
CAPSL

Flex/Bison Tutorial

Aaron Myles Landwehr

aron+ta@udel.edu

1 2/17/2012

CAPSL

GENERAL COMPILER
OVERVIEW

2 2/17/2012

CAPSL

Compiler Overview

Lexer /
Scanner

Parser
Semantic
Analyzer

Optimizers
Code

Generator

Frontend Middle-end Backend

3 2/17/2012

CAPSL

Lexer/Scanner

• Lexical Analysis

– process of converting a sequence of characters
into a sequence of tokens.

4

foo = 1 - 3**2

Lexeme Token Type

foo Variable

= Assignment Operator

1 Number

- Subtraction Operator

3 Number

** Power Operator

2 Number

2/17/2012

CAPSL

Parser

• Syntactic Analysis
– The process of analyzing a sequence of tokens to determine its

grammatical structure.

– Syntax errors are identified during this stage.

5

foo

3 2

-

1 **

Lexeme Token Type

foo Variable

= Assignment Operator

1 Number

- Subtraction Operator

3 Number

** Power Operator

2 Number

=

2/17/2012

CAPSL

Semantic Analyzer

• Semantic Analysis

– The process of performing semantic checks.

• E.g. type checking, object binding, etc.

6

float a = "example";
error: incompatible types in
initialization

Code: Semantic Check Error:

2/17/2012

CAPSL

Optimizer(s)

• Compiler Optimizations

– tune the output of a compiler to minimize or
maximize some attributes of an
executable computer program.

– Make programs faster, etc…

7 2/17/2012

CAPSL

Code Generator

• Code Generation

– process by which a compiler's code generator
converts some intermediate representation of
source code into a form (e.g., machine code)
that can be readily executed by a machine.

8

foo:
 addiu $sp, $sp, -16
 addiu $2, $zero, 345
 addiu $sp, $sp, 16
 jr $ra

int foo()
{
 return 345;
}

2/17/2012

CAPSL

LEX/FLEX AND
YACC/BISON OVERVIEW

9 2/17/2012

CAPSL

General Lex/Flex Information

• lex

– is a tool to generator lexical analyzers.

– It was written by Mike Lesk and Eric Schmidt
(the Google guy).

– It isn’t used anymore.

• flex (fast lexical analyzer generator)

– Free and open source alternative.

– You’ll be using this.

10 2/17/2012

CAPSL

General Yacc/Bison Information

• yacc

– Is a tool to generate parsers (syntactic
analyzers).

– Generated parsers require a lexical analyzer.

– It isn’t used anymore.

• bison

– Free and open source alternative.

– You’ll be using this.

11 2/17/2012

CAPSL

Lex/Flex and Yacc/Bison relation to a
compiler toolchain

12

Lexer /
Scanner

Parser
Semantic
Analyzer

Optimizers
Code

Generator

Frontend Middle-end Backend

Lex/Flex
(.l spec file)

Yacc/Bison
(.y spec file)

2/17/2012

CAPSL

FLEX IN DETAIL

13 2/17/2012

CAPSL

How Flex Works

• Flex uses a .l spec file to generate a
tokenizer/scanner.

• The tokenizer reads an input file and
chunks it into a series of tokens which are
passed to the parser.

14

flex .l spec file lex.yy.c

2/17/2012

CAPSL

Flex .l specification file

15

/*** Definition section ***/
%{
/* C code to be copied verbatim */
%}

/* This tells flex to read only one input file */
%option noyywrap

%%
 /*** Rules section ***/

 /* [0-9]+ matches a string of one or more digits */
[0-9]+ {
 /* yytext is a string containing the matched text. */
 printf("Saw an integer: %s\n", yytext);
 }

.|\n { /* Ignore all other characters. */ }

%%
/*** C Code section ***/

2/17/2012

CAPSL

Flex Rule Format

16

• Matches text input via Regular
Expressions

• Returns the token type.

• Format:
REGEX {
 /*Code*/
 return TOKEN-TYPE;
 }

 …

2/17/2012

CAPSL

Flex Regex Matching Rules

• Flex matches the token with the longest match:

– Input: abc

– Rule: [a-z]+

Token: abc(not "a" or "ab")

• Flex uses the first applicable rule:

– Input: post

– Rule1: "post" { printf("Hello,"); }

– Rule2: [a-zA-z]+ { printf ("World!"); }

It will print Hello, (not “World!”)

