OpenMP Tutorial

Souad Koliai
koliai@capsl.udel.edu

04/06/2012

Parallel Architectures

Parallel Architectures

NUMA (Non-Uniform Memory Access) architecture. Distributed
Linking several SMPs. Memory

Coherency not maintained.

RAM RAM
\ | \ | \ | | \ | \ | | \ | \ | | \ | \ |
| | | | | | | | |
\ | \ | \ | \ |
\ | | | |
| | | | | | | |
| \ \‘ \ \‘ \ \‘ \ \‘ \ \‘ \ \‘ \ \‘ \ \‘
Interconnect
| \ | \ | \ | \ | \ | | \ | | \ | \ | \ | \ |
| m | | B m | |
\ | \ | \ | \ |
| \‘ | \‘ | \‘ | \‘
\ \‘ \ \‘ \ \‘ \ \‘ \ \‘ \‘ | \ \‘ \ \‘ \ \‘
RAM RAM

Parallel Architectures

* ccNUMA (cache coherent Non-Uniform Memory Access) architecture. Distributed
« Communication between cache controllers to maintain coherency.
e Consistent memory image.

Memory

[[[[
RAM RAM RAM RAM
s - ! .
] |] E‘] E‘] |] E‘ ‘E E‘
| | | | | | | | |
\ |1 | \ |1 |
| | | i
] I L 1)] | L]] L1 [] L 1)] L1 1 L1
| | | |
Interconnect
[] | |
] L1 [] |] L1 [] L]] L1 [] |] L1 [L]
\ | || | \ | 1] |
| | | | | |
] L1 [] [L1] L]] L1 [] LI L1] L]
f o h h
RAM RAM RAM RAM
| | | | A

Parallel Architectures

« NUMA node - SMP architecture.

Shared
Memory

Interconnect
RAM
| | |

core core core core core core core core
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
core core core core core core core core

Proc 1

Proc 2

Programing Models

Programing Models
Distributed Memory
MPI

* Message Passing Interface (ie. MPI).

* Explicit model - message sending/receiving for:
» Data exchange.
v Synchronization.
v Communication.

* Programmer should express the parallelism explicitly.
 MPI subroutines used at source level.

* The “de facto”industry standard for message passing.

Programing Models

Shared Memory
Threads

* Thread model
v One program with multiple subroutines.
v One cook book and multiple cookers reading different pages.

« Each thread Ti has local data.
v Each thread accesses to the global memory — potential

synchronization.

a.out
T1 T2

&l

awi)

¥

Programing Models
Shared Memory
Threads

» Smallest unit scheduled by the OS.
« Different threads belong to one process.
v Thread = lightweight process.

 One thread owns:
v A stack.
v A set of registers (ie. a context).

Memory

Sequential Process

Programing Models
Shared Memory
Threads

Multiple threads share the same @ space. !

The threads stacks are located in the heap.

The thread's stack has a fixed size.

Only the master thread's stack size increases.

Global variables are shared between threads.

Communication between threads via the
memory.

Memory

10
Multi-threaded Process

Programing Models
Shared Memory
Threads - OpenMP

 Two APIs for kernel threads manipulation:
v POSIX threads: linux, FreeBSD, MacOS, Solaris, ...
« Windows threads

 Different programing models for shared memory:
v OpenMP, CILK, TBB, CnC, Chapel

* Focus on the OpenMP programing model

* OpenMP 3.1 specifications
http.//www.openmp.org/mp-documents/OpenMP3.1.pdf

11

OpenMP

 OpenMP (Open Multi-Processing) is a C/C++ and Fortran Application
Programming Interface for shared memory architectures.

 OpenMP is based on the Fork and Join model:

J J
O O
m— m—
master L 1L
thread N N
{ parallel region } { parallel region }

 OpenMP consists in:
v A set of compiler directives.
v Library functions calls
v Environment variables

13

OpenMP

 An OpenMP program is executed by one process — thread master.

* The process activates several lightweight processes (ie. threads)
when a parallel region starts — Fork.

* The code of the parallel region is duplicated and each thread
executes that code.

e Different threads executes the code at the same time.

« At the end of a parallel region (ie. join), only the master thread
continues execution.

e During the execution a the threads, a variable can be

read/written:
« |f the variable is in the thread's stack — private variable
« If the variable defined in a shared memory space — shared variable 14

OpenMP

Shard variables space

XTE“ Stacks (local variables)

Lightweight processes

— threads

Process
Parellel
Region Set of instructions

Program
15

OpenMP

0123 NB threads
[|

—

 An OpenMP program alternates
sequential and parallel regions.
* The sequential region is always
executed by the thread master
— thread 0. "

» A parallel region is executed by
different threads at the same EEsE
time.

