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Abstract. This paper considers the problem of scheduling dynamic parallel computations to
achieve linear speedup without using significantly more space per processor than that required for
a single-processor execution. Utilizing a new graph-theoretic model of multithreaded computation,
execution efficiency is quantified by three important measures: T1 is the time required for executing
the computation on a 1 processor, T∞ is the time required by an infinite number of processors, and
S1 is the space required to execute the computation on a 1 processor. A computation executed on
P processors is time-efficient if the time is O(T1/P + T∞), that is, it achieves linear speedup when
P = O(T1/T∞), and it is space-efficient if it uses O(S1P ) total space, that is, the space per processor
is within a constant factor of that required for a 1-processor execution.

The first result derived from this model shows that there exist multithreaded computations such
that no execution schedule can simultaneously achieve efficient time and efficient space. But by
restricting attention to “strict” computations—those in which all arguments to a procedure must be
available before the procedure can be invoked—much more positive results are obtainable. Specif-
ically, for any strict multithreaded computation, a simple online algorithm can compute a schedule
that is both time-efficient and space-efficient. Unfortunately, because the algorithm uses a global
queue, the overhead of computing the schedule can be substantial. This problem is overcome by
a decentralized algorithm that can compute and execute a P -processor schedule online in expected
time O(T1/P + T∞ lgP ) and worst-case space O(S1P lgP ), including overhead costs.
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1. Introduction. In the course of investigating schemes for general-purpose
MIMD-style parallel computation, many diverse research groups have agreed on mul-
tithreading as a dominant paradigm. As an example, modern dataflow systems
[16, 19, 25, 33, 34, 35, 40, 41] partition the dataflow instructions into fixed groups
called threads and arrange the instructions of each thread into a fixed sequential order
at compile time. At run time, a scheduler dynamically orders execution of the threads.
Other systems employ schedulers that dynamically order threads based on the avail-
ability of data in shared-memory multiprocessors [1, 10, 23] or message arrivals in
message-passing multicomputers [2, 17, 29, 44].

Rapid execution of a multithreaded computation on a parallel computer requires
exposing and exploiting parallelism in the computation by keeping enough threads
concurrently alive to keep the processors of the computer busy. If processors are busy
most of the time, the P -processor execution schedule X of the computation exhibits
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SCHEDULING MULTITHREADED COMPUTATIONS 203

linear speedup: the running time T (X ) is order P times faster than the optimal
running time T1 with 1 processor, that is, T (X ) = O(T1/P ).

In attempting to expose parallelism, however, schedulers often end up exposing
more parallelism than the computer can actually exploit, and since each living thread
requires the use of a certain amount of memory, such schedulers can easily overrun the
memory capacity of the machine [15, 22, 24, 39, 43]. To date, the space requirements
of multithreaded computations have been managed with heuristics or not at all [14,
15, 22, 24, 26, 32, 39, 43]. In this paper, we use algorithmic techniques to address the
problem of managing storage for multithreaded computations. Our goal is to develop
scheduling algorithms that expose sufficient parallelism to obtain linear speedup but
without exposing so much parallelism that the space requirements become excessive.

We compare the total space S(X ) required by a P -processor execution schedule
X with the space S1 used by a space-optimal 1-processor execution. We wish to use
as little space as possible, and we argue that a space-efficient P -processor execution
schedule X exhibits at most linear expansion of space, that is, S(X ) = O(S1P ).

Our first result shows that, in general, it is not possible to achieve both linear
speedup and linear expansion of space. We exhibit a multithreaded computation such
that any execution schedule X that achieves a factor of ρ speedup, that is, execution
time T (X ) ≤ T1/ρ, must use space at least S(X ) ≥ (1/4)(ρ− 1)

√
T1 +S1. For such a

computation, even achieving a factor of 2 speedup (ρ = 2) requires space that grows
as a function of the serial execution time.

In order to cope with this negative result, we restrict our attention to the class of
“strict” multithreaded computations. Intuitively, a strict computation is one in which
no subroutine is called until all its parameters are available, although the parameters
may be evaluated in parallel. Computations such as parallel divide-and-conquer,
backtrack search, branch-and-bound, and game-tree search are all strict.

We show that for any strict multithreaded computation and any number P
of processors, there exists a P -processor execution schedule X that achieves time
T (X ) ≤ T1/P +T∞, where T∞ is the optimal execution time on an infinite number of
processors, and space S(X ) ≤ S1P . Such a schedule exhibits linear expansion of space
and linear speedup, T (X ) = O(T1/P ), provided the average available parallelism,
which we define as T1/T∞, is at least proportional to P , that is, T1/T∞ = Ω(P ). We
prove such schedules exist by exhibiting a simple centralized algorithm to compute
them. We give a second, somewhat more efficient algorithm that computes equally
good execution schedules; this algorithm is online and should be practical for moder-
ate numbers of processors, but its use of a centralized queue makes it inefficient for
large numbers of processors.

To demonstrate an algorithm that is efficient even for large machines, we give a
randomized, distributed, and online scheduling algorithm that achieves space expan-
sion proportional to P lgP for any strict computation and linear expected speedup
for any strict computation with average available parallelism T1/T∞ = Ω(P lgP ).

We also show that some nonstrictness can be allowed in an otherwise strict com-
putation in a way that may improve performance but does not adversely affect the
time and space bounds.

The remainder of this paper is organized as follows. Section 2 develops a for-
mal model of multithreaded computation and execution schedules. In section 3, we
characterize multithreaded computations with three parameters and state some ba-
sic bounds relating these parameters to execution time and space. The lower bound
for general multithreaded computations is presented in section 4. The upper bound
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204 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

Fig. 2.1. A multithreaded computation. This computation contains 20 tasks v1, v2, . . . , v20 and
six threads Γ1,Γ2, . . . ,Γ6.

for strict computations and the technique for handling limited nonstrictness are pre-
sented in section 5. Section 6 presents a distributed scheduling algorithm for strict
computations. Finally, in section 7 we conclude with a discussion of related and future
work.

2. A model for multithreaded computation. This section defines the model
of multithreaded computation that we use in this paper. We also define what it means
for a parallel computer to execute a multithreaded computation.

A multithreaded computation is composed of a set of threads, each of which is a
sequential ordering of unit-size tasks. In Figure 2.1, for example, each shaded block
is a thread with circles representing tasks and the horizontal edges, called continue
edges, representing the sequential ordering. Thread Γ5 of this example contains three
tasks: v10, v11, and v12. The tasks of a thread must execute in this sequential order
from the first (leftmost) task to the last (rightmost) task. In order to execute a thread,
we allocate for it a chunk of memory, called an activation frame, that the tasks of the
thread can use to store the values on which they compute.

A P -processor execution schedule for a multithreaded computation determines
which processors of a P -processor parallel computer execute which tasks at each step.
In any given step of an execution schedule, each processor either executes a single
task or sits idle. A 3-processor execution schedule for our example computation
(Figure 2.1) is shown in Figure 2.2. At step 3 of this example, processors p1 and p2

each execute a task while processor p3 sits idle.
During the course of its execution, a thread may create, or spawn, other threads.

Spawning a thread is like a subroutine call except that the spawning thread can
operate concurrently with the spawned thread. We consider spawned threads to be
children of the thread that did the spawning, and a thread may spawn as many children
as it desires. In this way, threads are organized into a spawn tree as indicated in
Figure 2.1 by the downward-pointing, shaded edges, called spawn edges, that connect
threads to their spawned children. The spawn tree is the parallel analogue of a call
tree. In our example computation, the spawn tree’s root thread Γ1 has two children,
Γ2 and Γ6, and thread Γ2 has three children, Γ3, Γ4, and Γ5. Threads Γ3, Γ4, Γ5, and
Γ6, which have no children, are leaf threads.

