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Abstract 

This paper presents an overview of MPI, a proposed standard message passing interface 
for MIMD distributed memory concurrent computers. The design of MPI has been a 
collective effort involving researchers in the United States and Europe from many organiza- 
tions and institutions. MPI includes point-to-point and collective communication routines, 
as well as support for process groups, communication contexts, and application topologies. 
While making use of new ideas where appropriate, the MPI standard is based largely on 
current practice. 
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I. Introduct ion 

This  p a p e r  gives an overview of  MPI ,  a p r o p o s e d  s t a n d a r d  message  pass ing  
in te r face  for  d i s t r ibu ted  m e m o r y  concu r r en t  compute r s .  T h e  ma in  advan tages  of  
s t anda rd i z ing  the  message  pass ing  in te r face  for  such mach ines  a re  por tab i l i ty  and  
ease-of -use ,  and  a s t a n d a r d  message  pass ing  in te r face  is a key c o m p o n e n t  in 
bu i ld ing  a concu r r en t  compu t ing  env i ronmen t  in which appl ica t ions ,  sof tware  
l ibrar ies ,  and  tools  can be  t r a n s p a r e n t l y  p o r t e d  b e t w e e n  d i f fe ren t  machines .  
F u r t h e r m o r e ,  the  def in i t ion  of  a message  pass ing  s t a n d a r d  p rov ides  vendor s  with a 
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clearly defined set of routines that they can implement efficiently, or in some cases 
provide hardware or low-level system support for, thereby enhancing scalability. 

The functionality that MPI is designed to provide is based on current common 
practice, and is similar to that provided by widely-used message passing systems 
such as Express [12], N X / 2  [13], Vertex [11], PARMACS [8,9], and P4 [10]. In 
addition, the flexibility and usefulness of MPI has been broadened by incorporat- 
ing ideas from more recent and innovative message passing systems such as 
CHIMP [4,5], Zipcode [14,15], and the IBM External User Interface [7]. The 
general design philosophy followed by MPI is that while it would be imprudent to 
include new and untested features in the standard, concepts that have been tested 
in a research environment should be considered for inclusion. Many of the features 
in MPI related to process groups and communication contexts have been investi- 
gated within research groups for several years, but not in commercial or produc- 
tion environments. However, their incorporation into MPI is justified by the 
expressive power they bring to the standard. 

The MPI standardization effort involves about 60 people from 40 organizations 
mainly from the United States and Europe. Most of the major vendors of 
concurrent computers are involved in MPI, along with researchers from universi- 
ties, government laboratories, and industry. The standardization process began 
with the Workshop on Standards for Message Passing in a Distributed Memory 
Environment, sponsored by the Center for Research on Parallel Computing, held 
April 29-30, 1992, in Williamsburg, Virginia [16]. At this workshop the basic 
features essential to a standard message passing interface were discussed, and a 
working group established to continue the standardization process. 

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, 
Hempel,  Hey, and Walker in November 1992, and a revised version was completed 
in February 1993 [3]. MPI1 embodies the main features that were identified at the 
Williamsburg workshop as being necessary in a message passing standard. This 
proposal was intended to initiate discussion of standardization issues within the 
distributed memory concurrent computing community, and has served as a basis 
for the subsequent MPI standardization process. Since MPI1 was primarily in- 
tended to promote discussion and 'get the ball rolling', it focuses mainly on 
point-to-point communications. MPI1 does not include any collective communica- 
tion routines. MPI1 brought to the forefront a number of important standardiza- 
tion issues, and has served as a catalyst for subsequent progress, however, its major 
deficiency is that the management of resources is not thread-safe. Although MPI1 
and the MPI draft standard described in this paper have many features in 
common, they are distinct proposals, with MPI1 now being largely superseded by 
the MPI draft standard. 