* The threads may share the work a
inside the parallel region.

awiL

16

OpenMP

* What is the work sharing between threads?

v Share the iteration space of a loop between threads.
v Execute different sections of a program but one section

per thread.
v Execute different occurrences of a procedure by different
threads.
/ - _-\\ .-"/ \'\ ,-'/ H\
f [I B \ .: [I I :I ':. HEE ":I
WO W = W
e T
Loop Level Parallelism Parallel Sections Parallel Procedures

17

 What is data race?
v |t is the access to a shared variable
by different threads and at least
one access Is a write.

* In case of data race, synchronization
between threads is mandatory.

* For example, in case of a reduction,
a synchronization is needed to avoid
the modification, of the value of the

shared variable, in an incorrect order.

'.H S=0 S=12
\
\ /
a=2 \ /
b=3 fige - S
S0,
Ao =
S=S+a*

OpenMP

« Compilation directives:
< Define the work sharing. | |
v Synchronization. o
« Privacy of variables. Compilation H R
v IF correct flag not set, the compller
consider the directive as a comment.

e Library functions calls: Link F— ey |
v It is loaded at link. |

 Environment variables:

«~ When set up, their values are]
considered at execution time. - Execution H Env. Variables

19

OpenMP - Syntax

 The OpenMP directives are:
v Inserted in the source code by the programmer
OR
v Inserted automatically in the source code (ie. automatic
parallelization)

 An OpenMP directive has the following shape:
#pragma omp directive [clause[clause]...] for C/C++
sentinel directive [clause[clause]...] for Fortran

* There is an include file “omp.h™:
v |t defines all OpenMP functions.
v |t should be included in each OpenMP program
to be able to use the functions.

20

OpenMP - Syntax

#include <omp.h>

#pragma omp parallel private(a,b) \
shared(d, c)
{

21

OpenMP - Parallel Region

OpenMP
Parallel Region Construction

* In a parallel region by default the variables are
shared.

* In a parallel region all threads execute the same
code.

« At the end of the parallel region there is an implicit
barrier for synchronization.

* No branches inside or outside a parallel region, neither
in any other OpenMP construct.

23

OpenMP

Parallel Region Construction

#include <stdio.h>
#include <omp.h>

int main(void)
{
int a; int P;
a = 10000; p = O;
#pragma omp parallel
{
#ifdef OPENMP
p=omp in parallel();
#tendif
printf("a = %d ; p =
}

return O;

3d\n",a,p);

24

OpenMP

Parallel Region Construction

> gcc .. —fopenmp -0 omp omp.cC
> export OMP NUM THREADS=8
> . /omp

a = 10000 ; p =1

a = 10000 ; p =1

a = 10000 ; p =1

a = 10000 ; p =1

a = 10000 ; p =1

a = 10000 ; p =1

a = 10000 ; p =1

a = 10000 ; p =1

25

OpenMP
Parallel Region Construction

* [t is possible to change the default status of variables in the
parallel region construct. This can be done using the clause
DEFAULT .

* |If a variable has a PRIVATE status, it is located in the thread's
stack. Its value is undefined at the entry of a parallel region.

26

OpenMP

Parallel Region Construction

#include <stdio.h>
#include <omp.h>

int main(void)

{
int a = 10000;
int p = 0;
#pragma omp parallel private(a)
{

#ifdef OPENMP
p=omp in parallel();
#endif
printf("a = %3d ; p = %d\n",a,p);
}

return O;

27

OpenMP

Parallel Region Construction

> gcc .. —fopenmp -0 omp omp.cC
> export OMP NUM THREADS=8
> . /omp

O 0 0 0 02 0 0 O
|

O OO WO ooo
N

O\ N Ne we¢ =
N
'O 'O 'O 0O o 'O O
I

Il ~e

i o R © B T SR S B
Il
=

we we e

28

OpenMP
Parallel Region Construction

* The clause FIRSPRIVATE forces the initialization
of the private varibale to the last value it has right
before the parallel region.