17 2/17/2012

CAPSL

Flex Example

18

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

2/17/2012

CAPSL

Flex Example

19

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Match one or more
characters between 0-9.

Match one or more
characters between 0-9.

2/17/2012

CAPSL

Flex Example

20

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Store the
Number.
Store the
Number.

2/17/2012

CAPSL

Flex Example

21

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Return the token type.
Declared in the .y file.
Return the token type.
Declared in the .y file.

2/17/2012

CAPSL

Flex Example

22

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Match one or more
alphabetical characters.

Match one or more
alphabetical characters.

2/17/2012

CAPSL

Flex Example

23

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Store the
text.

Store the
text.

2/17/2012

CAPSL

Flex Example

24

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Return the token type.
Declared in the .y file.
Return the token type.
Declared in the .y file.

2/17/2012

CAPSL

Flex Example

25

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Match
any single
character

Match
any single
character

2/17/2012

CAPSL

Flex Example

26

[0-9]+ {
 /*Code*/
 yylval.dval = atof(yytext);
 return NUMBER;
 }

[A-Za-z]+ {
 /*Code*/
 struct symtab *sp = symlook(yytext);
 yylval.symp = sp;
 return WORD;
 }

. { return yytext[0]; }

Return the character. No
need to create special
symbol for this case.

Return the character. No
need to create special
symbol for this case.

2/17/2012

CAPSL

BISON IN DETAIL

27 2/17/2012

CAPSL

How Bison Works

• Bison uses a .y spec file to generate a
parser.

• The parser reads a series of tokens and
tries to determine the grammatical
structure with respect to a given
grammar.

28

bison .y spec file

somename.tab.c

somename.tab.h

2/17/2012

CAPSL

What is a Grammar?

• A grammar

– is a set of formation rules for strings in a
formal language. The rules describe how to
form strings from the language's alphabet
(tokens) that are valid according to the
language's syntax.

29 2/17/2012

CAPSL

Simple Example Grammar

30

Above is a simple grammar that allows recursive
math operations…
Above is a simple grammar that allows recursive
math operations…

E  E + E
  E - E
  E * E
  E / E
  id

2/17/2012

CAPSL

Simple Example Grammar

31

E  E + E
  E - E
  E * E
  E / E
  id

These are
productions

These are
productions

2/17/2012

CAPSL

Simple Example Grammar

32

E  E + E
  E - E
  E * E
  E / E
  id

In this case expressions (E) can be made up of the
statements on the right.

*Note: the order of the right side doesn’t matter.

In this case expressions (E) can be made up of the
statements on the right.

*Note: the order of the right side doesn’t matter.

2/17/2012

CAPSL

Simple Example Grammar

33

E  E + E
  E - E
  E * E
  E / E
  id

How does this work
when parsing a series
of tokens?

How does this work
when parsing a series
of tokens?

2/17/2012

CAPSL

Simple Example Grammar

34

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Simple Example Grammar

35

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

We start by parsing
from the left. We
find that we have an
id.

We start by parsing
from the left. We
find that we have an
id.

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Simple Example Grammar

36

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

An id is an
expression.
An id is an
expression.

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Simple Example Grammar

37

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

Next it will match
one of the rules
based on the next
token because the
parser know 2 is an
expression.

Next it will match
one of the rules
based on the next
token because the
parser know 2 is an
expression.

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Simple Example Grammar

38

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

The production with
the plus is matched
because it is the
next token in the
stream.

The production with
the plus is matched
because it is the
next token in the
stream.

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Simple Example Grammar

39

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

Next we move to the
next token which is
an id and thus an
expression.

Next we move to the
next token which is
an id and thus an
expression.

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Simple Example Grammar

40

E  E + E
  E - E
  E * E
  E / E
  id

Suppose we had the following tokens:

2 + 2 - 1

Suppose we had the following tokens:

2 + 2 - 1

We know that E + E
is an expression.

So we can apply the
same ideas and
move on until we
finish parsing…

We know that E + E
is an expression.

