
Topic-C-EARTH 1

Topic 4c:

A hybrid Dataflow-Von Neumann PXM:

The EARTH Experience

 CPEG421/621: Compiler Design
Material mostly taken from Professor Guang R. Gao’s previous courses,

with additional material from J.Suetterlein.

Some Historical Perspective

• EARTH was a project initiated during the 90s.

• Many current architectural issues did not exist

• However the problem of efficiently hiding latencies
(especially memory) has always been at the core of
high-performance computing, where being too slow
is considered a “functional bug”

• One path was explored using preemptive threads
(e.g. POSIX threads)

• Another path used data flow models of computation
applied to Von Neumann architectures, such as
EARTH

Topic-C-EARTH 2

Topic-C-EARTH 3

Outline

• Part I: EARTH execution model

• Part II: EARTH architecture model and

platforms

• Part III: EARTH programming models and

compilation techniques

• The percolation model and its applications

• Summary

Topic-C-EARTH 4

Part I

 [PACT95, EURO-PAR95, ICS95, MASCOTS96, ISCA96,

PACT96, PPoPP97, PACT97, SPAA97, DIPES98, SPAA98

and many others …)

EARTH: An Efficient Architecture

for Running THreads

Topic-C-EARTH 5

The EARTH Program
Execution Model

• What is a thread?

• How the state of a thread is

represented?

• How a thread is enabled?

Topic-C-EARTH 6

What is a Thread?

• A parallel function invocation

 (threaded function invocation)

• A code sequence defined (by a user or a

compiler) to be a thread (fiber)

• Usually, a body of a threaded function

may be partitioned into several threads

Topic-C-EARTH 7

How to Execute Fibonacci
Function in Parallel?

 fib (4) fib (3) + fib (2)

 fib (2) fib (1) fib(1) fib (0)

 fib (1) fib (0)

Topic-C-EARTH 8

Parallel Function Invocation

fib n-2

fib n

fib n-2 fib n-1

fib n-3

caller’s

<fp,ip>

local

vars

SYNC

slots

Tree of “Activation Frames”

Links between
frames

Topic-C-EARTH 9

An Example

b = x[j];

sum = a + b;

prod = a * b;

r1 = g(sum);

r2 = g(prod);

r3 = g(fact);

return(r1 + r2 + r3);

}

int f(int *x, int i, int j)

{

int a, b, sum, prod, fact;

int r1, r2, r3;

a = x[i];

fact = 1;

fact = fact * a;

Topic-C-EARTH 10

The Example is Partitioned into

Four Fibers (Threads)

a = x[i];

fact = 1;

Thread0:

fact = fact * a;

b = x[j];

Thread1:

sum = a + b;

prod = a * b;

r1 = g(sum);

r2 = g(prod);

r3 = g(fact);

Thread2:

return (r1 + r2 + r3);

Thread3:

1

1

3

Topic-C-EARTH 11

The State of a Fiber (Thread)

• A Fiber shares its “enclosing frame” with
other fibers within the same threaded
function invocation.

• The state of a fiber includes
– its instruction pointer

– its “temporary register set”

• A fiber is “ultra-light weighted”: it does not
need dynamic storage (frame) allocation.

• Our focus: non-preemptive threads – called
fibers

Topic-C-EARTH 12

The “EARTH” Execution Model

1 2 4 2

1 2 2 2
“signal token”

a “thread” actor

Topic-C-EARTH 13

The EARTH Fiber Firing Rule

• A Fiber becomes enabled if it has received all

input signals;

• An enabled fiber may be selected for execution

when the required hardware resource has been

allocated;

• When a fiber finishes its execution, a signal is

sent to all destination threads to update the

corresponding synchronization slots.

Topic-C-EARTH 14

Thread States

DORMANT

ENABLED ACTIVE

Thread created

Thread terminated

Synchronizations
received Thread completed

CPU ready

Topic-C-EARTH 15

The EARTH Model of Computation

Fiber within a frame

Parallel function

invocation

Call a procedure

SYNC ops

The EARTH Multithreaded
Execution Model

Topic-C-EARTH 16

fiber within a frame

Aync. function invocation

A sync operation

Invoke a threaded func

Two Level of Fine-Grain Threads:

 - threaded procedures

 - fibers

2 2 2 2 1 1 2 2

1 1 2 2 2 2 4 4

Signal Token

Total # signals

Arrived # signals

A Side-Note: the Cilk Model
(thanks to J.Suetterlein)

• What is Cilk?