Each spawn edge goes from a specific task—the task that actually does the spawn
operation—in the parent thread to the first task of the child thread. An execution
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SCHEDULING MULTITHREADED COMPUTATIONS 205

processor activity
step living threads p1 p2 p3

1 Γ1 v1

2 Γ1 v2

3 Γ1 Γ2 v3 v14

4 Γ1 Γ2 Γ3 Γ6 v4 v6 v15

5 Γ1 Γ2 Γ3 Γ4 Γ6 v5 v9 v16

6 Γ1 Γ2 Γ4 Γ5 Γ6 v7 v10 v17

7 Γ1 Γ2 Γ4 Γ5 v8 v18

8 Γ1 Γ2 Γ5 v19 v11

9 Γ1 Γ2 Γ5 v12

10 Γ1 Γ2 v13

11 Γ1 v20

Fig. 2.2. A 3-processor execution schedule for the computation of Figure 2.1. This schedule
lists the living threads at the start of each step and the task (if any) executed by each of the three
processors, p1, p2, and p3, at each step. Living threads that are ready are listed in bold. The other
living threads are stalled.

schedule must obey this edge in that no processor may execute a task in a spawned
child thread until after the spawning task in the parent thread has been executed. In
our example computation (Figure 2.1), due to the spawn edge (v6, v7), task v7 cannot
be executed until after the spawning task v6. Consistent with our unit-time model of
tasks, a single task may spawn at most one child. When the spawning task executes,
it allocates an activation frame for the new child thread. Once a thread has been
spawned and its frame has been allocated, we say the thread is alive or living. When
the last task of a thread executes, it deallocates its frame and the thread dies. In our
3-processor execution schedule (Figure 2.2), thread Γ5 is spawned at step 5 and dies
at step 9. Therefore, it is living at steps 6, 7, 8, and 9.

An execution schedule must respect one more kind of dependency. Consider a
task that produces a data value that is consumed by another task. Such a pro-
ducer/consumer relationship precludes the consuming task from executing until after
the producing task. To enforce such orderings, we introduce data-dependency edges,
as shown in Figure 2.1 by the curved edges. If the execution of a thread arrives at a
consuming task before the producing task has executed, execution of the consuming
thread cannot continue; the thread stalls. Once the producing task executes, the
data dependency is resolved, which enables the consuming thread to resume with its
execution; the thread becomes ready. For example, at step 4 of our 3-processor exe-
cution schedule (Figure 2.2), thread Γ1 is stalled at task v18 because task v9 has not
yet been executed. At step 5 task v9 is executed by processor p2, thereby enabling
thread Γ1. At step 6, thread Γ1 is ready at task v18. A multithreaded computation
does not model the mechanism by which data dependencies get resolved or unresolved
dependencies get detected.

An execution schedule must obey the constraints given by the data-dependency,
spawn, and continue edges of the computation. These edges form a directed graph of
tasks, and no processor may execute a task until after all of the task’s predecessors
in this graph have been executed. So that execution schedules exist, this graph must
be acyclic. That is, it must be a directed acyclic graph, or dag. At any given step of
an execution schedule, a task is ready if all of its predecessors in the dag have been
executed. Only ready tasks may be executed.
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206 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

We make the simplifying assumption that a parent thread remains alive until all
its children die, and thus, a thread does not deallocate its activation frame until all
its children’s frames have been deallocated. Although this assumption is not strictly
necessary, it gives the execution a natural structure, and it will simplify our analyses
of space utilization. We also assume that the frames hold all the values used by
the computation; there is no global storage available to the computation outside the
frames. Therefore, the space used at a given time in executing a computation is the
total size of all frames used by all living threads at that time, and the total space
used in executing a computation is the maximum such value over the course of the
execution.

To summarize, a multithreaded computation can be viewed as a dag of tasks
connected by continue, spawn, and data-dependency edges. The tasks are connected
by continue edges into threads, and the threads form a spawn tree with the spawn
edges. When a thread is spawned, an activation frame is allocated and this frame
remains allocated as long as the thread remains alive. A living thread may be either
ready or stalled due to an unresolved data dependency.

The notion of an execution schedule is independent of any real machine char-
acteristics. An execution schedule simply requires that no processor executes more
than one task per time step and every task is executed at a time step after all of
its predecessor tasks (which connect to it via continue, spawn, or data-dependency
edges) have been executed. A given execution schedule may not be viable for a real
machine, since the schedule may not account for properties such as communication
latency. For example, in our 3-processor execution schedule (Figure 2.2), task v11 is
executed at step 8 by processor p3 exactly one step after v8 is executed by processor
p1, even though there is a data dependency between them that surely requires some
latency to be resolved.

It is important to note the difference between what we are calling a multithreaded
computation and a program. A multithreaded computation is the “parallel task
stream” resulting from the execution of a multithreaded program with a given set
of inputs. Unlike a serial computation in which the task stream is totally ordered, a
multithreaded computation only partially orders its tasks. In general, a multithreaded
computation is not a statically determined object; rather, the computation unfolds
dynamically during execution as determined by the program and the input data. For
example, a program may have conditionals, and therefore, the order of tasks (or even
the set of tasks) executed in a thread may not be known until the thread is actually
executed. We can think of a multithreaded computation as encapsulating both the
program and the input data. The computation then reveals itself dynamically during
execution.

3. Time and space. We shall characterize the time and space of an execution
of a multithreaded computation in terms of three fundamental parameters: work,
computation depth, and activation depth. We first introduce work and computation
depth, which relate to the execution time, and then we focus on activation depth,
which relates to the storage requirements.

The two time parameters are based on the underlying graph structure of the
multithreaded computation. If we ignore the shading in Figure 2.1 that organizes
tasks into threads, our multithreaded computation is just a dag of tasks. We define
the work of the computation to be the total number of tasks and the computation
depth to be the length of a longest directed path in the dag.

We quantify and bound the execution time of a computation on a P -processor
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SCHEDULING MULTITHREADED COMPUTATIONS 207

parallel computer in terms of the computation’s work and depth. For a given com-
putation, let T (X ) denote the time to execute the computation using P -processor
execution schedule X , and let

TP = min
X

T (X )

denote the minimum execution time with P processors—the minimum being taken
over all P -processor execution schedules for the computation. Then T1 is the work
of the computation, since a 1-processor computer can only execute one task at each
step, and T∞ is the computation depth, since, even with arbitrarily many processors,
each task on a path must execute serially.

Still viewing the computation as a dag, we borrow some basic results on dag
scheduling to bound TP . A computer with P processors can execute at most P tasks
per step, and since the computation has T1 tasks, we have TP ≥ T1/P . Of course, we
also have TP ≥ T∞. Early work by Graham [20, 21] and independently by Brent [11,
Lemma 2] yields the bound TP ≤ T1/P + T∞. The following theorem extends these
results minimally to show that this upper bound on TP can be obtained by greedy
schedules, i.e., those in which at each step of the execution, if at least P tasks are
ready, then P tasks execute, and if fewer than P tasks are ready, then all execute.

Theorem 3.1 (the greedy-scheduling theorem). For any multithreaded compu-
tation with work T1 and computation depth T∞, and for any number P of processors,
every greedy P -processor execution schedule X achieves T (X ) ≤ T1/P + T∞.

Proof. Let G = (V,E) denote the underlying dag of the computation. Thus
we have |V | = T1, and a longest directed path in G has length T∞. Consider a
greedy P -processor execution schedule X where the set of tasks executed at time i,
for i = 1, 2, . . . , k, is denoted Vi, with k = T (X ). The Vi form a partition of V .

We shall consider the progression 〈G0, G1, G2, . . . , Gk〉 of dags, where G0 = G,
and for i = 1, 2, . . . , k, we have Vi = Vi−1−Vi, and Gi is the subgraph of Gi−1 induced
by Vi. In other words, Gi is obtained from Gi−1 by removing from Gi−1 all the tasks
that are executed by X at step i and all edges incident on these tasks. We shall show
that each step of the execution either decreases the size of the dag or decreases the
length of the longest path in the dag.

We account for each step i according to |Vi|. Consider a step i with |Vi| = P . In
this case, |Vi| = |Vi−1|−P , so since |V | = T1, there can be at most bT1/P c such steps.
Now, consider a step i with |Vi| < P . In this case, since X is greedy, Vi must contain
every vertex of Gi−1 with in-degree 0. Therefore, the length of a longest path in Gi

is one less than the length of a longest path in Gi−1. Since the length of a longest
path in G is T∞, there can be no more than T∞ steps i with |Vi| < P .

Consequently, the time it takes schedule X to execute the computation is T (X ) ≤
bT1/P c+ T∞ ≤ T1/P + T∞.

The greedy-scheduling theorem (Theorem 3.1) can be interpreted in two impor-
tant ways. First, the time bound given by the theorem says that any greedy schedule
yields an execution time that is within a factor of 2 of an optimal schedule, which fol-
lows because T1/P +T∞ ≤ 2 max{T1/P, T∞} and TP ≥ max{T1/P, T∞}. Second, the
greedy-scheduling theorem tells us when we can obtain linear parallel speedup, that is,
when we can find an execution schedule X such that T (X ) = Θ(T1/P ). Specifically,
when the number P of processors is no more than the average available parallelism
T1/T∞, then T1/P ≥ T∞, which implies that for a greedy schedule X , we have
T (X ) ≤ 2T1/P . We shall be especially interested in the regime where P = O(T1/T∞)

D
ow

nl
oa

de
d 

02
/1

7/
15

 to
 1

28
.4

.5
1.