So we can apply the
same ideas and
move on until we
finish parsing…

2/17/2012

Lexeme Token Type

2 Number

+ Addition Operator

2 Number

- Subtraction Operator

1 Number

CAPSL

Bison .y specification file

41

/*** Definition section ***/
%{ /* C code to be copied verbatim */ %}

%token <symp> NAME
%token <dval> NUMBER

%left '-' '+'
%left '*' '/'
%type <dval> expression

%%
/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

%%
/*** C Code section ***/
 2/17/2012

CAPSL

Bison: definition Section Example

42

/*** Definition section ***/
%{
 /* C code to be copied verbatim */
%}

%token <symp> NAME
%token <dval> NUMBER

%left '-' '+'
%left '*' '/'

%type <dval> expression

2/17/2012

CAPSL

Bison: definition Section Example

43

/*** Definition section ***/
%{
 /* C code to be copied verbatim */
%}

%token <symp> NAME
%token <dval> NUMBER

%left '-' '+'
%left '*' '/'

%type <dval> expression

Declaration of Tokens:
%token <TYPE> NAME
Declaration of Tokens:
%token <TYPE> NAME

2/17/2012

CAPSL

Bison: definition Section Example

44

/*** Definition section ***/
%{
 /* C code to be copied verbatim */
%}

%token <symp> NAME
%token <dval> NUMBER

%left '-' '+'
%left '*' '/'

%type <dval> expression

Higher

Operator Precedence
and Associativity

Operator Precedence
and Associativity

Lower

2/17/2012

CAPSL

Bison: definition Section Example

45

/*** Definition section ***/
%{
 /* C code to be copied verbatim */
%}

%token <symp> NAME
%token <dval> NUMBER

%left '-' '+'
%left '*' '/'

%type <dval> expression

Associativity Options:
%left - a OP b OP c
%right - a OP b OP c
%nonassoc - a OP b OP c (ERROR)

2/17/2012

CAPSL

Bison: definition Section Example

46

/*** Definition section ***/
%{
 /* C code to be copied verbatim */
%}

%token <symp> NAME
%token <dval> NUMBER

%left '-' '+'
%left '*' '/'

%type <dval> expression

Defined non-terminal
name (the left side of

productions)

Defined non-terminal
name (the left side of

productions)

2/17/2012

CAPSL

Bison: rules Section Example

47

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

2/17/2012

CAPSL

Bison: rules Section Example

48

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

This is the grammar for bison. It should
look similar to the simple example

grammar from before.

This is the grammar for bison. It should
look similar to the simple example

grammar from before.

2/17/2012

CAPSL

Bison: rules Section Example

49

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

What this says is that a statement list is made
up of a statement OR a statement list

followed by a statement.

What this says is that a statement list is made
up of a statement OR a statement list

followed by a statement.

2/17/2012

CAPSL

Bison: rules Section Example

50

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

The same logic applies here also. The first
production is an assignment statement, the

second is a simple expression.

The same logic applies here also. The first
production is an assignment statement, the

second is a simple expression.

2/17/2012

CAPSL

Bison: rules Section Example

51

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

This simply says that an
expression is a number or

a name.

This simply says that an
expression is a number or

a name.

2/17/2012

CAPSL

Bison: rules Section Example

52

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

This is an executable statement. These are
found to the right of a production.

When the rule is matched, it is run. In this
particular case, it just says to return the

value.

This is an executable statement. These are
found to the right of a production.

When the rule is matched, it is run. In this
particular case, it just says to return the

value.

2/17/2012

CAPSL

Bison: rules Section Example

53

/*** Rules section ***/
statement_list: statement '\n'
 | statement_list statement '\n'

statement: NAME '=' expression { $1->value = $3; }
 | expression { printf("= %g\n", $1); }

expression: NUMBER
 | NAME { $$ = $1->value; }

The numbers in the executable statement
correspond to the tokens listed in the

production. They are numbered in ascending
order.

The numbers in the executable statement
correspond to the tokens listed in the

production. They are numbered in ascending
order.

1 2 3

2/17/2012

CAPSL

ABOUT YOUR
ASSIGNMENT

54 2/17/2012

CAPSL

What you need to do

• You are given a prefix calculator.

• You need to make infix and postfix
versions of the calculator.

• You then need to add support for
additional operators to all three
calculators.

55

+ 2 4

 2 + 4 2 4 +

2/17/2012

CAPSL

Hints

• Name your calculators “infix” and
“postfix.”

• You don’t need to change the c code
section of the .y.

• You may need to define new tokens for
parts of the assignment.

56 2/17/2012

CAPSL

Credit

• Wikipedia

– Most of the content is from or based off of
information from here.

• Wookieepedia

– Nothing was taken from here.

– Not even this picture of Chewie.

• 2008 Tutorial

57

*

*From Wikipedia: qualifies as fair use under United
States Copyright law.

2/17/2012

