
Topic 4d – Memory Semantics

and Codelet Execution Model

CPEG421/621 – Compiler Design

Outline

Introduction

• Memory Semantics: Three Key

Questions

• Question Q1 and Location Consistency

• Question Q2 and Q3

• Memory Semantics and Codelet

Execution Model

Summary

An Abstract Machine Model

Some Philosophical Remarks

Sequential

Programs

1) Make common case efficient (default = no coherence)

2) If you need coherence, SAY SO.

1979

Sequenti

al

Consiste

ncy

Lamport7

9

1978

Lamport

Timesta

mps

Lamport7

8

1974

Dataflow

Dennis74 1990

Weak

Consiste

ncy

DuboisEt

Al86

AdveGha

90

Release

Consiste

ncy

Gharacho

rlooEtAl9

0

1986

2000

Location

Consiste

ncy

GaoSarka

r00

2005

The Java

Memory

Model

MansonPugA

dv05
2008

C++

Memory

Model

BoehmAd

v09

2010

Causal

Acyclic

Consiste

ncy

ChenEtAl

10

Timeline of Memory Models

Sequential Consistency

(SC)

 [Hardware is sequentially consistent if]

the result of any execution is the same

as if the operations of all the processors

were executed in some sequential order,

and the operations of each individual

processor appear in this sequence in the

order specified by its program.

 [Lamport 79]

P1

S1

P2

S2

Pn

Sn

Memory

S = interleave (S1, S2, …Sn)

Memory

The SC Memory Model

“Memory Coherence”

A Basic Assumption of SC-Derived

Memory Models

“…All writes to the same location are

serialized in some order and are

performed in that order with respect to

any processor…”

 [Gharacharloo Et Al 90]

Open Questions

• Is the SC model easier for

programmers ?

• Is the performance gain due to

relaxed SC-derived model worth

the complexity ? ([Hill’98])

Outline

• Introduction

• Memory Semantics: Three Key

Questions

• Question Q1 and Location Consistency

• Question Q2 and Q3

• Memory Semantics and Codelet

Execution Model

• Summary

Three Key Question on Memory

Models

Q1: What happens when two (or

more) concurrent load/store

operations happen (arrives) at

the same memory location?

Answers ?

Another Two Key

Questions

Assuming two memory operations with

the same destination memory location

address X (i.e. LOAD X or STORE X) are

issued through the same processing core.

Should a memory model allows them to

become out-of-order along the way ?

Outline

• Introduction

• Memory Semantics: Three Key
Questions

• Question Q1 and Location
Consistency

• Question Q2 and Q3

• Memory Semantics and Codelet
Execution Model

• Summary

Question Q1 on Memory Models

Q1: What happens when two (or more) concurrent
load/store operations happen (arrives) at the same
memory location?

Answers ?
• Dataflow models (e.g. I-structure/M-Structure) ?

• Sequential consistency (SC) ?

• Release Consistency (RC) model ?

• Java JMM ?

• C++ thread model ?

• Location Consistency (LC) ?

• Others ?

Sequenti

al

Consiste

ncy

Ref 1 Release

Consiste

ncy

Ref 2

Location

Consiste

ncy

GaoSarke

r00

The Java

Memory

Model

Ref 4 C++

Memory

Model

Ref 5

Causal

Acyclic

Consiste

ncy

Ref 3

Weakness

of Memory

Models

Strongest Memory

Model

Weakest Memory

Model
Coherence Causality

Memory models that may violate coherence

Memory models

that may cause

causal cycles

Question: Can we Remove the

“Memory Coherence”

barriers?
Answer: Yes!

 By intuition, The answer is

“Yes”!

 That is:

 If you need an order to be “enforced”

between two memory ops by hardware –

Say it!

 Otherwise, hardware should not have an

obligation to “serialize” the memory

operation!

An Example

 States of L:

 2(𝑡1, 𝑣𝑎𝑙1)

 𝑤(𝑡1, 𝑣𝑎𝑙2)

 𝑤(𝑡2, 𝑣𝑎𝑙3)

(a “growing” pomset!)

𝑠𝑦𝑛𝑐(𝑡1, 𝑡2)

𝑟(𝑡2)

Thread1
𝑤1: 𝐿 ≔ 𝑣𝑎𝑙1

…

𝑤2: 𝐿 ≔ 𝑣𝑎𝑙2

…

𝑟1: 𝑟𝑒𝑎𝑑 𝐿

𝑠𝑦𝑛𝑐(𝑡1, 𝑡2)

Thread2
𝑤3: 𝐿 ≔ 𝑣𝑎𝑙3

…

…

…

𝑟2: 𝑟𝑒𝑎𝑑 𝐿

𝑠𝑦𝑛𝑐 𝑡1, 𝑡2

𝑟3: 𝑟𝑒𝑎𝑑 𝐿

Outline

• Introduction

• Memory Semantics: Three Key

Questions

• Question Q1 and Location Consistency

• Question Q2 and Q3

• Memory Semantics and Codelet

Execution Model

• Summary

Another Two Key Questions

Related to Memory Models

 Assuming two memory operations with the same destination

memory location address X (i.e. LOAD X or STORE X) are issued

through the same processing core.

