
Multithreaded Programming in Cilk

Matteo Frigo
Cilk Arts

12 Waltham Street, Lexington, MA 02421

Categories and Subject Descriptors
D.3.2 [Software]: Programming Languages

General Terms
Languages

Keywords
cilk, spawn, sync

1. INTRODUCTION
Cilk is a C-based algorithmic, multithreaded language for

parallel programming which was developed at the MIT Lab-
oratory for Computer Science over the past 15 years under
the leadership of Charles Leiserson. Cilk minimally extends
the C programming language to allow interactions among
computational threads to be specified in a simple and high-
level fashion.

Cilk’s features a provably efficient runtime system that
dynamically maps a user’s program onto available physical
resources, freeing the programmer from concerns of com-
munication protocols and load balancing. In addition, Cilk
provides an abstract performance model that a programmer
can use to predict the multiprocessor performance of an ap-
plication from its execution on a single processor. Both the
runtime system and the performance model are based upon a
study of the scheduling of multithreaded computations [1, 2],
which proved that well-structured multithreaded programs
could be scheduled efficiently using a “work-stealing” sched-
uler.

Cilk programs not only scale up to run efficiently on mul-
tiple processors, they also “scale down”: Cilk programs ex-
ecute on on one processor with minimal overhead compared
to an equivalent sequential C program. This efficiency was
attained by employing a two-clone compilation strategy and
a Dekker-like protocol for work stealing [7].

Cilk is easy to use. Recently, Cilk won the 2006 HPC
Challenge Class 2 competition at the ACM Supercomput-
ing 2006 conference [8]. The Cilk entry implemented and
achieved good speedups on all six of the Challenge bench-
marks and was cited for “Best Overall Productivity” (see
http://www.hpcchallenge.org/). No other entrant imple-
mented all benchmarks.

Copyright is held by the author/owner(s).
PASCO’07, July 27–28, 2007, London, Ontario, Canada.
ACM 978-1-59593-741-4/07/0007.

Cilk is especially suited for problems with irregular dy-
namic parallelism, such as combinatorial search. For exam-
ple, several world-class parallel chess programs were written
in Cilk [5], winning prizes in several international computer
chess competitions.

A fundamental shift in semiconductor technology is mov-
ing the computer industry en-masse to multicores, and as
a consequence research systems like Cilk are maturing into
fully supported commercial offerings. Cilk Arts was incor-
porated in the Fall of 2006 and is developing an industrial-
strength version of Cilk, which will support C and C++ on
Windows and Linux/Unix platforms.

In this talk, I will provide a tutorial on the Cilk language
for people with a basic background in computer program-
ming. I will explain how to program multithreaded applica-
tions in Cilk and how to analyze their performance. I will
also briefly sketch how the software technology underlying
Cilk actually works.

2. THE CILK LANGUAGE
The philosophy behind Cilk development has been to make

the Cilk language a true parallel extension of C, both se-
mantically and with respect to performance. On a parallel
computer, Cilk control constructs allow the program to ex-
ecute in parallel. If the Cilk keywords for parallel control
are elided from a Cilk program, however, a syntactically and
semantically correct C program results, which we call the C
elision (or more generally, the serial elision) of the Cilk
program. Cilk is a faithful extension of C, because the C
elision of a Cilk program is a valid implementation of the
semantics of the program, although it is not the only per-
mitted semantics. With respect to performance, a parallel
Cilk program “scales down” to run on one processor nearly
as fast as its C elision.

The basic Cilk language can be understood from an exam-
ple. Figure 1 shows a Cilk program that computes the nth
Fibonacci number.1 Observe that the program would be an
ordinary C program if the three keywords cilk, spawn, and
sync were elided.

The keyword cilk identifies fib as a Cilk procedure,
which is the parallel analogue to a C function. Parallelism
is created when the keyword spawn precedes the invocation
of a procedure. The semantics of a spawn differs from a
C function call only in that the parent can continue to ex-

1This program uses an inefficient algorithm which runs in
exponential time. Although logarithmic-time methods are
known [3, p. 850], this program nevertheless provides a good
didactic example.

