iteration numbers: j = 0 and i = 1, and j = 1 and i = 0

35 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Yet Another Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i +1] = a [i] + B [j] ;

~Da =
[
<, ∗

]

for (j = 0 ; j < 100; ++ j)
for (i = 0 ; i < 100; ++ i)

a [i +1] = a [i] + B [j] ;

~Da =
[
∗, <

]
~Da = {

[
<,<

] [
=, <

] [
>,<

]
}

• [<,<] is a level-1 true dependence
• [=, <] is a level-2 true dependence
• [>,<] is a level-1 anti-dependence. It exists because of the following

iteration numbers: j = 0 and i = 1, and j = 1 and i = 0

35 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Yet Another Example

for (i = 0 ; i < 100; ++ i)
for (j = 0 ; j < 100; ++ j)

a [i +1] = a [i] + B [j] ;

~Da =
[
<, ∗

]

for (j = 0 ; j < 100; ++ j)
for (i = 0 ; i < 100; ++ i)

a [i +1] = a [i] + B [j] ;

~Da =
[
∗, <

]
~Da = {

[
<,<

] [
=, <

] [
>,<

]
}

• [<,<] is a level-1 true dependence
• [=, <] is a level-2 true dependence
• [>,<] is a level-1 anti-dependence. It exists because of the following

iteration numbers: j = 0 and i = 1, and j = 1 and i = 0

35 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Steps to Perform Loop
Transformations

1 Assume affine iteration space (i.e. something like
f (x) = ax + bx + cx + · · ·+ K where a, b, c and K are constants)

2 Perform preliminary transformations — See Allen and Kennedy, chapter
4, but you know many of them (they use data flow analysis, def-use
chains, etc.):

• Loop normalization
• Forward expression substitution
• Induction-variable substitution (any variable v in a for loop L with

index i which can be expressed as v = cstExpr ∗ i + iExprL where
cstExpr and iExpr do not vary in L)

• . . .

3 Separate the various subscript/index tuples into various groups (not
seen here — see Allen and Kennedy, chapter 3 for more complete
dependence testing techniques).

4 Asses all the dependences in the loop nest

5 Perform some loop transformation, and test for dependence violation

36 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop Interchange
Consider the following loop:

for (j = 0 ; j < N ++ j)
for (i = 0 ; i < N ++ i)

S : a [i + 1] [j] = a [i] [j] + B ;

There is a true loop-carried dependence from S to itself.
But as in C we have a “row-major” type of storing
dimensions, the stride used to access a is
memory-inefficient (and would prevent a vectorizing
compiler from vectorizing the loop).

When interchanging
the two loops, we enable multiple optimizing
transformations for the compiler:

for (i = 0 ; i < N ++ i)
for (j = 0 ; j < N ++ j)

S : a [i + 1] [j] = a [i] [j] + B ;

37 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop Interchange
Consider the following loop:

for (j = 0 ; j < N ++ j)
for (i = 0 ; i < N ++ i)

S : a [i + 1] [j] = a [i] [j] + B ;

There is a true loop-carried dependence from S to itself.
But as in C we have a “row-major” type of storing
dimensions, the stride used to access a is
memory-inefficient (and would prevent a vectorizing
compiler from vectorizing the loop). When interchanging
the two loops, we enable multiple optimizing
transformations for the compiler:

for (i = 0 ; i < N ++ i)
for (j = 0 ; j < N ++ j)

S : a [i + 1] [j] = a [i] [j] + B ;

37 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Safety of Loop Interchange

Not all loops can be interchanged safely. For example:

for (j = 0 ; j < N ++ j)
for (i = 0 ; i < N ++ i)

S : a [i + 1] [j] = a [i] [j +1] + B ;

Question: what is the direction vector for this loop?

~D =
[
>,<

]
We cannot interchange the two loops!

38 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Safety of Loop Interchange

Not all loops can be interchanged safely. For example:

for (j = 0 ; j < N ++ j)
for (i = 0 ; i < N ++ i)

S : a [i + 1] [j] = a [i] [j +1] + B ;

Question: what is the direction vector for this loop?
~D =

[
>,<

]
We cannot interchange the two loops!

38 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Illustration of Preceding
Example

39 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Safety of Loop Interchange
(cont’d)

Definition
A dependence is interchange preventing with respect to a given pair of loops if
interchanging those loops would reorder the endpoints of the dependence.

Definition
A dependence is interchange sensitive if it is carried by the same loop after
interchange. That is, an interchange-sensitive dependence moves with its
original carrier loop to the new level.

In the previous picture, the dashed red arrow is interchange preventing, while
the horizontal and vertical arrows represent interchange-sensitive
dependences. The “diagonal” dependence will always be carried by the
outermost loop.

Theorem
Let ~D(~i,~j) be a direction vector for a dependence in a perfect loop nest of n
loops. Then the direction vector for the same dependence after a permutation
of the loops in the nest is determined by applying the same permutation to the
elements of ~D(~i,~j).

40 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Direction Matrix

Definition
The direction matrix for a loop nest Ln is a matrix in which each row is a
direction vector for some dependence between statements contained in the
next and every such direction vector is represented by a row.

Example:

for (k = 0 ; k < L ; ++k)
for (j = 0 ; j < M; ++ j)

for (i = 0 ; i < N; ++ i)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is

[
< < =
= > <

]

Legality of loop interchange
A permutation of the loops in a perfect nest is legal if and only if the direction
matrix, after the same permutation is applied to its columns, has no “>”
direction as the leftmost non-“=” direction in any row.

