
SWARM Tutorial

Chen Chen
4/12/2012

1

Outline

• Introduction to SWARM
• Programming in SWARM
• Atomic Operations in SWARM
• Parallel For Loop in SWARM

2

Outline

• Introduction to SWARM
• Programming in SWARM
• Atomic Operations in SWARM
• Parallel For Loop in SWARM

3

What is SWARM

• SWARM (SWift Adaptive Runtime Machine)
• A dynamic adaptive runtime system that

minimizes user exposure to physical parallelism
and system complexity

• SWARM is designed to enable programming on
many-core architectures by utilizing a dynamic,
message-driven model of execution instead of
the static scheduling and sequential computing
method of conventional programming models

Cited from ETI SWARM webpage, http://www.etinternational.com/index.php/products/swarmbeta/
4

Difference Between OpenMP and
SWARM

Parallel tasks

Wake up all threads

Barrier

tasks

Barrier

Sequential task

Master thread
Slave threads

Sequential task
Wake up all threads

OpenMP
Coarse-grain execution model

tasks (codelets)

SWARM
Fine-grain execution model

5

How Codelets Work in SWARM
• Each codelet is attached a dependency

counter with some initial positive value
• A codelet is in dormant state if its

counter is greater than 0
• A codelet is in enabled state if its

counter is 0
• An enabled codelet will be scheduled to

a free thread and executed (firing state)
• A codelet can call satisfy() to decrease

the value of any dependency counter
• SWARM runtime handles codelet

schedule and dependency maintenance

Codelet
dep

counter

6

How Codelet Works in SWARM – an
Example

Codelet1
dep1

=0

Codelet2
dep2

=0

Codelet3
dep3

=2

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is free Enabled

Enabled

Dormant

7

How Codelet Works in SWARM – an
Example

Codelet1
Call satisfy() to

decrease dep3 by 1

dep1
=0

Codelet2
dep2

=0

Codelet3
dep3

=2

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is executing
codelet1

Firing

Enabled

Dormant

8

How Codelet Works in SWARM – an
Example

Codelet1
Call satisfy() to

decrease dep3 by 1

dep1
=0

Codelet2
dep2

=0

Codelet3
dep3

=1

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is free Done

Enabled

Dormant

9

How Codelet Works in SWARM – an
Example

Codelet1
Call satisfy() to

decrease dep3 by 1

dep1
=0

Codelet2
Call satisfy() to

decrease dep3 by 1

dep2
=0

Codelet3
dep3

=1

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is executing
codelet2

Done

Firing

Dormant

10

How Codelet Works in SWARM – an
Example

Codelet1
Call satisfy() to

decrease dep3 by 1

dep1
=0

Codelet2
Call satisfy() to

decrease dep3 by 1

dep2
=0

Codelet3
dep3

=0

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is free Done

Done

Enabled

11

How Codelet Works in SWARM – an
Example

Codelet1
Call satisfy() to

decrease dep3 by 1

dep1
=0

Codelet2
Call satisfy() to

decrease dep3 by 1

dep2
=0

Codelet3
dep3

=0

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is executing
codelet3

Done

Done

Firing

12

How Codelet Works in SWARM – an
Example

Codelet1
Call satisfy() to

decrease dep3 by 1

dep1
=0

Codelet2
Call satisfy() to

decrease dep3 by 1

dep2
=0

Codelet3
dep3

=0

Suppose we have 3 codelets. Codelet3 cannot start unless both codelet1 and codelet2
are done. And suppose we use one thread to execute the 3 codelets.

Thread is free Done

Done

Done

13

Outline

• Introduction to SWARM
• Programming in SWARM
• Atomic Operations in SWARM
• Parallel For Loop in SWARM

14

Programming in SWARM

Problem codelets

Break into
codelets Classify

Entry codelet: No parent

Sink codelet: Executed at last

Single dependent codelet: One parent

Multiple dependent codelet: multiple
parents

Partition the problem into codelets

15

Programming in SWARM cont.

Call swarm_enterRuntime() to start entry codelet

Setup dependency in the program

Entry codelet has no parent. We execute it at beginning of SWARM runtime.

16

Programming in SWARM cont.

Call swarm_enterRuntime() to start entry codelet

Call swarm_scheduleGeneral() to create a single dependent
codelet at the end of its parent

Setup dependency in the program

Single dependent codelet has only one parent. We create it at the end of its parent
without setting dependency.

17

Programming in SWARM cont.