17
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



208 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

and linear speedup is possible, since outside this regime, linear speedup is impossible
to achieve because TP ≥ T∞.

These results on dag scheduling have been known for years. A multithreaded
computation, however, adds further structure to the dag: the partitioning of tasks into
threads. This additional structure allows us to quantify the space used in executing a
multithreaded computation. Once we have quantified space usage, we will look back
at the greedy-scheduling theorem and consider whether there exist execution schedules
that achieve similar time bounds while also making efficient use of space. Of course,
we will have to quantify a space bound to capture what we mean by “efficient use of
space.”

We shall focus on a space parameter for a multithreaded computation which is
based on the tree structure of threads. If we collapse each thread into a single node
and consider just the spawn edges, the multithreaded computation is just a spawn
tree of threads. We define the activation depth of a thread to be the sum of the sizes
of the activation frames of all its ancestors, including itself. The activation depth of
a multithreaded computation is the maximum activation depth of any thread.

We shall denote the space required by a P -processor execution schedule X of a
multithreaded computation by S(X ). Recall that S(X ) is just the maximum, over all
steps in X , of the sum of the sizes of the activation frames of the living threads at
that step. Since we can always simulate a P -processor execution with a 1-processor
execution that uses no more space, we have S1 ≤ S(X ), where S1 = minX S(X )
denotes the minimum space used by a 1-processor execution.

The following simple theorem shows that the activation depth of a computation
is a lower bound on the space required to execute it.

Theorem 3.2. Let A be the activation depth of a multithreaded computation,
and let X be a P -processor execution schedule of the computation. Then we have
S(X ) ≥ A, and more specifically, we have S1 ≥ A.

Proof. In any schedule, the leaf thread with greatest activation depth must be
alive at some time step. Since we assume that if a thread is alive, its parent is alive,
when the deepest leaf thread is alive, all its ancestors are alive, and hence, all its
ancestors’ frames are allocated. However, the sum of the sizes of its ancestors’ acti-
vation frames is just the activation depth. Since S(X ) ≥ A holds for all P -processor
schedules X and all P , it holds for the minimum-space execution schedule, and hence,
S1 ≥ A.

Given the lower bound of activation depth on the space used by a P -processor
schedule, it is natural to ask whether the activation depth can be achieved as an
upper bound. In general, the answer is no, since all the threads in a computation may
contain a cycle of data dependencies that force all of them to be simultaneously living
in any execution schedule. For the class of “depth-first” computations, however, space
equal to the activation depth can be achieved by a 1-processor schedule.

A depth-first computation is a multithreaded computation in which a left-to-right
depth-first search of tasks in the spawn tree always visits all the tasks on which a given
task depends before it visits the given task. In the example computation of Figure 2.1,
the left-to-right depth-first search order is v1, v2, . . . , v20, and this computation is
depth-first. In fact, this depth-first search produces a 1-processor execution schedule
which is just the familiar stack-based execution: the serial depth-first execution begins
with the root thread and executes its tasks until it either spawns a child thread or
dies. If the thread spawns a child, the parent thread is put aside to be resumed only
after the child thread dies; the scheduler then begins work on the child, executing the
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SCHEDULING MULTITHREADED COMPUTATIONS 209

child until it either spawns a child or dies.
Theorem 3.3. For any depth-first computation, we have S1 = A.
Proof. At any time in a serial depth-first execution of the computation, the set

of living threads always forms a path from the root. Therefore, the space required is
just the activation depth of the computation. By Theorem 3.2, S1 ≥ A, and thus the
the space used is the minimum possible.

The remainder of this paper considers only depth-first computations, and we shall
use S1 to denote a computation’s activation depth.

We now turn our attention to determining how much space S(X ) a P -processor
execution schedule X can use and still be considered efficient with respect to space
usage. Our strategy is to compare the space used by a P -processor schedule with the
space required by an optimal 1-processor schedule. Of course, we can always ignore
P − 1 of the processors to match the single-processor space bounds, and therefore,
our goal is to use small space while obtaining linear speedup.

Even for depth-first computations, a P -processor schedule may use nearly P times
the space of a 1-processor schedule. Consider, for example, a computation in which the
root thread is a loop that spawns a child thread for each iteration. A single processor
executing this computation uses only the space needed for a single iteration (plus the
space used by the root), since upon completion of an iteration, all the memory can
be freed and then reused for the next iteration. A natural P -processor execution,
however, might execute P iterations concurrently, thereby requiring the memory of P
iterations. Such a P -processor execution schedule X uses space S(X ) = Θ(S1P ).

In fact, a P -processor schedule that uses only P times the space of a single
processor is arguably efficient, since on average, each of the P processors only needs
as much memory as is used by the 1 processor. We would, of course, like to do better,
but an expansion in space that is linear in the number of processors, while achieving
linear speedup, is quite good, since the time-space product is bounded by a value
independent of P :

T (X )S(X ) = O(T1/P ) ·O(S1P )

= O(T1S1) .

We shall show in section 4 that achieving linear speedup and linear expansion of space
simultaneously is impossible in general, even for depth-first computations. For the
class of strict computations, however, section 5 shows that one can achieve both.

4. Lower bound. In this section we show that there exist multithreaded com-
putations for which no execution schedule can achieve both linear speedup and linear
expansion of space. In particular, for any amount of serial space S1 and any (rea-
sonably large) serial execution time T1, we can exhibit a depth-first multithreaded
computation with work T1 and activation depth S1 but with provably bad time/space
tradeoff characteristics. Being depth-first, we know from Theorem 3.3 that our com-
putation can be executed using serial space S1. Furthermore, we know from the
greedy-scheduling theorem (Theorem 3.1) that for any number P of processors, any
greedy P -processor execution schedule X achieves T (X ) ≤ T1/P + T∞. Our com-
putation has computation depth T∞ ≈ √

T1, and consequently, for P = O(
√
T1),

a greedy P -processor schedule X yields T (X ) = O(T1/P ), i.e., linear speedup. We
show, however, that any P -processor schedule X achieving T (X ) = O(T1/P ) must
use space S(X ) = Ω(

√
T1(P − 1)). Of course,

√
T1 may be much larger than S1, and

hence, this space bound is nowhere near linear in its space expansion.
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210 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

Theorem 4.1. For any amount of serial space S1 ≥ 4 and serial time T1 ≥ 16S2
1 ,

there exists a depth-first multithreaded computation with work T1, computation depth
T∞ ≤ 8

√
T1, and activation depth S1 with the following property: for any number P

of processors and any value ρ in the range 1 ≤ ρ ≤ (1/8)T1/T∞, if X is a P -processor
execution schedule that achieves speedup ρ—that is, T (X ) ≤ T1/ρ— then the schedule
requires space S(X ) ≥ (1/4)(ρ− 1)

√
T1 + S1.

Proof. To exhibit a depth-first multithreaded computation with work T1, com-
putation depth T∞, and activation depth S1, we first ignore the partitioning of tasks
into threads and consider just the dag structure of the computation. Minus a few
tasks and dependencies, the dag appears as in Figure 4.1(a). The tasks are organized
into

m =
√
T1/8

separate components C0, C1, . . . , Cm−1 that we call chains.1 Each chain begins with

λ =
√
T1/S1

tasks that we call headers (vertical hashed in Figure 4.1(a)). After the headers, each
chain contains

ν = 6
√
T1

tasks (plain white in Figure 4.1(a)) that form the trunk. At the end of each chain,
there are λ blockers (horizontal hashed in Figure 4.1(a)). Each chain, therefore,
consists of 2λ+ ν = 2(

√
T1/S1)+6

√
T1 tasks. Since there are m =

√
T1/8 chains, the

total number of tasks accounted for by the m chains is (2
√
T1/S1 + 6

√
T1)

√
T1/8 =

(3/4)T1 + (1/4)T1/S1, and this number is no more than (13/16)T1 since S1 ≥ 4. The
remaining (at least) (3/16)T1 tasks form the parts of the computation not shown in
Figure 4.1(a).

There are no dependencies between different chains, so the average available par-
allelism T1/T∞ is at least m =

√
T1/8 and the computation depth T∞ is no more than

8
√
T1 as promised.
Now, consider the partitioning of the tasks from each chain into the actual threads.