41 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Direction Matrix

Definition
The direction matrix for a loop nest Ln is a matrix in which each row is a
direction vector for some dependence between statements contained in the
next and every such direction vector is represented by a row.

Example:

for (k = 0 ; k < L ; ++k)
for (j = 0 ; j < M; ++ j)

for (i = 0 ; i < N; ++ i)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< < =
= > <

]

Legality of loop interchange
A permutation of the loops in a perfect nest is legal if and only if the direction
matrix, after the same permutation is applied to its columns, has no “>”
direction as the leftmost non-“=” direction in any row.

41 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Back to Our Example

for (k = 0 ; k < L ; ++k)
for (j = 0 ; j < M; ++ j)

for (i = 0 ; i < N; ++ i)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is

[
< < =
< = >

]
Is the following loop interchange legal?

for (j = 0 ; j < M; ++ j)
for (i = 0 ; i < N; ++ i)

for (k = 0 ; k < L ; ++k)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< = <
= > <

]

42 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Back to Our Example

for (k = 0 ; k < L ; ++k)
for (j = 0 ; j < M; ++ j)

for (i = 0 ; i < N; ++ i)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< < =
< = >

]
Is the following loop interchange legal?

for (j = 0 ; j < M; ++ j)
for (i = 0 ; i < N; ++ i)

for (k = 0 ; k < L ; ++k)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< = <
= > <

]

42 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Back to Our Example

for (k = 0 ; k < L ; ++k)
for (j = 0 ; j < M; ++ j)

for (i = 0 ; i < N; ++ i)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< < =
< = >

]
Is the following loop interchange legal?

for (j = 0 ; j < M; ++ j)
for (i = 0 ; i < N; ++ i)

for (k = 0 ; k < L ; ++k)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is

[
< = <
= > <

]

42 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Back to Our Example

for (k = 0 ; k < L ; ++k)
for (j = 0 ; j < M; ++ j)

for (i = 0 ; i < N; ++ i)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< < =
< = >

]
Is the following loop interchange legal?

for (j = 0 ; j < M; ++ j)
for (i = 0 ; i < N; ++ i)

for (k = 0 ; k < L ; ++k)
a [i + 1] [j + 1] [k] = a [i] [j] [k] + a [i] [j + 1] [k + 1] ;

Its direction matrix is[
< = <
= > <

]

42 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop Parallelization

Theorem
In a perfect loop nest, a particular loop can be parallelized
at the outermost level if and only if the column of the
direction matrix for that nest contains only “=” entries.
Example:

for (k = 0 ; k < L ; ++k) {
for (j = 0 ; j < M; ++ j) {

for (i = 0 ; i < N; ++ i) {
a [i] [j] [k +1]

= a [i] [j] [k] + X1 ;
b [i + 1] [j] [k]

= b [i] [j] [k] + X2 ;
c [i + 1] [j + 1] [k +1] = c [i] [j] [k] + X3 ;

}
}

}

Its direction matrix is

< = =
= = <
< < <

Where can we introduce parallelism?

43 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop Parallelization

Theorem
In a perfect loop nest, a particular loop can be parallelized
at the outermost level if and only if the column of the
direction matrix for that nest contains only “=” entries.
Example:

for (k = 0 ; k < L ; ++k) {
for (j = 0 ; j < M; ++ j) {

for (i = 0 ; i < N; ++ i) {
a [i] [j] [k +1]

= a [i] [j] [k] + X1 ;
b [i + 1] [j] [k]

= b [i] [j] [k] + X2 ;
c [i + 1] [j + 1] [k +1] = c [i] [j] [k] + X3 ;

}
}

}

Its direction matrix is< = =
= = <
< < <

Where can we introduce parallelism?

43 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop Parallelization (cont’d)

for (k = 0 ; k < L ; ++k) {
/ / P a r a l l e l i z e here , f o r example :
#pragma p a r a l l e l omp for defaul t (none) \

shared (a , b , c , X1 , X2 , X3) p r i v a t e (i , j)
for (j = 0 ; j < M; ++ j) {

for (i = 0 ; i < N; ++ i) {
a [i] [j] [k +1] = a [i] [j] [k] + X1 ;
b [i + 1] [j] [k] = b [i] [j] [k] + X2 ;
c [i + 1] [j + 1] [k +1] = c [i] [j] [k] + X3 ;

}
}

}

Its direction matrix is

< = =
= = <
< < <

44 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

Loop Parallelization (cont’d)

for (k = 0 ; k < L ; ++k) {
/ / P a r a l l e l i z e here , f o r example :
#pragma p a r a l l e l omp for defaul t (none) \

shared (a , b , c , X1 , X2 , X3) p r i v a t e (i , j)
for (j = 0 ; j < M; ++ j) {

for (i = 0 ; i < N; ++ i) {
a [i] [j] [k +1] = a [i] [j] [k] + X1 ;
b [i + 1] [j] [k] = b [i] [j] [k] + X2 ;
c [i + 1] [j + 1] [k +1] = c [i] [j] [k] + X3 ;

}
}

}

Its direction matrix is< = =
= = <
< < <

44 / 45

Dependence
Analysis and Loop
Transformations

CPEG421/621

A More Formal
Framework for
Dependence
Analysis
A Few Definitions

Dependence in Loops

Dependences and
Transformations

Distance and Direction
Vectors

Loop-Carried and
Loop-Independent
Dependences

Dependence
Testing

Loop
Transformations

45 / 45

	A More Formal Framework for Dependence Analysis
	A Few Definitions
	Dependence in Loops
	Dependences and Transformations
	Distance and Direction Vectors
	Loop-Carried and Loop-Independent Dependences

	Dependence Testing
	Loop Transformations