Call swarm_enterRuntime() to start entry codelet

Call swarm_scheduleGeneral() to create a single dependent
codelet at the end of its parent

Call swarm_dependency_init() to create a multiple dependent
codelet before any of its parent is created (e.g., create it at some
ancient of all its parents) and setup dependencies

Setup dependency in the program

A multiple dependent codelet has multiple parents. We have to create it and set
its dependency counter. We perform the creation and setting before the start of
any of its parents to avoid conflicts in the dependency counter.

18

Programming in SWARM cont.

Call swarm_enterRuntime() to start entry codelet

Sink codelet is created in the same way as either single dependent
codelet or multiple dependent codelet , according to the number
of its parents

Call swarm_scheduleGeneral() to create a single dependent
codelet at the end of its parent

Call swarm_dependency_init() to create a multiple dependent
codelet before any of its parent is created (e.g., create it at some
ancient of all its parents) and setup dependencies

Setup dependency in the program

Call swarm_shutdownRuntime() at the end of sink codelet to terminate SWARM runtime. 19

Example: Hello World

startup

hello

world

done

hello

world

Codelet graph of hello world
20

8 in all

Example: Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

21

8 in all

Example: Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

22

Example: Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

23

Example: Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

24

Example: Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

25

SWARM APIs – Enter SWARM Runtime

• swarm_enterRuntime(params, codelet,
context)
– params: pointer to swarm_Runtime_params_t

• Setting up SWARM runtime (e.g., max number of
threads)

– codelet: function name (codelet)
• Function in the format “void fname(void * context)”
• Entry codelet

– context: pointer to a data structure
• The parameters passed to the codelet

26

Review Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

27

8 in all

SWARM APIs – Codelet Creation (1)

• Create a free codelet, i.e., the codelet does
not depend on other codelets
– swarm_scheduleGeneral(codelet, context)

• codelet: function name (codelet)
– Function in the format “void fname(void * context)”

• context: pointer to a data structure
– The parameters passed to the codelet

28

Review Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

29

8 in all

SWARM APIs – Codelet Creation (2)

• Create a dependent codelet, i.e., the codelet
depends on other codelets
– swarm_dependency_init(dep, count, codelet,

context)
• dep: pointer to swarm_dependency_t

– A variable that stores number of satisfied dependencies
• count: An integer that specifies required dependencies
• codelet: function name (codelet)

– Function in the format “void fname(void * context)”
• context: pointer to a data structure

– The parameters passed to the codelet

30

Review Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

31

8 in all

SWARM APIs – Satisfy a Dependency

• swarm_satisfy(dep, num)
– dep: pointer to swarm_dependency_t

• A variable that stores number of satisfied dependencies

– num: An integer that specifies the number of
times to satisfy dep

32

Review Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

33

8 in all

SWARM APIs – Terminate SWARM
Runtime

• swarm_shutdownRuntime(NULL)
– Shut down the runtime in which the caller is

executing

34

Review Hello World
#include <stdio.h>
#include <swarm/Runtime.h>
#include <swarm/Scheduler.h>

#define COUNT 8

static void startup(void *);
static void hello(void *);
static void world(void *);
static void done(void *);
int main(void)
{
 return !swarm_enterRuntime(NULL,
 startup, NULL);
}

static swarm_dependency_t dep;
static void startup(void *unused)
{
 unsigned i;
 (void)unused;

 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(hello, (void *)(size_t)i);
}

static void hello(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: Hello,\n", i);
 swarm_scheduleGeneral(world, _i);
}

static void world(void *_i)
{
 const unsigned i = (size_t)_i;

 printf("%u: world!\n", i);
 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 (void)unused;
 puts("All done!");
 swarm_shutdownRuntime(NULL);
}

startup

hello

world

done

hello

world

35

8 in all

Outline

• Introduction to SWARM
• Programming in SWARM
• Atomic Operations in SWARM
• Parallel For Loop in SWARM

36

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

37

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

Result: tmp1 = tmp2 = tmp3 = 0

Executed instructions
Executing instructions
Unexecuted instructions

38

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

Result : tmp1 = A1
 tmp2 = A2
 tmp3 = A3

Executed instructions
Executing instructions
Unexecuted instructions

39

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

Result : tmp1 = A1
 tmp2 = A2
 tmp3 = A3
 sum = A1

Executed instructions
Executing instructions
Unexecuted instructions

40

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

Result : tmp1 = A1
 tmp2 = A2
 tmp3 = A3
 sum = A2

Executed instructions
Executing instructions
Unexecuted instructions

41

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

Result : tmp1 = A1
 tmp2 = A2
 tmp3 = A3
 sum = A3

Executed instructions
Executing instructions
Unexecuted instructions

42

Example: Data Race in Computing Sum

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

Result: output A3
Wrong result!!