As alluded to in Figure 4.1(b), the root thread has m child threads, each of which is
the root of a subcomputation that we call an outer iteration. (The outer iterations
contain inner iterations that will be discussed later.) Each of these outer iterations
contains

√
T1/2 threads. As illustrated by the shading in Figure 4.1, the ith outer

iteration for i = 1, 2, . . . ,m − 1 contains both the header tasks of chain Ci and the
blocker tasks of chain Ci−1. These tasks are organized into the threads of the outer
iteration so as to ensure that chain Ci cannot begin executing its trunk tasks until all√
T1/2 of the outer iteration’s threads have been spawned, and none of these threads

can die until chain Ci−1 begins executing its blocker tasks. (We will exhibit this
organization later.) Thus, if chain Ci begins executing its trunk tasks before chain
Ci−1 finishes its, then the execution will require at least

√
T1/2 space.

For any number P of processors, consider any valid P -processor execution sched-

ule X . For each chain Ci, let t
(s)
i denote the time step at which X executes the first

1In what follows, we refer to a number x of objects (such as tasks) when x may not be integral.
Rounding these quantities to integers does not affect the correctness of the proof. For ease of
exposition, we shall not consider the issue.
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A
A

A
A

AA
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(a) Chains of tasks.

➲

m

S1

ith
outer

iteration

(b) Outer iterations.

Fig. 4.1. Constructing a computation with no efficient execution schedule. The header tasks of
chain Ci and the blocker tasks of chain Ci−1 are both placed in the threads of the ith outer iteration.

trunk task of Ci, and let t
(f)
i denote the first time step at which X executes a blocker

task of Ci. Since the trunk has length ν and no blocker task of Ci can execute until

after the last trunk task of Ci, we have t
(f)
i − t

(s)
i ≥ ν.

Now consider two chains, Ci and Ci−1, and suppose t
(s)
i < t

(f)
i−1; this is the scenario

we described as using at least
√
T1/2 space. In this case, we consider the time interval

from t
(s)
i (inclusive) to t

(f)
i−1 (exclusive) during which we say that chain Ci is exposed,

and we let τi = t
(f)
i−1 − t

(s)
i denote the amount of time chain Ci is exposed. See

Figure 4.2. If t
(s)
i ≥ t

(f)
i−1 then chain Ci is never exposed and we let τi = 0. As we have

seen, over the time interval during which a chain is exposed, it uses at least
√
T1/2

space. We will show that in order to achieve speedup ρ—that is T (X ) ≤ T1/ρ—there
must be some time step during the execution at which at least d(3/4)ρe − 1 chains
are exposed.

If schedule X is such that T (X ) ≤ T1/ρ, then we must have t
(f)
m−1 − t

(s)
0 ≤ T1/ρ.

We can expand this inequality to yield

T1/ρ ≥ t
(f)
m−1 − t

(s)
0

=
m−1∑
i=0

(
t
(f)
i − t

(s)
i

)
−

m−1∑
i=1

(
t
(f)
i−1 − t

(s)
i

)
.(4.1)
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212 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

t0
(f)

t0
(s)

t1
(s)

t1
(f)

t2
(f)

t2
(s)

t3
(s)

t3
(f)

t4
(f)

t4
(s)

tm–1
(s)

tm–1
(f)

τ1

τ3

τ4

0

T1/ρ

Fig. 4.2. Scheduling the execution of the chains. A solid vertical interval from t
(s)
i to t

(f)
i

indicates the time during which the trunk of chain Ci is being executed. When t
(s)
i < t

(f)
i−1, we can

define an interval, shown dashed, of length τi = t
(f)
i−1 − t

(s)
i , during which chain Ci is exposed.

Considering the first sum, we recall that t
(f)
i − t

(s)
i ≥ ν, hence,

m−1∑
i=0

(
t
(f)
i − t

(s)
i

)
≥ mν .(4.2)

Considering the second sum of inequality (4.1), when t
(f)
i−1t

(s)
i (so Ci is exposed), we

have τi = t
(f)
i−1 − t

(s)
i , and otherwise, τi = 0 ≥ t

(f)
i−1 − t

(s)
i . Therefore,

m−1∑
i=1

(
t
(f)
i−1 − t

(s)
i

)
≤

m−1∑
i=1

τi .(4.3)

Substituting inequalities (4.2) and (4.3) back into inequality (4.1), we obtain

m−1∑
i=1

τi ≥ mν − T1/ρ .

Let exposed(t) denote the number of chains exposed at time step t, and observe that

T1/ρ∑
t=1

exposed(t) =
m−1∑
i=i

τi .

Then the average number of exposed chains per time step is

1

T1/ρ

T1/ρ∑
t=1

exposed(t) =
1

T1/ρ

m−1∑
i=1

τi
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Fig. 4.3. Laying out the chains into the threads of a multithreaded computation. As before, the
header tasks are vertical hashed, and the blocker tasks are horizontal hashed. In this example, each
activation frame has unit size so S1 = 6. Also, in this example λ = 2, ν = 5, and only the first 2 out
of the m tasks in the root thread are shown. Each task of the root thread spawns a child (an outer
iteration), and each child thread contains λ + 1 = 3 tasks; the first λ of these spawn a child thread
which is the root of an inner iteration with activation depth S1 − 2 = 4, and the last one spawns a
leaf thread with the ν = 5 trunk tasks of a single chain.

≥ 1

T1/ρ
(mν − T1/ρ)

=
3

4
ρ− 1,

since m =
√
T1/8 and ν = 6

√
T1. There must be some time step t∗ for which

exposed(t∗) is at least the average, and consequently,

exposed(t∗) ≥
⌈

3

4
ρ

⌉
− 1 .

Now, recalling that each exposed chain uses space
√
T1/2, we have

S(X ) ≥
(⌈

3

4
ρ

⌉
− 1

)
1

2

√
T1

≥ 1

4
(ρ− 1)

√
T1 + S1

for S1 ≤
√
T1/4 (which is true since we have T1 ≥ 16S2

1).
All that remains is exhibiting the organization of the tasks of each chain into a

depth-first multithreaded computation with work T1, computation depth T∞ ≤ 8
√
T1,

and activation depth S1 in such a way that each exposed chain uses
√
T1/2 space.

There are actually many ways of creating such a computation. One such way, which
uses unit-size activation frames for each thread, is shown in Figure 4.3.

For the multithreaded computation of Figure 4.3, the root thread contains m
tasks, each of which spawns a child thread (an outer iteration). Each child thread
contains λ + 1 tasks; the first λ of these spawn a child thread which is the root of a
subcomputation that we call an inner iteration. Each inner iteration has activation
depth S1 − 2 ≥ S1/2 (since S1 ≥ 4), and the last one spawns a leaf thread with the ν
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214 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

trunk tasks of a single chain. Each of these inner iterations contains a single header
from one chain and a single blocker from the previous chain (except in the case of the
first group of λ) as shown in Figure 4.3. The header and blocker in an inner iteration
are organized such that in order to execute the header, all S1−2 of the threads in the
inner iteration must be spawned, and none of them can die until the blocker executes.
Thus, when a chain is exposed, all λ of these inner iterations have all of their threads
living, thereby using space λ(S1 − 2) ≥ (

√
T1/S1)(S1/2) =

√
T1/2.

We can verify from Figure 4.3 and from the given values of m, λ, and ν that this
construction actually has work slightly less than T1; in order to make the work equal
to T1 we can just add the extra tasks evenly among the threads that contain the trunk
of each chain (thereby increasing ν by a bit). Also, we can verify that T∞ ≤ 8

√
T1.

Finally, looking at Figure 4.3 we can see that this computation is indeed depth-
first.

The construction of a multithreaded computation with provably bad time/space
characteristics as just described can be modified in various ways to accommodate var-
ious restrictions to the model while still obtaining the same result. For example, some
real multithreaded systems require limits on the number of tasks in a thread, data
dependencies that only go to the first task of a thread, limited fan-in for data depen-
dencies, or a limit on the number of children a thread can have. Simple changes to the
construction just described can produce multithreaded computations that accommo-
date any or all of these restrictions and still have the same provably bad time/space
tradeoff. Thus, the lower bound of Theorem 4.1 holds even for multithreaded compu-
tations with any or all of these restrictions.

5. Scheduling algorithms for strict multithreaded computations. In the
view of negative results from section 4, we consider scheduling algorithms for a specific
class of depth-first multithreaded computations called “strict” computations. In this
section, we show that for any strict multithreaded computation and any number
P of processors, there exists a P -processor execution schedule X that achieves time
T (X ) ≤ T1/P+T∞. We give two algorithms to compute such a schedule. We conclude
this section by showing how some nonstrictness can be allowed in an otherwise strict
computation in a way that may improve performance, but which does not adversely
affect our asymptotic time and space bounds.