Notes: We assume that the two memory operations are issued in their

program order. Both of the two memory operations access memory

location address X.

Q2: Should the hardware (architecture) permit > 1 alternative paths of

routing of the memory operations (transactions) along the way?

Q3: If the answer of Q2 is true (I assume it is) - then it is well possible

that the two operations may arrive at its destination out-of-order?

Your Answers to the

Questions ?

No. Answer to Q1 Answer to Q2 Which one ?

1 Yes Yes

2 Yes No

3 No Yes

4 No No

Q1: Should the hardware (architecture) permit > 1 alternative

paths of routing of the memory operations (transactions)

along the way?

Q2: If the answer of Q1 is true (I assume it is) - then it is well

possible that the two operations may arrive at its

destination out-of-order?

Possible Answers to the

Questions

No. Answer to Q1 Answer to Q2 Who answered

1 Yes Yes GG, MM

2 Yes No BS

3 No Yes MS

4 No No DD,SS

Q1: Should the hardware (architecture) permit > 1 alternative

paths of routing of the memory operations (transactions)

along the way?

Q2: If the answer of Q1 is true (I assume it is) - then it is well

possible that the two operations may arrive at its

destination out-of-order?

Outline

• Introduction

• Memory Semantics: Three Key
Questions

• Question Q1 and Location Consistency

• Question Q2 and Q3

• Memory Semantics and Codelet
Execution Model

• Summary

Memory Model of Codelets

The shared memory model is based on LC

(Location Consistency, Gao and Sarkar

2000) and it variants/extensions.

There is no global coherence requirement

due to LC

Our answer to the 3 questions (Q0, Q1, Q2)

will led the extensions to LC: Work In

Progress!

Outline

• Introduction

• Memory Semantics: Three Key
Questions

• Question Q1 and Location Consistency

• Question Q2 and Q3

• Memory Semantics and Codelet
Execution Model

• Summary

Summary

• The memory model of a PXM will help define its scalability

• Classical PXMs (SC,…) do NOT scale well on future manycore
architectures

• We want to get rid of coherence, without throwing causality away.

• Relaxed memory models, such as Location Consistency, can help
design bigger, more scalable manycore systems.

• Programming languages need to be aware of parallelism

• Need to know about the underlying memory model

• Even traditionally sequential languages (C,C++) are starting to provide
a crude memory model to handle concurrency and parallelism

• Other languages, designed to be “concurrentcy-aware” (Java, X10,
Chapel, …) provide a more refined memory model – but maybe still too
relaxed

09/06/11 \course\867-11F\Topic-0.ppt

Topic 4e – Using the Codelet

Model for Exascale

Computations

09/06/11

Introduction: Exploiting Parallelism

in Many-Core Architectures

• Many-core chips are finally here

• Current control-flow based frameworks (MPI,
OpenMP) incur too much overhead for
exascale computing (coarse-grain
parallelism)

• To efficiently exploit parallelism, fine-grain
approaches should be preferred

• We propose a Codelet Program Execution
Model, based on dataflow theory

An Abstract Machine

Model

The Codelet Model

Goals: to effectively
represent data and
computing resource
sharing through a hybrid
dataflow approach, using
two levels of parallelism

Definition: a codelet is a
sequence of machine
instructions which act as
an atomically-scheduled
unit of computation.

fib(n) {

 Int x,y;

 If (n<2) {

 return n;

 } else {

 x = fib(n-1);

 y = fib(n-2);

 return x+y;

 }

}

Input

Output

Threaded Procedure

Codelet

Dependencies

inside a TP

Dependencies

outside a TP

The Codelet Graph Model

(CDG)

• A CDG is well-

behaved if, when input

tokens are present on

all input arcs, it

consumes all of its

tokens and produces

one token on each of its

output arcs

• Well-behaved CDGs

ensure determinate

results: for a given set

of input tokens

corresponds a unique

set of output tokens

Achieving Exascale Performance

• Loop parallelism and Codelet Pipelining: SWP applied
to multi/many cores with SSP

• Sync-Back Continuations (SBC):
• Evolution of “futures” and “continuations”

• Long-latency operations

• SBCs are asynchronous.

• Meeting Locality Requirements
• Codelets inputs are supposed to be locally available.

• A codelet can perform a SBC to retrieve the missing data.

• Percolation can bring code and/or data preemptively to
the codelet.

Smart Adaptation in an Exascale CXM:

Power, Energy, and Resiliency

• Power Management & Energy Efficiency

• Percolation: moving code and/or data efficiently
where needed.

• Self-Aware Power Management: the system decides
of scheduling and power policies according to goals
and dynamic events

• Achieving Resiliency on 10⁵ – 10⁶ cores

• Duplicating computation on various parts of the
system

• Actively looking for badly-behaving cores

• Check-pointing (easily with CDGs)

Conclusion

• Codelets are fine-grain, atomically scheduled sequences of
code, grouped into codelet graphs.

• The use of sync-back continuations and parallel loop SWP
will enable codelets to make as many cores busy as
possible

• Percolation can improve both data and code locality, as well
as energy efficiency

• The codelet PXM bets on self-awareness to ensure
reliability

• A runtime system inspired by codelets already exists
(SWARM, by ETI).

• We are extending LLVM to be codelet-aware.