Executed instructions
Executing instructions
Unexecuted instructions

43

Example: Data Race in Computing Sum
– Solution

Codelet i

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

The three instructions must be executed atomically.

The three instructions must be executed as if one
instruction. When the codelet computes sum, the
other codelets must not change the value of sum.

44

Example: Data Race in Computing Sum
– Solution

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

atomic atomic atomic

45

Example: Data Race in Computing Sum
– Solution

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

atomic atomic atomic

Executed instructions
Executing instructions
Unexecuted instructions Execution process: tmp2 = 0

 tmp2 = A2
 sum = A2

46

Example: Data Race in Computing Sum
– Solution

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

atomic atomic atomic

Execution process: tmp3 = A2
 tmp3 = A2+A3
 sum = A2+A3

Executed instructions
Executing instructions
Unexecuted instructions

47

Example: Data Race in Computing Sum
– Solution

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

atomic atomic atomic

Execution process: tmp1 = A2+A3
 tmp1 = A1+A2+A3
 sum = A1+A2+A3

Executed instructions
Executing instructions
Unexecuted instructions

48

Example: Data Race in Computing Sum
– Solution

Codelet 0

sum = 0;

Codelet 1

tmp1 = sum;
tmp1 = tmp1 + A1;
sum = tmp1;

Codelet 4

output(sum);

Compute sum = A1 + A2 + A3

Codelet 2

tmp2 = sum;
tmp2 = tmp2 + A2;
sum = tmp2;

Codelet 3

tmp3 = sum;
tmp3 = tmp3 + A3;
sum = tmp3;

atomic atomic atomic

Result: output A1 + A2 + A3

Executed instructions
Executing instructions
Unexecuted instructions

49

Atomic Operations in SWARM

• swarm_atomic_getAndAdd(var, val)
– Atomically do the following work

• ret = var
• var = var + val
• return ret

• swarm_atomic_cmpAndSet(var, val, newVal)
– Atomically do the following work

• If var == val, then {var = newVal; return true;}
• Otherwise, return false

50

More Information About Atomic
Operations – Read SWARM Document
• General information about atomic operations:

share/doc/swarm/programmers-
guide/sec_coding_atomics.htm and
share/doc/swarm/programmers-
guide/sec_coding_atomics_naming.htm

• Information about atomic get and add:
share/doc/swarm/programmers-
guide/sec_coding_atomics_rmw.htm

• Information about atomic compare and set:
share/doc/swarm/programmers-
guide/sec_coding_atomics_access.htm

51

Outline

• Introduction to SWARM
• Programming in SWARM
• Atomic Operations in SWARM
• Parallel For Loop in SWARM

52

Parallel For Loop in SWARM (1)

for (i = 0; i < N; i++)
 foo(i);

Problem formulation: Suppose we have the following for loop
where loop iterations can be executed in arbitrary order. How
can we parallel the for loop in SWARM?

53

Parallel For Loop in SWARM (2)

for (i = 0; i < N; i++)
 foo(i);

Problem formulation: Suppose we have the following for loop
where loop iterations can be executed in arbitrary order. How
can we parallel the for loop in SWARM?

Methodology 1: Spawn N codelets. Each codelet does one foo(i).
Not recommended due to heavy overhead.

54

Parallel For Loop in SWARM (3)

for (i = 0; i < N; i++)
 foo(i);

Problem formulation: Suppose we have the following for loop
where loop iterations can be executed in arbitrary order. How
can we parallel the for loop in SWARM?

Methodology 1: Spawn N codelets. Each codelet does one foo(i).
Not recommended due to heavy overhead.

Methodology 2: Spawn k codelets. Each codelet does N/k foo(i)s.
Good for balanced workload. Not good for unbalanced workload.

55

Parallel For Loop in SWARM (4)

for (i = 0; i < N; i++)
 foo(i);

Problem formulation: Suppose we have the following for loop
where loop iterations can be executed in arbitrary order. How
can we parallel the for loop in SWARM?

Methodology 1: Spawn N codelets. Each codelet does one foo(i).
Not recommended due to heavy overhead.

Methodology 2: Spawn k codelets. Each codelet does N/k foo(i)s.
Good for balanced workload. Not good for unbalanced workload.