– “A C language for programming dynamic

multithreaded applications on shared-memory

multiprocessors.” –Leiserson, Lecture 1 http://supertech.csail.mit.edu/cilk/lecture-

1.pdf

– Is it a program execution model?

• Three components

– Threading, Memory, and Sync. Model

• Throughout the literature all three components are discussed

– BUT Leiserson considers it a language…

Topic-C-EARTH 17

http://supertech.csail.mit.edu/cilk/lecture-1.pdf
http://supertech.csail.mit.edu/cilk/lecture-1.pdf
http://supertech.csail.mit.edu/cilk/lecture-1.pdf

The Cilk Language
(Thanks to J.Suetterlein)

REGULAR C
int fib (int n)

{

 if (n<2)

 return (n);

 else

 {

 int x,y;

 x = fib(n-1);

 y = fib(n-2)

 return (x+y);

 }

}

Cilk C
cilk int fib (int n)

{

 if (n<2)

 return (n);

 else

 {

 int x,y;

 x = spawn fib(n-1);

 y = spawn fib(n-2);

 sync;

 return (x+y);

 }

}

2/15/2011 18

Fibonacci
(Thanks to J.Suetterlein)

Cilk C
cilk int fib (int n)

{

 if (n<2)

 return (n);

 else

 {

 int x,y;

 x = spawn fib(n-1);

 y = spawn fib(n-2);

 sync;

 return (x+y);

 }

}

2/15/2011 19

4

3

2

2

1

1 1 0

0

Example fib 4

Computation dag

Scheduling – Cilk

(Thanks to J.Suetterlein)
• Cilk’s scheduler is greedy!

• Work Stealing
– Each worker maintains a deque (double ended queue)

– The worker pops and pushes work locally to the bottom of their
own deque

– When no work is available, the worker steals at random from the
top of another workers deque

• On a spawn
– Worker pushes parent to the bottom of the deque and begins

working on the child

• On a sync
– A sync maps to a “continuation closure” which contains a counter.

The continuation will not be scheduled until all its dependencies
are met (pg 60 section 5.1 of Blumof’s PhD thesis).

 2/15/2011 20

fib 3 fib 1 fib 3 fib 3 fib 2

Scheduling – Example
(Thanks to J.Suetterlein)

2/15/2011 21

P0 P1 P2

fib 3 fib 3 fib 2

fib 1 fib 2

fib 2

fib 0 fib 2

SPAW

N

SPAW

N

SPAW

N SYN

C

SYN

C

STEAL!!!

fib 3

Computation Dag
(Thanks to J.Suetterlein)

2/15/2011 22

TP = execution time on P processors

T1 = work

T∞ = span*

* Also called critical-path length
or computational depth.

Cilk’s Properties
(Thanks to J.Suetterlein)

Topic-C-EARTH 23

EARTH vs. CILK

Topic-C-EARTH 24

Fiber within a frame

Parallel function

invocation frames

fork a procedure

SYNC ops

Note: EARTH has it origin in static dataflow model

EARTH Model CILK Model

The “Fiber” Execution Model

Topic-C-EARTH 25

0 0 2 2 0 0 2 2

0 0 1 1 0 0 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 26

1 1 2 2 0 0 2 2

0 0 1 1 0 0 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 27

2 2 2 2 0 0 2 2

0 0 1 1 0 0 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 28

2 2 2 2 0 0 2 2

1 1 1 1 0 0 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 29

2 2 2 2 0 0 2 2

1 1 1 1 1 1 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 30

2 2 2 2 1 1 2 2

1 1 1 1 1 1 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 31

2 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 32

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 0 0 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 33

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 1 1 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 34

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 35

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 3 3 4 4

Signal Token

Total # signals

Arrived # signals

The “Fiber” Execution Model

Topic-C-EARTH 36

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 4 4 4 4

Signal Token

Total # signals

Arrived # signals

Topic-C-EARTH 37

Part II

The EARTH

Abstract Machine (Architecture) Model

and

EARTH Evaluation Platforms

Execution Model API

Abstract Machine

Programming Environment Platforms

Users Users

E
x
e
c
u
ti
o
n
 M

o
d
e
l

Programming

Models

Execution Model and Abstract Machines

High-Level

Programming API

(MPI, Open MP, CnC,

X10, Chapel, etc.)