29

OpenMP

Parallel Region Construction

#include <stdio.h>
#include <omp.h>

int main(void)

{
int a;
a = 50000;

#pragma omp parallel firstprivate(a)

{
a += 1111;

printf("a = %d\n",a);

}
printf* ("After parallel region, a =

return O;

$d\n",a);

30

OpenMP

Parallel Region Construction

\Y

gcc .. —fopenmp -o omp omp.cC
export OMP_NUM THREADS=8
. /omp

vV V

= 51111
= 51111
= 51111
= 51111
51111
= 51111
= 51111
= 51111
After parallel region, a = 50000

O 0O 0 9 9 9 0 W
Il

31

OpenMP
Scope of a Parallel Region

* The influence of a parallel region goes beyond the

1 1}

region's “lexical” scope. It is extended to the code
of the subroutines called in the parallel region.

* This is called the dynamic scope.

32

OpenMP

Scope of a Parallel Region

int main(void)

{
void sub(void);
#pragma omp parallel
{
sub () ;
}
return O;
b

#include <stdio.h>
#include <omp.h>

void sub(void)

{
int p=0;

#ifdef OPENMP
p = omp in parallel();
#endif

printf ("Parallel? :
3d\n", p) ;

33

OpenMP

Scope of a Parallel Region

> gcc .. -—-fopenmp -o omp omp.c sub.c
> export OMP NUM THREADS=8
> . /omp

Parallel?
Parallel?
Parallel?
Parallel?
Parallel?
Parallel?
Parallel?
Parallel?

(X} (X} (X} (X} (X} (X} [X] (X}
e e e

34

OpenMP

Scope of a Parallel Region

* In a subroutine called in a parallel region, the local variables
are implicitly private to each thread and defined in its
corresponding stack.

int main(void) #include <stdio.h>

{ #include <omp.h>
void sub(void);

void sub(void)

#pragma omp parallel \ {
default (shared) int a;
{ a = 50000;
sub () ;
} a = a + omp get thread num();
return O; printf("a = %d\n", a);

35

OpenMP
Scope of a Parallel Region

\Y

gce .. -—-fopenmp -o omp omp.c sub.c
export OMP NUM THREADS=8
. /omp

vV V

50000
= 50001
= 50007
= 50005
= 50004
= 50003
= 50002
= 50006

O 9 9 0 0 0O O QO

36

OpenMP - Work Sharing

OpenMP

Work Sharing

* Using OpenMP functions to create a parallel region
is enough.

* The programmer has to explicitly divide the work, the data
and make sure not to have any data race.

 OpenMP has directives that take care of that in a good
way:
» FOR directive
v SECTIONS directive
« WORKSHARE directive

38

OpenMP

Work Sharing — FOR directive

* A fordirective is used inside a parallel region.

e Different clauses can be used with the For directive:
v private— makes the variable private

« Firstprivate — makes the variable private and assign it
the last value it has right before the forregion

« lastprivate — makes the variable private and keep the value
it has at the last iteration of the loop, outside the forregion

v reduction — a private copy for each variable listed is created
for each thread. The reduction variable is applied to all private
copies of the shared variable. The final result is written to the

global shared variable. N

OpenMP

Work Sharing — FOR directive

#define length 500

int main(void)

{

int A[length];
int B[length];
int dot = O;

Init(A,B);
#pragma omp parallel default(none) shared(A,B,dot)
{

int k;

#pragma omp for reduction(+:dot)

for (k=0 ; k<length ; ++k){

dot += A[k] * B[k];
}

}

return O;

40

OpenMP

Work Sharing — FOR directive

 Different scheduling can be applied to the threads:
v Static
v Dynamic
v Guided
* The clause SCHEDULE allows to choose the scheduling:
#pragma omp for schedule(static/dynamic[guided)

* Choosing a right scheduling for a loop is @a major criterion
for a good load balancing.

* There is an implicit barrier at the end of a for construct
unless a NOWAIT clause is specified.

41

OpenMP

Work Sharing — FOR directive - SCHEDULE clause

» Schedule(static, chunk_size) - Iterations are divided into chunks
of chunk_size. The chunks are assigned to the threads of the team
in @ round-robin way in the order of the thread number.

 IF no chunk sizeis specified the iteration space is divided into
chunks that have almost the same size. At most only one chunk is
assigned to one thread.

Chunks (0] 1]2]3]4]5]6]7 8

! ¢\
Workload [0 |[48 W w w

Threads 42

Static distribution

OpenMP

Work Sharing — FOR directive — SCHEDULE clause

« Schedule(dynamic, chunk size) - Iterations are distributed to the
threads in chunks, of chunk size, when the threads request them.
Each thread executes a chunk, and it finishes, it requests another
chunk until no more chunks to be distributed.