Given a multithreaded computation, a scheduling algorithm for a P -processor
parallel computer must compute a P -processor execution schedule. In computing
such a schedule, the algorithm does not know the entire computation; the computation
actually unfolds dynamically during the course of execution, and consequently, the
scheduling algorithm must be online. At any given time during the execution, the
scheduler has a set of living threads, some of which are ready and some of which
are stalled. There might be some extra information attached to each thread that the
scheduling algorithm can use in deciding which ready threads get executed by which
processors, but the scheduler cannot know about the structure of the portion of the
computation not yet executed.

To cope with the lower bound from Theorem 4.1, we now restrict our attention
to those multithreaded computations in which every data dependency goes from a
thread to one of its ancestors in the spawn tree. It turns out that requiring all data
dependencies to go from a thread to one of its ancestors can be viewed as requiring
that all function invocations (in a functional language) be strict, and therefore, we
refer to this class of computations as strict multithreaded computations. For example,
the computation shown in Figure 5.1(a) is not strict since the bold data dependencies
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Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

(a) Nonstrict.

➠

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

(b) Strict.

Fig. 5.1. (a) This multithreaded computation (the same as Figure 2.1) is nonstrict since it
has nonstrict data dependencies (shown bold) that go to nonancestor threads. (b) If we replace the
nonstrict data dependencies with new strict ones (shown bold) we obtain a strict computation since
all data dependencies go from a child thread to an ancestor thread.

violate the strictness condition just stated, but by promoting these dependencies we
obtain the strict computation shown in Figure 5.1(b).

Strict multithreaded computations are depth-first computations, since no data
dependency can go between two distinct subcomputations of a thread. Once a thread
Γ has been spawned in a strict computation, a single processor can complete the
execution of Γ and all of its descendant threads by using a depth-first schedule, even
if no other progress is made on other parts of the computation. In other words, from
the time the thread Γ is spawned until the time Γ dies, there is always at least one
thread from the subtree rooted at Γ that is ready. This property allows us to derive
algorithms to schedule the execution of these computations with efficient use of both
time and space.

Algorithm GDF (which stands for global depth-first) maintains all living threads
in a global queue prioritized by activation depth, i.e., the deepest threads get highest
priority. At each step of the algorithm, the scheduler removes from the queue the P
deepest ready threads (if there are fewer than P ready threads, it just removes them
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AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

S1

d

Fig. 5.2. The spawn tree corresponding to the example computation of Figure 2.1. The bold
outlined threads span depth d.

all) and assigns them arbitrarily to the P processors so that each processor receives at
most one thread. Each processor that has an assigned thread then executes one task
from that thread. To complete the step, all surviving threads and all newly spawned
threads are placed back into the global queue.

Theorem 5.1. For any number P of processors and any strict multithreaded
computation with work T1, computation depth T∞, and activation depth S1, Algorithm
GDF computes a P -processor schedule X that uses space S(X ) ≤ S1P and time
T (X ) ≤ T1/P + T∞.

Proof. The time bound follows immediately from the greedy-scheduling theorem
(Theorem 3.1), since GDF always produces a greedy schedule.

To prove the space bound, we show that the queue never contains more than P
threads (ready or otherwise) that span any activation depth. A thread Γ spans an
activation depth d, if Γ has activation depth A(Γ) ≥ d, and either Γ is the root or
the parent thread Γ′ of Γ has activation depth A(Γ′) < d. For example, Figure 5.2
depicts the spawn tree corresponding to the computation of Figure 2.1. Each thread
has height equal to the size of its activation frame and is located so that the top of its
activation frame is aligned with the bottom of its parent’s activation frame. In this
way, each black node is located at its thread’s activation depth, and the bold outlined
threads span depth d. For any time step t during the execution and any activation
depth d, let s(t, d) denote the number of living threads that span d at the start of
step t. Then the total space s(t) being used at the start of time step t is

s(t) =

S1∑
d=1

s(t, d) .(5.1)

By induction on the number of steps, we shall show that for all t, every activation
depth d has s(t, d) ≤ P . With this bound, equation (5.1) shows that s(t) ≤ S1P for
all time t, from which the space bound follows.

The algorithm begins with just one living thread (the root), so for every activation
depth d, we have s(1, d) ≤ 1 ≤ P . Now, consider any activation depth d, and suppose
that for time step t, the induction hypothesis s(t, d) ≤ P holds. The computation
being strict means that for each of the s(t, d) living threads that span d at the start
of step t, there is at least one ready thread with activation depth greater than or
equal to d; remember, this is the crucial property that we get by having all data
dependencies go from a child thread to an ancestor thread. Therefore, step t begins
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SCHEDULING MULTITHREADED COMPUTATIONS 217

with at least s(t, d) ready threads at or deeper than d. The depth-first ordering then
ensures that no more than P − s(t, d) threads with depth less than d can execute at
step t. Then, since the only way to increase the number of threads that span d is to
execute a thread shallower than d that spawns a child thread at or deeper than d,
step t ends with at most s(t, d)+ (P − s(t, d)) = P living threads that span activation
depth d. Therefore, s(t+ 1, d) ≤ P , and the induction is complete.

Algorithm GDF′ is a refinement of Algorithm GDF that achieves greater ef-
ficiency by reducing the number of accesses to the global queue. Algorithm GDF′

begins with the root thread assigned to some arbitrary processor and the global queue
empty. On subsequent steps, GDF′ has completed a “previous” step and must sched-
ule threads for a “current” step. Suppose the previous step ends with P ′ out of the P
processors not having a thread. To start the current step, the scheduler removes from
the queue the P ′ deepest ready threads, or, if there are fewer than P ′ ready threads,
it removes them all. It assigns these threads arbitrarily to the P ′ idle processors so
that each idle processor receives at most one thread. The current step is now ready
to proceed. Each of the P processors that has an assigned thread executes one task
from that thread. Unless that thread spawns, dies, or stalls, the processor will have
a thread at the end of the current step. If the thread stalls, then the processor must
return it to the global queue, and consequently, the processor will not have a thread
at the end of the current step. Similarly, if the thread dies, then the processor will
not have a thread at the end of the step. Lastly, if the thread spawns a child, then the
processor returns the parent thread (the one it was working on) to the global queue
and keeps the child thread; in this case, the processor will still have a thread at the
end of the current step.

Algorithm GDF′ achieves the same performance bounds as proved in Theo-
rem 5.1, but it requires access to the global queue only when threads spawn, die, or
stall.

Theorem 5.2. For any number P of processors and any strict multithreaded
computation with work T1, computation depth T∞, and activation depth S1, Algorithm
GDF′ computes a P -processor schedule X that uses space S(X ) ≤ S1P and time
T (X ) ≤ T1/P + T∞.

Proof. This proof follows the proof of Theorem 5.1, but we add the following
assertion to the induction hypothesis: for any activation depth d, if a step t begins
with s(t, d) ≤ P living threads that span depth d, then step t begins with no more
than P−s(t, d) processors that have a thread with activation depth less than d.

This algorithm may be feasible for a modest number of processors, but for a
large number of processors, the cost of synchronization at the global queue becomes
prohibitive. To derive a truly scalable and distributed algorithm, we need to split the
global queue into P local queues, one for each processor. The next section presents
and analyzes such a distributed algorithm.

We have been able to relate resource requirements to nonstrictness in the com-
putation by characterizing two extremes. At one end, we have shown that arbitrary
uses of nonstrictness make efficient execution impossible. At the other end, purely
strict computations allow near optimally efficient executions. We now mention two
minor results that begin to characterize resource requirements for limited uses of
nonstrictness.

Given an arbitrary depth-first computation, any of the scheduling algorithms for
strict computations can be employed by first adding data-dependency edges to make
the computation strict. This transformation, known as strictifying (see Figure 5.1),
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218 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

is always valid for depth-first computations. Of course, strictifying may dramatically
reduce the average available parallelism, and therefore, we would like some way of
exploiting the parallelism available through nonstrict spawns. Suppose we could ex-
ecute the computation as if it were strictified, but at each step, if there is an idle
processor and a thread that is stalled (due only to the strictness condition) at a task
that wants to spawn, we let the processor go ahead and execute that task, thereby
performing a nonstrict spawn. Unfortunately, the naive application of this rule can
actually result in an execution that takes longer than the purely strict execution.