Software packages

Program libraries

Utility applications

Compilers Tools/SDK

API

Abstract

Machine

Hardware Architecture

Programming

Models/

Environment

Users Users

E
x
e
c
u
ti
o
n
 M

o
d
e
l

Runtime System Runtime System

Execution Model and Abstract Machines

Topic-C-EARTH 40

Local Memory

SU EU

PE

NETWORK

Local Memory

SU EU

PE

The EARTH
Abstract Architecture

(Model)

How To Evaluate EARTH

Execution and Abstract Machine

Model ?

Topic-C-EARTH 41

Topic-C-EARTH 42

EARTH-MANNA

 Implement EARTH on a bare-

metal tightly-coupled

multiprocessor.

 EARTH-IBM-SP

 Plan to implement EARTH on a

off-the-shelf Comercial Parallel

Machine (IBM SP2/SP3)

 EARTH on Clusters

 EARTH on Beowulf

 Implement EARTH on a cluster of UltraSPARC

SMP workstations connected by fast Ethernet

EARTH Evaluation Platforms

NOTE: Benchmark code are all written with EARTH Threaded-C: The API for

 EARTH Execution and Abstract Machine Models

Topic-C-EARTH 43

EARTH-MANNA:

An Implementation of

The EARTH Architecture Model

Topic-C-EARTH 44

Open Issues

• Can a multithreaded program execution model

support high scalability for large-scale parallel

computing while maintaining high processing

efficiency?

• If so, can this be achieved without exotic hardware

support?

• Can these open issues be addressed both qualitatively

and quantitatively with performance studies of real-

life benchmarks (both Class A & B)?

Topic-C-EARTH 45

cluster

cluster

cluster

cluster

cluster

cluster cluster

Crossbar-

Hierarchies

cluster cluster

cluster cluster cluster cluster

cluster

cluster

cluster

Crossbar

Node
Node

Node

Node

Node

4

Cluster

i860XP

Node

CP

i860XP

CP

Network
Interface

I/O

32 Mbyte Memory

8

8

The EARTH-MANNA Multiprocessor Testbed

Topic-C-EARTH 46

Main Features of EARTH
Multiprocessor

• Fast thread context switching

• Efficient parallel function invocation

• Good support of fine-grain dynamic

load balancing

• Efficient support split-phase

transaction

• The concept of fibers and dataflow

U
s
in

g
 o

ff
-t

h
e

-s
h

e
lf
 m

ic
ro

p
ro

c
e

s
s
o

rs

Topic-C-EARTH 47

McCAT

EARTH-C
Compiler

Threaded-C
Compiler

EARTH-C C

EARTH SIMPLE

Program Dependence
Analysis

Fiber generation

Split-Phase Analysis

Build DDG

Compute Remote Level

Merge Statements

Fiber Synchronization

Fiber Scheduling

Fiber Code Generation

EARTH-SIMPLE

EARTH-C Compiler Environment

Fiber
Partitioning

(a) EARTH Compilation Environment (b) EARTH-C Compiler

Threaded-C

Topic-C-EARTH 48

Performance Study of EARTH

NOTE: It is important to design your own performance “features” or “parameters”

 that best distinguishes your models from your counterparts

Topic-C-EARTH 49

Main Experimental Results of
EARTH-MANNA

• Efficient multithreading support is possible
with off-the-shelf processor nodes with
overhead

– context switch time ~ 35 instruction cycles

• A Multithread program execution model
can make a big difference

– Results from the EARTH benchmark suit
(EBS)

Topic-C-EARTH 50

Programming Models
for

Multithreaded Architectures:

The EARTH Threaded-C Experience

Part III

Topic-C-EARTH 51

Outline

• Features of multithreaded programming

models

• EARTH instruction set

• Programming examples

Topic-C-EARTH 52

Threaded-C: A Base-Language

– To serve as a target language for

high-level language compilers

– To serve as a machine language

for EARTH architecture

Topic-C-EARTH 53

The Role of Threaded-C

High-level Language

Translation

Threaded-C

Compiler

Threaded-C

C Fortran

EARTH Platforms

Users

Topic-C-EARTH 54

Features of Threaded Programming

• Thread partition

– Thread length vs useful parallelism

– Where to “cut” a dependence and make it

“split-phase” ?