* IF no chunk sizeis specified the default is 1.

chunks [N IR NS R IS I 7 |

Dynamic distribution 7 e ¥

- 5 o LY
Workload during Threads
execution
0

43

OpenMP

Work Sharing — FOR directive — SCHEDULE clause

» Schedule(guided, chunk_size) — Iterations are assigned to the
threads in chunks when the threads request them. The size of
each chunk is proportional to the number of unassigned iterations
divided by the number of threads decreasing to chunk_size.

* IF no chunk sizeis specified the default is 1.

chunks | T I I (4 | 5|

9
Guided distribution

Workload during A H
execution ! Threads

44

OpenMP - Exclusive Execution

OpenMP

Exclusive Execution

* In case the programmer wants to execute a task by only
one thread and keep the other threads away from this task,
two directives can be used:

v SINGLE
v~ MASTER

46

OpenMP

Exclusive Execution — SINGLE directive

* The SINGLE construct specifies that the associated structured
block is executed by only one of the threads in the team (not
necessarily the master thread).

* |tisin general the first thread arriving to the SINGLE construct

* The other threads that do not execute the block wait at an
implicit barrier at the end of the single construct unless a
NOWAIT clause is specified.

* The different clauses that can be used in a SINGLE construct are;
v Private
v Firstprivate
v Copyprivate

* The COPYPRIVATE clause uses a private variable to broadcast

a value from one thread to the other threads of the team. o

OpenMP

Exclusive Execution — SINGLE directive

#include <stdio.h>
#include <omp.h>

int main(void)
{
int rank;
int a;

tpragma omp parallel private(a,rank)

{
a = 50000;

#pragma omp single
{

a = -50000;
}

rank=omp get thread num();
Printf("Rank s %d ; A = %d\n",
rank,a);

}

return O;

> gcc .. -fopenmp -o omp omp.c
> export OMP_NUM_THREADS=8
> ./omp

Rank 6 ; A = 50000
Rank 0O ; A= 50000
Rank 3 ; A =50000
Rank 4 ; A = 50000
Rank 1 ; A = 50000
Rank 5 ; A = 50000
Rank 7 ; A = =-50000
Rank 2 ; A = 50000

48

OpenMP

Exclusive Execution — SINGLE directive

#include <stdio.h>
#include <omp.h> > gcc .. -fopenmp -0 omp omp.c
_ _ _ > export OMP NUM THREADS=8
int main(void) - -
. > . /omp
int rank;
int a; Rank 6 ; A = -50000
Rank 0 ; A = -50000
#pragma omp parallel private(a,rank) Rank 3 ; A= -50000
{ Rank 4 ; A = =50000
a = 50000; Rank l ; A = -50000
Rank 5 ; A= -50000
#pragma omp single copyprivate(a) Rank 7 3 A = -50000
{ Rank : 2 ; A = =-50000
a = -50000;
}
rank=omp get thread num();
printf("Rank : %d ; A = %d\n",rank,a);
}
return O;
} 49

OpenMP - Synchronization

OpenMP

Synchronization

* Synchronization is important:

v To check that all threads executed the same number of
instructions in the program.

v To order the execution of different threads that are executing
the same portion of code and impacting one or multiple shared
variables that must be a coherent value in the memory.

v To synchronize some threads (at least two) from the same
team (lock).

51

OpenMP

Synchronization — Explicit BARRIER

* Thereis an implicit barrier at the end of each PARALLEL construct
at the end each FOR construct.

v This barrier can be bypassed if the clause NOWAIT is used.

* An explicit barrier can be forced for synchronization using the
BARRIER directive.

threads

« The BARRIER directive synchronizes 01 234 3
all threads of the same team in =
a parallel region. g =
- =

* Each thread waiting at a barrier do
not continue the execution of the
program until all threads reach the
same barrier. v

_____________ Barriere

awiL

52

OpenMP

Synchronization — Explicit BARRIER

#pragma omp parallel private(TID)
{
double start,stop;
TID=omp get thread num();

start = omp get wtime();

if (TID < omp get num threads()/2)
sleep(3);

stop = omp get wtime();

printf("%.0f seconds elapsed before barrier, thread %d\n",
stop-start,TID);

#pragma omp barrier
stop = omp get wtime();

printf("%.0f seconds elapsed after barrier, thread %d\n", stop-
start,TID);

> gcc ..