In November 1992, a meeting of the MPI working group was held in Minneapo- 
lis, at which it was decided to place the standardization process on a more formal 
footing, and to generally adopt the procedures and organization of the High 
Performance Fortran forum. Subcommittees were formed for the major compo- 
nent areas of the standard, and an email discussion service established for each. In 
addition, the goal of producing a draft MPI standard by the Fall of 1993 was set. 
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To achieve this goal the MPI working group has met every 6 weeks for two days 
throughout the first 9 months of 1993, and the draft MPI standard was presented 
at the Supercomputing 93 conference in November 1993. These meetings and the 
email discussion together constitute the MPI forum, membership of which has 
been open to all members of the high performance computing community. 

This paper is being written at a time when MPI is still in the process of being 
defined, but when the main features have been agreed upon. The only major 
exception concerns communication between processes in different groups. Some 
syntactical details, and the language bindings for Fortran-77 and C, have not yet 
been considered in depth, and so will not be discussed here. This paper is not 
intended to give a definitive, or even a complete, description of MPI. While the 
main design features of MPI will be described, limitations on space prevent 
detailed justifications for why these features were adopted. For these details the 
reader is referred to the MPI specification document, and the archived email 
discussions, which are available electronically as described in Section 4. 

2. An overview of MPI 

MPI is intended to be a standard message passing interface for applications 
running on MIMD distributed memory concurrent computers. We expect MPI also 
to be useful in building libraries of mathematical software for such machines. MPI 
is not specifically designed for use by parallelizing compilers. MPI does not contain 
any support for fault tolerance, and assumes reliable communications. MPI is a 
message passing interface, not a complete parallel computing programming envi- 
ronment.  Thus, issues such as parallel I / O ,  parallel program composition, and 
debugging are not addressed by MPI. In addition, MPI does not provide explicit 
support for active messages or virtual communication channels, although exten- 
sions for such features are not precluded, and may be made in the future. Finally, 
MPI provides no explicit support for multithreading, although one of the design 
goals of MPI was to ensure that it can be implemented efficiently in a multi- 
threaded environment. 

The MPI standard does not mandate that an implementation should be interop- 
erable with other MPI implementations. However, MPI does provide all the 
datatype information needed to allow a single MPI implementation to operate in a 
heterogeneous environment. 

A set of routines that support point-to-point communication between pairs of 
processes forms the core of MPI. Routines for sending and receiving blocking and 
nonblocking messages are provided. A blocking send does not return until it is safe 
for the application to alter the message buffer on the sending process without 
corrupting or changing the message sent. A nonblocking send may return while the 
message buffer on the sending process is still volatile, and it should not be changed 
until it is guaranteed that this will not corrupt the message. This may be done by 
either calling a routine that blocks until the message buffer may be safely reused, 
or by calling a routine that performs a nonblocking check on the message status. A 
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SEND Blocking Nonblocking 

Standard mpi_send rapi_isend. 
Ready mpi_rsend mpi_irsend 
Synchronous mpi_ssend mpi_issend 

RECEIVE [ Blocking Nonblocking 

Standard I mpi_recv mpi_irecv 

Fig. 1. Classification and names of the point-to-point send and receive routines. 

blocking receive suspends execution on the receiving process until the incoming 
message has been placed in the specified application buffer. A nonblocking receive 
may return before the message has been received into the specified application 
buffer, and a subsequent call must be made to ensure that this has occurred before 
the application uses the data in the message. 

In MPI a message may be sent in one of three communication modes. The 
communication mode specifies the conditions under which the sending of a 
message may be initiated, or when it completes. In ready mode a message may be 
sent only if a corresponding receive has been initiated. In standard mode a 
message may be sent regardless of whether a corresponding receive has been 
initiated. Finally, MPI includes a synchronous mode which is the same as the 
standard mode, except that the send operation will not complete until a corre- 
sponding receive has been initiated on the destination process. 