Methodology 3: Spawn k codelets. Each codelet dynamically
execute foo(i)s. Good for unbalanced workload. 56

Parallel For Loop in SWARM (5)

57

static void startup(void *unused)
{
 unsigned i;
 (void)unused;
 // COUNT is total number of threads
 swarm_dependency_init(&dep, COUNT, done, NULL);
 for(i=0; i<COUNT; i++)
 swarm_scheduleGeneral(dotproduct, (void *)(size_t)i);
}

static void dotproduct(void *_tid)
{
 const unsigned tid = (size_t)_tid;
 unsigned i;
 // LEN is length of the array
 sum[tid] = 0;
 for (i = tid * LEN / COUNT; i < (tid + 1) * LEN / COUNT; i++)
 sum[tid] += v1[i] * v2[i];

 swarm_satisfy(&dep, 1);
}

static void done(void *unused)
{
 unsigned i;
 (void)unused;
 int result;

 result = 0;
 for (i = 0; i < COUNT; i++)
 result += sum[i];

 printf("Result is : %d\n", result);
 swarm_shutdownRuntime(NULL);
}

Example of using methodology 2
for vector dot product

Parallel For Loop in SWARM (6)
for (i = 0; i < N; i++)
 foo(i);

Methodology 3: Spawn k codelets. Each codelet dynamically
execute foo(i)s. How?

58

Codelet

(1) Get first index of unexecuted loop iteration and stored in i
(2) Increase the index by CHUNK_SIZE
(3) Executes foo(i), foo(i+1), …, foo(i+CHUNK_SIZE-1)

Hints: Steps (1) and (2) must be done atomically.
 Once i >= N, the codelet is completed
 Correctly handle the case that i + CHUNK_SIZE >= N

Parallel For Loop in SWARM (7)

59

Set maximum number of threads

swarm_Runtime_params_t p;
swarm_Runtime_params_init(&p);
if (M_NUM_THREADS > 0) p.maxThreadCount = m_numthreads;

if(!swarm_enterRuntime(&p, startup, _ctxt)) { //startup : entry codelet
//_ctxt: parameter passing to startup
 fprintf(stderr, "%s: unable to start SWARM runtime\n", *argv);
 return 64;
}

Set and Get maximum number of threads

Parallel For Loop in SWARM (8)

60

Get maximum number of threads

unsigned GetSwarmThreadCount() {//return maximum number of threads
 const swarm_ThreadLocale_t *top = swarm_topmostLocale;
 size_t k;
 if(!top) return 1;
 k = swarm_Locale_getChildren(
 swarm_ThreadLocale_to_Locale(top), NULL, 0);
 return k+!k;
}

Set and Get maximum number of threads

	SWARM Tutorial
	Outline
	Outline
	What is SWARM
	Difference Between OpenMP and SWARM
	How Codelets Work in SWARM
	How Codelet Works in SWARM – an Example
	How Codelet Works in SWARM – an Example
	How Codelet Works in SWARM – an Example
	How Codelet Works in SWARM – an Example
	How Codelet Works in SWARM – an Example
	How Codelet Works in SWARM – an Example
	How Codelet Works in SWARM – an Example
	Outline
	Programming in SWARM
	Programming in SWARM cont.
	Programming in SWARM cont.
	Programming in SWARM cont.
	Programming in SWARM cont.
	Example: Hello World
	Example: Hello World
	Example: Hello World
	Example: Hello World
	Example: Hello World
	Example: Hello World
	SWARM APIs – Enter SWARM Runtime
	Review Hello World
	SWARM APIs – Codelet Creation (1)
	Review Hello World
	SWARM APIs – Codelet Creation (2)
	Review Hello World
	SWARM APIs – Satisfy a Dependency
	Review Hello World
	SWARM APIs – Terminate SWARM Runtime
	Review Hello World
	Outline
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum
	Example: Data Race in Computing Sum – Solution
	Example: Data Race in Computing Sum – Solution
	Example: Data Race in Computing Sum – Solution
	Example: Data Race in Computing Sum – Solution
	Example: Data Race in Computing Sum – Solution
	Example: Data Race in Computing Sum – Solution
	Atomic Operations in SWARM
	More Information About Atomic Operations – Read SWARM Document
	Outline
	Parallel For Loop in SWARM (1)
	Parallel For Loop in SWARM (2)
	Parallel For Loop in SWARM (3)
	Parallel For Loop in SWARM (4)
	Parallel For Loop in SWARM (5)
	Parallel For Loop in SWARM (6)
	Parallel For Loop in SWARM (7)
	Parallel For Loop in SWARM (8)