Synchronization — Explicit BARRIER

OpenMP

—fopenmp -o omp omp.c

> export OMP NUM THREADS=8

>

W WwWwwwwwwwuwuwwwoooo

. /omp

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed
elapsed

before
before
before
before
before
before
before
before
after
after
after
after
after
after
after
after

barrier,
barrier,
barrier,
barrier,
barrier,
barrier,
barrier,
barrier,

barrier,
barrier,
barrier,
barrier,
barrier,
barrier,
barrier,
barrier,

thread
thread
thread
thread
thread

thread

thread

thread

N WO o & U1 J

thread
thread
thread
thread
thread
thread
thread
thread

O W e NJ O -

54

OpenMP

Synchronization — ATOMIC directive

 An ATOMIC directive ensures that a specific shared storage
location is updated in memory by one thread at a time.

» Simultaneous read and writing in the same statement may
result in a indeterminate value.

 The ATOMIC directive is applied on the instruction that
immediately follows the construct.

55

OpenMP

Synchronization — ATOMIC directive

#include <stdio.h>
#include <omp.h>

int main(void)

{ > gcc .. -fopenmp -o omp omp.c
int counter, rank; > export OMP NUM THREADS=8
> . /omp

counter = 50000;

Rank 0 ; counter = 50002

#pragma omp parallel default()none \ Rank 7 : counter = 50001
{ private(rank) shared(counter) Rank 1 ; counter = 50003
rank=omp get thread num(); Rank 3 j counter = 50004
- - - Rank 4 ; counter = 50005

#pragma omp atomic Rank 2 ; counter = 50006
counter++; Rank 6 ; counter = 50007

Rank : 5 ; counter = 50008
printf("Rank : %4 ; counter = %d\n", In total, counter = 50008

rank,counter);

}

printf("In total, counter = %d\n",counter);

return O; °6

OpenMP

Synchronization — CRITICAL directive

* A CRITICAL directive ensures that a specific region in the
program is executed by one thread at a time.

* A CRITICAL directive can be considered as a general version
of the ATOMIC directive.

* For better performance it is not recommended to use a
CRITICAL directive to do an ATOMIC operation.

57

OpenMP

Synchronization — CRITICAL directive

$#include <stdio.h>

int main(void)

{

int s, p;

#pragma omp parallel
{ #pragma omp critical
{
s++;
p*=2;
}
}

printf ("Total sum and product:

o\°

d, %d\n",s,p);

return O;

58

OpenMP - Nested Parallelism

OpenMP

Nested Parallelism

 The OpenMP standard allows nested parallelism.

 This nesting consists in having a parallel region inside
another parallel region.

« ATTENTION! The threads IDs are localto each parallel
region. Different threads with the same IDs may exist!

* Pros — Exploit the parallelization at different levels.

e Cons — Overhead of the parallel region creation/destruction.

60

OpenMP

Nested Parallelism

#pragma omp parallel
{

#pragma omp for
for(i=0; i<n ; ++i) {

void work(...) {
/* declarations */
#pragma omp for

Tt for (j=0; j<m; ++j)
' {
#pragma omp parallel }'°'
{
work(...); ’
}

}

61

OpenMP - API + Env. Variables

OpenMP

Programing Interface

omp_set_num_threads()
« Defines the number of threads in a parallel region (unless
a num_threads clause is specified).

omp_get_num_threads()
« Returns the number of threads available in the current
parallel region.

omp_get_thread_num()
v Returns the ID of the current thread in the current team.

omp_get_max_threads()
« Returns the maximum number of threads that can be
created in one parallel region (unless the num_thread

clause is specified).
63

OpenMP
Programing Interface

« omp_get_num_procs()
« Returns the number of available logical processors.

 omp_in_parallel()
« Indicates if we are in a parallel region or not.

 omp_set_nested()
« Activates parallel region nesting

 omp_get_nested()
* Indicates if the nesting is allowed or not.

64

OpenMP
Environment Variables

« OMP_NUM_THREADS
» Maximum number of threads for a parallel region

« OMP_SCHEDULE = static/dymanic/quided [chunk_size]
v Strategy chosen when the schedule(runtime) clause
is specified in the code.

 OMP_NESTED
« Indicates to the OpenMP runtime if the nesting parallelism
is allowed.

65

What Should Be Done

To Avoid Mistakes?