• Split-phase synchronization and

communication

• Parallel threaded function invocation

• Dynamic load balancing

• Other advanced features: fibers and

dataflow

L
a
te

n
c
y
 t
o
le

ra
n
c
e
 a

n
d
 m

a
n
a
g
e
m

e
n
t

Topic-C-EARTH 55

• The base operations

• Thread synchronization and scheduling ops

 SPAWN, SYNC

• Split-phase data & sync ops

 GET_SYNC, DATA_SYNC

• Threaded function invocation and load
balancing ops

 INVOKE, TOKEN

The EARTH Operation Set

Topic-C-EARTH 56

Table 1. EARTH Instruction Set

• Basic instructions

 Arithmetic, Logic and Branching

 typical RISC instructions, e.g., those from the i860

• Thread Switching

 FETCH_NEXT

• Synchronization

 SPAWN fp, ip

 SYNC fp, ss_off

 INIT_SYNC ss_off, sync_cnt, reset_cnt, ip

 INCR_SYNC fp, ss_off, value

Topic-C-EARTH 57

Table 1. EARTH Instruction Set

• Data Transfer & Synchronization

 DATA_SPAWN value, dest_addr, fp, ip

 DATA_SYNC value, dest_addr, fp, ss_off

 BLOCKDATA_SPAWN src_addr, dest_addr, size, fp, ip

 BLOCKDATA_SYNC src_addr, dest_addr, size, fp, ss_off

• Split_phase Data Requests

 GET_SPAWN src_addr, dest_addr, fp, ip

 GET_SYNC src_addr, dest_addr, fp, ss_off

 GET_BLOCK_SPAWN src_addr, dest_addr, size, fp, ip

 GET_BLOCK_SYNC src_addr, dest_addr, size, fp, ip

• Function Invocation

 INVOKE dest_PE, f_name, no_params, params

 TOKEN f_name, no_params, params

 END_FUNCTION

Con’d

Topic-C-EARTH 58

EARTH-MANNA
Benchmark Programs

• Ray Tracing is a program for rendering 3-D photo-realistic images

• Protein Folding is an application that computes all possible folding

structures of a given polymer

• TSP is an application to find a minimal-length Hamiltonian cycle in a

graph with N cities and weighted paths.

• Tomcatv is one of the SPEC benchmarks which operates upon a mesh

• Paraffins is another application which enumerates distinct isomers

paraffins

• 2D-SLT is a program implementing the 2D-SLT Semi-Lagrangian

Advection Model on a Gaussian Grid for numerical weather

predication

• N-queens is a benchmark program typical of graph searching problem.

Topic-C-EARTH 59

Parallel Function Invocation

fib n-2

fib n

fib n-2 fib n-1

fib n-3

caller’s

<fp,ip>

local

vars

SYNC

slots

Tree of “Activation Frames”

Links between
frames

Topic-C-EARTH 60

If n < 2

 DATA_RSYNC (1, result, done)

else

 {

 TOKEN (fib, n-1, & sum1, slot_1);

 TOKEN (fib, n-2, & sum2, slot_1);

 }

END_THREAD() ;

THREAD-1;

 DATA_RSYNC (sum1 + sum2;, result, done);

END_THREAD () ;

 END_FUNCTION

0 0

2 2

fib
n result done

The Fibonacci Example

Topic-C-EARTH 61

void main ()

{

 int i, j, k;

 float sum;

 for (i=0; i < N; i++)

 for (j=0; j < N ; j++) {

 sum = 0;

 for (k=0; k < N; k++)

 sum = sum + a [i] [k] * b [k] [j]

 c [i] [j] = sum;

 }

}

Sequential Version

Matrix Multiplication

Topic-C-EARTH 62

BLKMOV_SYNC (a, row_a, N, slot_1);

BLKMOV_SYNC (b, column_b, N, slot_1);

sum = 0;

END_THREAD;

THREAD-1;

 for (i=0; i<N; i++);

 sum = sum + (row_a[i] * column_b[i]);

 DATA_RSYNC (sum + result, done);

 END_THREAD () ;

0 0

2 2

inner
a result done b

The Inner Product Example

END_FUNCTION

Topic-C-EARTH 63

for (i=0; i<N; i++)

 for (j=0; j<N; j++) {

 row_a = a [i];

 column_b = b [j];