13



#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)
{

if (n<2) return n;
else {

int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

}
}

cilk int main (int argc, char *argv[])
{

int n, result;
n = atoi(argv[1]);
result = spawn fib(n);
sync;
printf ("Result: %d\n", result);
return 0;

}

Figure 1: A simple Cilk program to compute the

nth Fibonacci number in parallel (using an inefficient

exponential-time algorithm).

ecute in parallel with the child, instead of waiting for the
child to complete as is done in C. Cilk’s scheduler takes the
responsibility of scheduling the spawned procedures on the
processors of the parallel computer.

A Cilk procedure cannot safely use the values returned by
its children until it executes a sync statement. The sync

statement is a local “barrier,” not a global one as, for ex-
ample, is used in message-passing programming. In the Fi-
bonacci example, a sync statement is required before the
statement return (x+y) to avoid the anomaly that would
occur if x and y are summed before they are computed. In
addition to explicit synchronization provided by the sync

statement, every Cilk procedure syncs implicitly before it
returns, thus ensuring that all of its children terminate be-
fore it does.

Cilk also provides a limited number of advanced features
for nondeterministic programming. Its “inlet” feature, in-
spired in part by TAM [4], allows a value returned by a child
to be incorporated into the parent’s frame when the child is
done, but before the parent has synched. In order to simplify
reasoning about inlet behavior, Cilk provides implicit atom-
icity of inlets without requiring locking, declaration of criti-
cal regions, and the like. Sometimes, a procedure spawns off
parallel work which it later discovers is unnecessary. This
“speculative” work can be aborted in Cilk using the abort

primitive inside an inlet.
The basic Cilk language contains little else that is not

already in C. A library of mutual exclusion locks is pro-
vided, as well as extensions of C’s storage allocation rou-
tines malloc(), free(), alloca(), etc. Cilk is deceptively
simple, as complexity is handled by the runtime in order to
enable the programmer to take advantage of parallel com-
puting power with minimal effort.

Cilk’s compiler and runtime platform work together to
execute Cilk programs efficiently on multicore CMP’s and

other shared-memory multiprocessors. The Cilk develop-
ment environment provides a compiler, runtime platform,
and tool chain which allow fast development of high-performance
applications for CMP’s, while providing an effective software-
release strategy in which Cilk programs can be easily regression-
tested. Unlike traditional high-performance computing tools,
Cilk program scale down to run as efficiently as C programs
on a single processor and scale up with near-perfect linear
speed-up. By employing divide-and-conquer recursion, Cilk
programs also exploit the cache hierarchy well [6].

3. REFERENCES
[1] R. D. Blumofe and C. E. Leiserson. Space-efficient

scheduling of multithreaded computations. In
Proceedings of the Twenty Fifth Annual ACM
Symposium on Theory of Computing, pages 362–371,
San Diego, California, May 1993.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal
of the ACM, 46(5):720–748, Sept. 1999.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT Press,
Cambridge, MA, 1990.

[4] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken,
and J. Wawrzynek. Fine-grain parallelism with minimal
hardware support: A compiler-controlled threaded
abstract machine. In Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
164–175, Santa Clara, California, Apr. 1991.

[5] D. Dailey and C. E. Leiserson. Using Cilk to write
multiprocessor chess programs. The Journal of the
International Computer Chess Association, 2002.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In 40th
Annual Symposium on Foundations of Computer
Science, pages 285–297, New York, New York, Oct.
17–19 1999.

[7] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN ’98 Conference
on Programming Language Design and Implementation,
pages 212–223, Montreal, Quebec, Canada, June 1998.
Proceedings published ACM SIGPLAN Notices, Vol.
33, No. 5, May, 1998.

[8] B. C. Kuszmaul. A Cilk response to the HPC Challenge
(Class 2, productivity). Presented at the the HPC
Challenge BOF at Supercomputing ’06, Tampa, FL.
http://bradley.csail.mit.edu/∼bradley/hpcc06.,
Nov. 2006.

14