With due care, however, we can modify this rule to allow some nonstrict spawns
while still guaranteeing the time and space bounds of a purely strict execution. For
example, we can restrict the application of this rule to a set of threads designated by
the programmer. If the programmer can designate this set of threads so as to ensure
that, during execution, at most x nonstrictly spawned threads simultaneously span
a given depth, then Algorithm GDF can achieve space bounded by S1(P + x) and
linear speedup as in Theorem 5.1; similar results apply for Algorithm GDF′ and for
the distributed algorithm that will be presented in the next section. Alternatively, by
“sequestering” the nonstrictly spawned threads, the scheduler itself can budget the
nonstrict spawns and achieve these same time and space bounds; details can be found
in [4].

6. Distributed scheduling algorithms. In a distributed thread-scheduling al-
gorithm, each processor works depth-first out of its own local priority queue. Specifi-
cally, to get a thread to work on, a processor removes the deepest ready thread from
its local queue. Ideally, we would like the processor to then continue working on that
thread until it either stalls, dies, or spawns, and when the processor does need to
enqueue a thread (as in the case when the thread stalls or spawns) or dequeue a new
thread, it does so by accessing only its local queue. Of course, this approach could
result in processors with empty queues sitting idle while other processors have large
queues. Thus, we require each processor to have some access to nonlocal queues in
order to facilitate some type of load balancing.

The technique of Karp and Zhang [28] suggests a randomized algorithm in which
threads are located in random queues in order to achieve some balance. We can show,
however, that the naive adoption of this technique does not work. In particular,
threads must migrate occasionally and some degree of synchronization is needed to
avoid the large deviations that result if this random process is run over a long period
of time. Further discourse on these problems can be found in [4]. In order to achieve
the desired result, we modify the Karp and Zhang technique by incorporating a new
mechanism to enforce a modest degree of synchrony among the processors.

Algorithm LDF (which stands for local depth-first) operates in iterations, with
each iteration consisting of a synchronization phase followed by a computation phase
and ending with a communication phase. In a synchronization phase, we compute a
cutoff depth D which is a global value made available to all processors. During the
following computation phase, only those threads with activation depth greater than
or equal to D can execute. Finally, the communication phase redistributes threads to
random locations.

The operation of each phase is governed by a synchronization parameter r that
affects both the time and space performance of the algorithm. Let LDF(r) denote
Algorithm LDF with synchronization parameter r.

In a synchronization phase of LDF(r), we use the synchronization parameter r
to compute the cutoff depth D. Each processor pi, for i = 1, . . . , P , computes the
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SCHEDULING MULTITHREADED COMPUTATIONS 219

p1 p2 p3 p4

Cutoff
depth

Fig. 6.1. Computing the cutoff depth. Each column represents the local priority queue of
a processor, and each row represents an activation depth with depth increasing in the downward
direction. We depict each ready thread by a circle located in its processor’s queue and at its activation
depth. (Within a processor’s queue, the horizontal ordering of threads is irrelevant.) The ready
threads in each queue are ordered by activation depth with ties broken arbitrarily—this tie breaking
is depicted by the vertical ordering of threads within an activation depth. In this example, the
synchronization parameter r = 12, and the 12th deepest ready thread for each processor is shown
in black (just count up from the bottom). The deepest of these black threads determines the cutoff
depth. Only the ready threads at or deeper than the cutoff depth—those in the shaded region—can
execute during the following computation phase.

activation depth di of its rth deepest ready thread. In other words, di is the activation
depth for which processor pi has fewer than r ready threads deeper than di but at
least r ready threads at or deeper than di. Cutoff depth D is then computed simply
by

D = max
1≤i≤P

di

as illustrated in Figure 6.1.
During the computation phase of LDF(r), each processor executes at least one

task from each ready thread with activation depth greater than or equal to the cutoff
depth D in its local queue. We further forbid each processor from executing more
than r spawns; if a processor has more than r threads at or deeper than D that want
to spawn, it may only execute r of them.

The iteration ends with a communication phase during which each processor
must move each ready thread with activation depth greater than or equal to D (as
determined at the beginning of the iteration) and each newly spawned thread from its
local queue to a queue selected uniformly at random, independently for each thread.

By using the synchronization parameter r to compute the cutoff depth and then
ensuring that each processor executes only tasks from threads at or deeper than the
cutoff depth, while allowing at most r spawns, we get a guaranteed space bound.

Lemma 6.1. For any number P of processors and any strict multithreaded compu-
tation with activation depth S1, Algorithm LDF(r) computes a P -processor schedule
X such that S(X ) ≤ 2rS1P .

Proof. We show by induction on the number of iterations that no activation
depth ever has more than 2rP living threads that span it. Specifically, recalling the
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220 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

notation used in the proof of Theorem 5.1, we show that for every activation depth
d and every iteration t of the execution, s(t, d) ≤ 2rP . The result then follows from
equation (5.1). As before, the base case is straightforward.

For any activation depth d and any iteration t of the execution, we consider two
cases. In the first case, suppose iteration t begins with rP ≤ s(t, d) ≤ 2rP living
threads spanning depth d. Due to the strictness of the computation, there must be
at least rP ready threads with activation depth greater than or equal to d, and by
pigeonholing, some processor’s local queue must have at least r of them. Therefore,
the cutoff depth D will be set with D ≥ d. Consequently, during the computation
phase of iteration t, no thread with activation depth less than d can execute and the
iteration ends with no more living threads spanning depth d than it started with.
Now, suppose iteration t begins with s(t, d) < rP living threads spanning depth d.
In this case, during the computation phase, since each processor is only allowed r
spawns, the number of living threads that span depth d can increase by at most
rP , and therefore, the iteration ends with no more than 2rP living threads spanning
depth d. In either case, s(t+ 1, d) ≤ 2rP , which completes the induction.

In order to achieve speedup in the execution time, we must ensure that during
the computation phase of each iteration, each processor has some ready threads at or
deeper than the cutoff depth. To ensure that the cutoff depth is not set too deep, we
must use a large enough synchronization parameter r. On the other hand, the space
bound of Lemma 6.1 is directly proportional to r. By setting r = 6 lgP , the space
bound of Lemma 6.1 becomes S(X ) ≤ 12S1P lgP , and with high probability, most
computation phases take O(lgP ) time and get at least P lgP tasks executed as we
now show.

To analyze the running time, we say that each iteration either succeeds or fails
depending on how many tasks execute. An iteration that begins with at least P lgP
ready threads fails if fewer than P lgP of the ready threads get a task executed. An
iteration that begins with fewer than P lgP ready threads fails if not all of them get
a task executed.

We now show that with the synchronization parameter set to r = 6 lgP , it is
highly likely that each iteration succeeds.

Lemma 6.2. For any number P of processors and any iteration of Algorithm
LDF(6 lgP ), the iteration fails with probability no more than P−5.

Proof. Suppose that when two threads have the same activation depth, we give
each thread a unique identifier to break the tie so we can uniquely identify the P lgP
deepest ready threads. If no local queue contains more than 6 lgP of the P lgP
deepest ready threads, then the synchronization phase sets the cutoff depth so that all
P lgP of these deepest threads are at or are deeper than the cutoff depth. Therefore,
an iteration succeeds if no local queue contains more than 6 lgP of the P lgP deepest
ready threads.

Consider a particular processor pi, and let the random variable Zi denote how
many of the P lgP deepest ready threads start the iteration in the local queue of
processor pi. Each thread is located independently at random, and hence, the random
variable Zi has a binomial distribution with P lgP trials and success probability 1/P .
Therefore,

Pr {Zi > 6 lgP} ≤
(
P lgP

6 lgP

)(
1

P

)6 lgP

.
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SCHEDULING MULTITHREADED COMPUTATIONS 221

Then, from the bound (
x

y

)
≤
(
ex

y

)y
(6.1)

and the fact that 6 ≥ 2e, we can upper bound Pr {Zi > 6 lgP} by

Pr {Zi > 6 lgP} ≤
(
eP lgP

6 lgP

)(
1

P

)6 lgP

=
(e

6

)6 lgP

≤ P−6.

Now, let Z = max1≤i≤P Zi. For an iteration that begins with at least P lgP ready
threads, the probability of failure is no more than Pr {Z > 6 lgP}. We can use Boole’s
inequality to upper bound Pr {Z > 6 lgP} by adding the individual probabilities,
yielding

Pr {Z > 6 lgP} ≤ P · Pr {Zi > 6 lgP}
≤ P−5 .