OpenMP

Errors to Avoid When Using OpenMP

Default Shared Attributes

* The implicit trap:
«~ What is the relation between the variables?
» Solution: be explicit on the variable status —

67

OpenMP

Errors to Avoid When Using OpenMP

Default Shared Attributes

int main(int argc, char **argv)

{

int i, n;
int h, x, sum;

n = atoi(argv[l]);
h = 2;
sum = 0;

#pragma omp parallel for reduction(+:sum) shared(h)
for (i=0 ; i<=n ; i++) {
x =h * (i + 5);
sum += (1 + x*x);

}

return h * sum; 68

OpenMP

Errors to Avoid When Using OpenMP

Private Variables

* Even when using default(none) the programmer may
forget that:

v A private variable has an undefined value at the entry
of a parallel region.

v The value of the original variable is undefined at the exit
of the parallel region.

69

OpenMP

Errors to Avoid When Using OpenMP

Private Variables

int main(int argc, char **argv)

{

int i,a,b,c,n;

n=atoi(argv[l]);
a=>b =20;

#pragma omp parallel for private(i,a,b)
for (i=0; i<n; ++i) {
++b;
a=>b + i;
}
c = a + b;
return c;

70

OpenMP

Errors to Avoid When Using OpenMP

Private Variables

int main(int argc, char **argv)

{

int i,a,b,c,n;

n=atoi(argv[1l]);
b = 0;

#pragma omp parallel for firstprivate(b)\
lastprivate(a,b)
for (i=0; i<n; ++i) {
++b;
a=>b + i;
}
c = a + b;
return c;

71

OpenMP

Errors to Avoid When Using OpenMP

Bad Use of Master Construct

* The programmer may forget that there is no implicit
barrier at the end of the MASTER construct.

int main(void)
{

int xInit, xLocal;

#pragma omp parallel shared(xInit) private(xLocal)

{
#pragma omp master
{ xInit = 10; }
xLocal = xInit;

}

72

OpenMP

Errors to Avoid When Using OpenMP

Summary

e Use default(none)
* Use default(none)
e Use default(none)
* Check the scope of variables in the parallel region.

* Check that the private variables are protected when
concurrent access.

* Initialize the private variables.

* Use default(none)!

73

More Slides

OpenMP

Work Sharing — SECTIONS directive

* A section is a portion of code or a block executed by one
thread.

 The SECTIONS directive is a non-iterative construct that
contains several blocks executed by different threads. Each
block is executed by one thread.

* The different blocks are independent.

 Different blocks may be defined by the programmer using
the SECTION directive inside a SECTIONS construct.

75

OpenMP

Work Sharing — SECTIONS directive

* ALl SECTION directives should be defined inside the lexical
scope of a SECTIONS directive.

* There is an implicit barrier at the end of the SECTIONS
construct unless a NOWAIT clause is specified.

 The different clauses that can be used in a SECTIONS
directive are;

v Private

v Firstprivate
v Lastprivate
v Reduction

76

OpenMP

Work Sharing — SECTIONS directive

#include <stdio.h>
#include <omp.h>

int main()

{

int rank;

#pragma omp parallel private(rang) > gcc .. -fopenmp -o omp omp.c
{ > export OMP NUM THREADS=8
rank=omp get thread num(); - -
; _get_thread_ . > ./omp
pragma omp sections nowait
{
#pragma omp section [Thread 7]
{ [Thread 0]
printf (" [Thread %d4] \n",
rank) ;
}
#pragma omp section
{
printf (" [Thread %d] \n",
rank) ;
}
}
}

return O; 77

OpenMP

Exclusive Execution — MASTER directive

 The MASTER construct specifies that the associated structured
block is executed by only the thread master (thread 0).

 No clauses can be used with this directive.

* There is no implicit barrier at the end of the MASTER directive.

78

OpenMP

Exclusive Execution — MASTER directive

#include <stdio.h>

#include <omp.h>

int main()

(> gcc .. -—-fopenmp -o omp omp.cC
int rank; > export OMP NUM THREADS=8
int a; > ./omp
#pragma omp parallel Rank 6 ; A = 50000

private(a,rank) Rank 0 ; A = -50000
{ Rank 3 ; A =50000
a = 50000; Rank 4 ; A = 50000
Rank 1 ; A = 50000
#pragma omp master Rank 5 : A = 50000
{
Rank 7 ; A = 50000
, 0T TEono Rank : 2 ; A = 50000
rank=omp get thread num();
printf("Rank : %d ; A =
$d\n" ,rank,a);
¥
return O; 79
¥

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