 TOKEN (inner, &c[I][j], row_a,

 column_b,slot_1); }

END_THREAD;

THREAD-1;

 RETURN ();

END- THREAD

0 0

N*N N*N

main

The Matrix Multiplication Example

EARTH-C Compiler

Environment

Topic-C-EARTH 64

McCAT

EARTH-C

Compiler

Threaded-C

Compiler

C EARTH-C

EARTH

SIMPLE

Threaded-C

Program Dependence

Analysis

Program Dependence

Analysis

Thread Generation Thread Generation

Split Phase Analysis

Build DDG

Compute Remote Level

Merge Statements

Thread Synchronization

Thread Scheduling

Thread Code Generation

EARTH SIMPLE

T
h

rea
d

 P
a
rtitio

n
in

g

T
h

rea
d

 P
a
rtitio

n
in

g

Threaded-C EARTH Compilation Environment
The EARTH Compiler

The McCAT/EARTH Compiler

Topic-C-EARTH 65

EARTH-C

THREADED-C

EARTH-SIMPLE-C

EARTH-SIMPLE-C

Simplify goto elimination

Local function inlining Points-to Analysis

Heap Analysis

R/W Set Analysis

Array Dependence Tester

Simplify goto elimination

Local function inlining Points-to Analysis

Heap Analysis

R/W Set Analysis

Array Dependence Tester

Forall Loop Detection

Loop Partitioning

Forall Loop Detection

Loop Partitioning

Build Hierarchical DDG

Thread Generation

Build Hierarchical DDG

Thread Generation

Code Generation Code Generation

PHASE I
(Standard McCAT

Analyses &

Transformations)

PHASE II
(Parallelization)

PHASE III

Topic-C-EARTH 66

Advanced Features

in

 Threaded-C Programming

Main Features of EARTH

* Fast thread context switching

• Efficient parallel function invocation

• Good support of fine grain dynamic load

balancing

* Efficient support split phase transactions

and fibers

Topic-C-EARTH 67

*Features unique to the EARTH model in comparison to the CILK model

Summary of EARTH-C

Extensions

• Explicit Parallelism

– Parallel versus Sequential statement sequences

– Forall loops

• Locality Annotation

– Local versus Remote Memory references (global, local,

replicate, …)

• Dynamic Load Balancing

– Basic versus remote function and invocation sites

Topic-C-EARTH 68

Percolation Model
under the DARPA HTMT Architecture Project

Topic-C-EARTH 69

CRAM CPUs

S-PIM Engine SRAM

DRAM D-PIM Engine

H
ig

h

S
p

ee
d

C
P

U
s

H
ig

h

S
p

ee
d

C
P

U
s

S
R

A
M

P
IM

S
R

A
M

P
IM

D
R

A
M

P
IM

D
R

A
M

P
IM

Primary Execution Engine

Prepare and percolate

“parceled threads”

Perform intelligent memory

operations

Global Memory

Management

A User’s Perspective

The Percolation Model

Topic-C-EARTH 70

• What is percolation?

 dynamic, adaptive
computation/data
movement, migration,
transformation in-place or
on-the fly to keep system
resource usefully busy

• Features of percolation

– both data and thread
may percolate

– computation
reorganization and data
layout reorganization

– asynchronous
invocation

 An Example of percolation—Cannon’s Algorithm

 Level 0

 Level 1

 Level 2

 Level 3

Level 0: fast cpu

 Level 1 PIM

 Level 2 PIM

 Level 3

percolation

HTML-like Architectures

Cannon’s nearest neighbor data transfer Data layout reorganization during percolation

Another View: Codelets

 Group Instructions and Data into Blocks

 Pre-Fetch Input Data

 Non-Pre-emptive Execution

 Store Results in Fresh Memory

 Completion Enables Successor Codelets

 Requires Dynamic Memory Management

Several Current Projects are Studying
Variations on this Concept

1993: EARTH and 1997: HTMT
Gao, Hum, Theobald

(courtesy: Jack Dennis, DF Workshop, Oct 10. 2011, Gavelston, Tx)

The Codelet: A Fine-Grain
Piece of Computing

Codelet

Result

Object

Data

Objects

Supports Massively Parallel Computation!

The Codelet: A Fine-Grain
Piece of Computing

Codelet

Result

Object

Data

Objects

This Looks Like Data Flow!!