We now show that iterations fail independently of each other. Specifically, we
show that knowing whether an iteration t fails provides no information about whether
any future iteration fails. The failure of an iteration depends only on how the ready
threads are distributed among the processors. Therefore, we need to show that know-
ing whether iteration t fails provides no information about the distribution of threads
at the end of the iteration. Suppose iteration t has cutoff depth D. No matter if
iteration t fails or not, the iteration ends with a communication phase in which every
ready thread at or deeper than D gets moved to a random location. Thus, iteration t
provides no information about the distribution of threads at or deeper than the cutoff
depth. Now, consider the threads less deep than D. The only part of an iteration
that even considers the threads shallower than the cutoff depth is the synchronization
phase. Therefore, we need to show that computing the cutoff depth provides no infor-
mation about the distribution of threads with activation depth less than D. Consider
an alternative method for computing the cutoff depth. Let all the processors work
in synchrony from the bottom up. First each processor counts the number of ready
threads it has with activation depth S1. Then each processor adds on the number
of ready threads it has with activation depth S1 − 1. We continue in this manner
until some processor reaches a count of r (the synchronization parameter). At this
depth we stop and set the cutoff depth. In this way the synchronization phase can
compute the cutoff depth with the exact same result but without ever considering
threads shallower than D. Thus, computing the cutoff depth provides no information
about the distribution of threads shallower than the cutoff depth.

With iterations failing independently of each other, we can bound the number of
failed iterations, thereby bounding the total number of iterations taken.

Lemma 6.3. For any number P of processors and any strict multithreaded com-
putation with work T1 and computation depth T∞, for any ε > 0, with probability
at least 1 − ε, Algorithm LDF(6 lgP ) computes a P -processor schedule X that takes
O(T1/(P lgP ) + T∞ + logP (1/ε)) iterations.

Proof. First we consider the failed iterations. Let the random variable f denote
the number of failed iterations. We will show that for any ε > 0, the probability that
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222 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

f ≥ eT1/(P lgP ) + b is no more than ε when b = (1/3) logP (1/ε). There are at most
T1 iterations, since each iteration always results in at least one task being executed,
and each iteration fails independently with probability P−5. Therefore, f is bounded
by a binomial distribution with T1 trials and success probability P−5, from which we
obtain

Pr

{
f ≥ e

T1

P lgP
+ b

}
≤
(

T1

e T1

P lgP + b

)(
1

P 5

)e T1
P lgP +b

.

Then, using inequality (6.1), we get

Pr

{
f ≥ e

T1

P lgP
+ b

}
≤
(

eT1

e T1

P lgP + b
· 1

P 5

)e
T1

P lgP +b

≤
(
P lgP

P 5

)e T1
P lgP +b

≤
(

1

P 3

)b
= P−3b,

and P−3b = ε for b = (1/3) logP (1/ε). Thus, with probability at least 1 − ε, we have
f = O(T1/(P lgP ) + logP (1/ε)).

Now consider the successful iterations. We can think of each successful iteration
as a step in a greedy schedule with P lgP processors. Then, as in the proof of the
greedy-scheduling theorem (Theorem 3.1), we know that there can be no more than
T1/(P lgP ) + T∞ successful iterations.

Adding together the number of successful iterations and the number of failed
iterations completes the proof.

Now, if we let the random variable Xi denote the time taken by the ith compu-
tation phase of Algorithm LDF(6 lgP ), we can give the total time in computation
phases as the random variable X = X1 + X2 + · · · + XY , where Y is the random
variable denoting the number of iterations. The time taken by the ith computation
phase is proportional to the maximum number of ready threads with activation depth
greater than or equal to the cutoff depth in any processor. There can be a total of at
most 18P lgP ready threads at or deeper than the cutoff depth—r = 6P lgP deeper
than the cutoff depth and 12P lgP at the cutoff depth (from Lemma 6.1 with synchro-
nization parameter r = 6 lgP )—and each of these threads is located independently
at random. Thus, we can bound each Xi as the size of the largest bin when throwing
18P lgP balls at random into P bins. Furthermore, by the independence argument
the Xi’s are independent. We can now bound the random variable X.

Lemma 6.4. Let the random variable X denote the sum of Y mutually inde-
pendent random variables, X = X1 + X2 + · · · + XY with each Xi, for i = 1, . . . , Y ,
distributed as the number of balls in the fullest bin when throwing P lnP balls in-
dependently at random into P ≥ 2 bins. Then, for any ε > 0, we have X =
O(Y lnP + lg(1/ε)) with probability at least 1− ε.

Proof. We have

Pr {X ≥ aY lnP + b} = Pr
{
eX/e ≥ e(aY lnP+b)/e

}
≤ E

[
eX/e

]
e−(aY lnP+b)/e(6.2)
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SCHEDULING MULTITHREADED COMPUTATIONS 223

by Markov’s inequality. By the independence of the Xi’s,

E
[
eX/e

]
=

Y∏
i=1

E
[
eXi/e

]
.(6.3)

From the definition of expectation,

E
[
eXi/e

]
=

P lnP∑
j=lnP

Pr {Xi = j} ej/e.

To bound E
[
eXi/e

]
, we break this sum into pieces. First we break out the terms from

j = lnP to j = e3 lnP − 1, which yields

E
[
eXi/e

]
=

e3 lnP−1∑
j=lnP

Pr {Xi = j} ej/e +
P lnP∑

j=e3 lnP

Pr {Xi = j} ej/e.(6.4)

The first of these sums we bound by factoring out the largest term and upper-bounding
the sum of probabilities by 1 as follows:

e3 lnP−1∑
j=lnP

Pr {Xi = j} ej/e ≤
e3 lnP−1∑
j=lnP

Pr {Xi = j} ee2 lnP

= ee
2 lnP

e3 lnP−1∑
j=lnP

Pr {Xi = j}

≤ ee
2 lnP .(6.5)

To bound the second sum in equation (6.4), we further break the range of the index
variable j into smaller pieces indexed by k = 3, . . . , dlnP e − 1, with piece k going
from j = ek lnP to j = ek+1 lnP − 1 as follows:

P lnP∑
j=e3 lnP

Pr {Xi = j} ej/e =

dlnPe−1∑
k=3


ek+1 lnP−1∑

j=ek lnP

Pr {Xi = j} ej/e



≤
dlnPe−1∑
k=3


eek lnP

ek+1 lnP−1∑
j=ek lnP

Pr {Xi = j}



≤
dlnPe−1∑
k=3

ee
k lnP Pr

{
Xi ≥ ek lnP

}

=

dlnPe−1∑
k=3

P ek Pr
{
Xi ≥ ek lnP

}
.(6.6)

Now we can bound Pr
{
Xi ≥ ek lnP

}
by the same technique as in Lemma 6.2, since

Xi has the same distribution as the random variable Z considered in the proof of
Lemma 6.2:

Pr
{
Xi ≥ ek lnP

} ≤ P

(
P lnP

ek lnP

)(
1

P

)ek lnP

≤ Pe−(k−1)ek lnP

= P−(k−1)ek+1.
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224 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

Substituting this bound into inequality (6.6) yields

P lnP∑
j=e3 lnP

Pr {Xi = j} ej/e ≤
dlnPe−1∑
k=3

P ekP−(k−1)ek+1

≤
∞∑
k=3

P−(k−2)ek+1

≤ 1,(6.7)

since the sum is bounded by the geometric sum
∑∞

k=1 2−k = 1. Now we can substitute
inequalities (6.5) and (6.7) back into equation (6.4), producing

E
[
eXi/e

]
≤ ee

2 lnP + 1

≤ e(e
2+1) lnP .

Finally, by substituting this bound into equation (6.3) and then substituting into
inequality (6.2), we obtain

Pr {X ≥ aY lnP + b} ≤ e((e
2+1) lnP )Y e−(aY lnP+b)/e

= exp

(
−
(a
e
− e2 − 1

)
Y lnP − b

e

)

≤ exp

(
− b

e

)

for a ≥ e3 + e. Thus, with b = e ln(1/ε), we obtain

Pr
{
X ≥ (e3 + e)Y lnP + e ln(1/ε)

} ≤ ε.

We can now characterize the time and space usage for execution schedules com-
puted by the LDF algorithm with synchronization parameter r = 6 lgP .

Theorem 6.5. For any number P ≥ 2 of processors and any strict multithreaded
computation with work T1, computation depth T∞, and activation depth S1, Algorithm
LDF(6 lgP ) computes a P -processor schedule X that uses space S(X ) = O(S1P lgP ),
and for any ε > 0, with probability at least 1 − ε, the schedule uses time T (X ) =
O(T1/P + T∞ lgP + lg(1/ε)).

Proof. The space bound follows directly from Lemma 6.1 with synchronization
parameter r = 6 lgP . The time T (X ) is the total time taken in computation phases.
Let the random variable Y denote the number of iterations. Then we can decompose
T (X ) as a sum of Y mutually independent random variables, T (X ) = X1 +X2 + · · ·+
XY , with each Xi distributed as the size of the fullest bin when throwing 18P lgP balls
independently at random into P bins. Using ε/2 as the value of ε in Lemma 6.3, we
obtain Y = O(T1/(P lgP ) +T∞ + logP (1/ε)) with probability at least 1− ε/2. Then,
using ε/2 as the value of ε in Lemma 6.4, we obtain T (X ) = O(Y lgP + lg(1/ε)) with
probability at least 1−ε/2 (using 18P lgP instead of P lnP only affects the constant).
Thus, with probability at least 1 − ε, the total time taken in computation phases is
T (X ) = O(T1/P + T∞ lgP + lg(1/ε)).

Corollary 6.6. For any number P ≥ 2 of processors and any strict multi-
threaded computation with work T1and computation depth T∞, Algorithm LDF(6 lgP )
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SCHEDULING MULTITHREADED COMPUTATIONS 225

computes a P -processor schedule X with expected execution time E [T (X )] = O(T1/P+
T∞ lgP ).

Proof. Just use ε = 1/P in Theorem 6.5 to get T (X ) = O(T1/P + T∞ lgP ) with
probability at least 1− 1/P . Then we have

E [T (X )] ≤
(

1− 1

P

)
O

(
T1

P
+ T∞ lgP

)
+

1

P
T1

= O

(
T1

P
+ T∞ lgP

)
.

This algorithm achieves linear expected speedup when the computation has av-
erage available parallelism T1/T∞ = Ω(P lgP ).

We can view the lgP factors in the space bound and the average available par-
allelism required to achieve linear speedup as the computational slack required by
Valiant’s bulk-synchronous model [42]. The space bound S(X ) = O(S1P lgP ) indi-
cates that Algorithm LDF(6 lgP ) requires memory to scale sufficiently to allow each
physical processor enough space to simulate Θ(lgP ) virtual processors. Given this
much space, the time bound E [T (X )] = O(T1/P +T∞ lgP ) then demonstrates linear
expected speedup provided the computation has lgP slack in the average available
parallelism.

The space bound of Theorem 6.5 is an aggregate bound, but in a distributed
memory machine, we may want to bound the space associated with each individual
processor’s queue. In the LDF algorithm, each living thread is located in the local
queue of a processor chosen at random, so we assume that each activation frame is
located in the local memory of the same randomly chosen processor as its associated
living thread. Since the aggregate space used by Algorithm LDF(r) is bounded by
2rS1P , we would like some way to ensure that each individual processor requires space
bounded by O(rS1).

If we consider any given processor p and any given iteration t of the algorithm,
then we can let W denote the total space being used by activation frames located in
the memory of processor p. We can decompose W as a weighted sum of independent
indicator random variables and show that E [W ] ≤ 2rS1. Then, using a theorem due
to Raghavan [36, Theorem 1], we can show that with probability at least 1− e−2r, we
have W ≤ 2erS1.

With this probabilistic bound on the space used by a given processor at a given
iteration, we can show that with appropriate choice of the synchronization parameter
r, we can bound the per-processor memory by simply rerandomizing thread locations
any time a processor’s memory fills up. In particular, if we choose r = Θ(lgP +lgS1),
then the total time spent rerandomizing is O(T1/P ) and the per-processor storage
bound is O(S1(lgP + lgS1)). Details can be found in [4].

7. Related and future work. Although the work we have presented here pro-
vides some theoretical underpinnings for understanding the resource requirements of
multithreaded computations, much remains to be done. In this section, we review
some of the related work, both theoretical and empirical, on scheduling dynamic
computations. We discuss the class of “thread-stealing” algorithms and present some
of our preliminary research on this kind of scheduling algorithm.

Substantial research has been reported in the theoretical literature concerning
dynamic computations. In contrast to our research on multithreaded computations,
however, other theoretical research has tended to treat the aggregate resource require-
ments of a computation as a given, rather than as a quantity that depends on the
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execution schedule. Thus, the relevant issue in this work is how to balance the load
across processors. Important work in this area includes a randomized work-stealing
algorithm for load balancing [38]; dynamic tree-embedding algorithms [3, 31]; and
algorithms for backtrack search [27, 37, 45], which can be viewed as a multithreaded
computation with no data-dependency edges. Although this work ignores aggregate
space requirements, it is interesting to note that Zhang’s work-stealing algorithm for
backtrack search [45] actually gives at most linear expansion of space, but he does
not mention this fact.

The problem of storage management for multithreaded computations has been a
growing concern among practitioners [13, 22]. To date, most existing techniques for
controlling storage requirements have consisted of heuristics to either bound storage
use by explicitly controlling storage as a resource or reduce storage use by modifying
the scheduler’s behavior. We are aware of no prior scheduling algorithms for multi-
threaded computations for which simultaneously good time and space bounds have
been proved.

The storage management problem can often be quite pronounced under the execu-
tion of a fair scheduler. By executing threads in round-robin fashion, a fair scheduler
gives each ready thread a fair portion of the execution time. A fair scheduler aggres-
sively exposes parallelism, often resulting in excessive space requirements. In order
to curb the excessive use of space exhibited by fair scheduling, researchers from the
dataflow community have developed heuristics to explicitly manage storage [15, 39].
The effectiveness of these heuristics is documented with encouraging empirical evi-
dence but no provable time bounds.

In contrast with these heuristic techniques, we have chosen to develop an algo-
rithmic foundation that manages storage by allowing programmers to leverage their
knowledge of storage requirements for serially executed programs.

Other researchers have also addressed the storage issue by attempting to relate
parallel storage requirements to serial storage requirements. Burton and Sleep [12]
and Halstead [22], for example, considered unfair scheduling policies based on thread
stealing. In these thread-stealing strategies, each processor works depth-first—just like
a serial execution—but when a processor runs out of ready threads, it steals threads
from other processors. In many cases, this scheduling policy results in each processor
using no more space than that used by a single processor, but a problem arises as to
what to do when all threads in a processor have stalled. If the processor goes out to
steal a thread from another processor, greater-than-linear space expansion may result.
If the processor goes idle, however, linear speedup is not guaranteed. For these unfair
scheduling policies, characterizing the performance analytically is difficult.

Thread stealing has also been employed in two parallel chess-playing programs.
Zugzwang [18] is a program in which processors steal subcomputations of a chess tree
using a parallel alpha-beta search algorithm. StarTech [30] is another parallel program
organized along similar lines but with a parallel scout-search algorithm. Although the
authors make no guarantees of performance for their algorithms, the empirical results
of these programs are good; both have won prizes in international chess competitions.

In recent work, we have obtained some preliminary results on thread stealing. We
have devised a new global algorithm that forms the basis of a randomized, distributed,
thread-stealing algorithm. Our new global algorithm is like GDF′ except for two
changes. First, the global queue is not organized by activation depth; when a processor
removes a ready thread from the queue, any ready thread suffices. Second, when a
thread dies, the thread’s processor must locate the parent thread in the global queue

D
ow

nl
oa

de
d 

02
/1

7/
15

 to
 1

28
.4

.5
1.

17
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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and check to see if the parent has any surviving children. If the parent no longer has
any surviving children, then the processor must commence work on the parent thread.
Otherwise, the processor is free to take any ready thread from the global queue. It can
be proved by simple induction that this algorithm satisfies the same time and space
bounds as Algorithms GDF and GDF′ . In our distributed thread-stealing algorithm,
we replace the global queue with local queues, one per processor. By making some
generous modeling assumptions, we have been able to analyze this algorithm and to
obtain bounds similar to those for Algorithm LDF. We are currently working on
improving these results.

Appendix. During the time between our results becoming publicly known [7]
and this journal publication, we have explored multithreaded computing more fully.
We have been able to characterize the performance of a distributed thread-stealing
algorithm [5, 8]. For the class of “fully strict” (well-structured) computations, this
randomized algorithm achieves execution space bounded by S1P and expected execu-
tion time bounded by O(T1/P+T∞), including scheduling overheads. Additionally, in
contrast to Algorithm LDF, this thread-stealing algorithm is efficient with respect to
communication. We have implemented this thread-stealing algorithm in the runtime
system for Cilk [5, 6], a parallel multithreaded extension of the C language. By em-
ploying a provably efficient scheduler, Cilk is able to deliver efficient and predictable
performance, guaranteed. Moreover, structure in the Cilk programming model facili-
tates the implementation of “adaptive parallelism” and transparent fault tolerance in
a runtime system for Cilk on networks of workstations [5, 9]. More information about
Cilk is available online at http://theory.lcs.mit.edu/~cilk.
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