There  are, therefore, 6 types of send operation and 2 types of receive, as shown 
in Fig. 1. In addition, routines are provided that send to one process while 
receiving from another. Different versions are provided for when the send and 
receive buffers are distinct, and for when they are the same. The send/receive  
operation is blocking, so does not return until the send buffer is ready for reuse, 
and the incoming message has been received. The two send/receive  routines bring 
the total number of point-to-point message passing routines up to 10. 

3. Details o f  MPI 

In this section we discuss the MPI routines in more detail. Since the point-to- 
point and collective communication routines depend heavily on the approach 
taken to groups and contexts, and to a lesser extent on process topologies, we shall 
discuss groups, contexts, and topologies first. These three related areas have 
generated much discussion within the MPI Forum, and a consensus has emerged 
only very gradually. To some extent this difficulty in arriving at a consensus arises 
because different commonly-used message passing interfaces generally handle 
groups, contexts, and topologies differently, and offer varying levels of support. 
The differing requirements in these three areas within the parallel computing 
community have also contributed to the diversity of views. 
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3.1. Groups, contexts, and communicators 

Although it is now agreed within the MPI  Forum that groups and contexts 
should be bound together into abstract communicator  objects, as described in 
Section 3.1.3., the precise details have yet to be worked out, particularly in the case 
of communicators for communication between groups. Thus, in this subsection we 
will give an overview of groups, contexts, and communicators,  without going into 
specific details that may subsequently change. In particular, we will not discuss 
communication between processes in different groups as at the time of writing the 
precise details are still under  discussion. 

3.1.1. Process groups 
The prevailing view within the MPI  Forum is that a process group is an ordered 

collection of processes, a n d  each process is uniquely identified by its rank within 
the ordering. For a group of n processes the ranks run from 0 to n -  1. This 
definition of groups closely conforms to current practice. 

Process groups can be used in two important  ways. First, they can be used to 
specify which processes are involved in a collective communication operation, such 
as a broadcast.  Second, they can be used to introduce task parallelism into an 
application, so that different groups per form different tasks. If  this is done by 
loading different executable codes into each group, then we refer to this as M I M D  
task parallelism. Alternatively, if each group executes a different conditional 
branch within the same executable code, then we refer to this as SPMD task 
parallelism (also known as control parallelism). Although MPI  does not provide 
mechanisms for loading executable codes onto processors, nor for creating pro- 
cesses and assigning them to processors, each process may execute its own distinct 
code. However,  it is expected that many initial MPI  implementat ions will adopt a 
static process model, so that, as far as the application is concerned, a fixed number  
of processes exist from program initiation to completion, each running the same 
SPMD code. 

Although the MPI  process model is static, process groups are dynamic in the 
sense that they can be created and destroyed, and each process can belong to 
several groups simultaneously. However,  the membership  of a group bound within 
a communicator  cannot be changed asynchronously. For one or more processes to 
join or leave such a group, a new communicator  must be created which requires 
the synchronization of all processes in the group so formed. In MPI a group is an 
opaque object referenced by means of a handle. MPI  provides routines for creating 
new groups by listing the ranks (within a specified parent  group) of the processes 
making up the new group, or by partitioning an existing group using a key. The 
group partitioning routine is also passed an index, the size of which determines the 
rank of the process in the new group. This also provides a way of permuting the 
ranks within a group, if all processes in the group use the same value for the key, 
and set the index equal to the desired new rank. Additional routines give the rank 
of the calling process within a given group, test whether  the calling process is in a 
given group, perform a barr ier  synchronization with a group, and inquire about the 
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size and membership of a group. Other  routines concerned with groups may be 
included in the final MPI draft. 

3.1.2. Communication contexts 
Communication contexts, first used in the Zipcode communication system 

[14,15], promote software modularity by allowing the construction of independent 
communication streams between processes, thereby ensuring that messages sent in 
one phase of an application are not incorrectly intercepted by another phase. 
Communication contexts are particularly important in allowing libraries that make 
message passing calls to be used safely within an application. The point here is that 
the application developer has no way of knowing if the tag, group, and rank 
completely disambiguate the message traffic of different libraries and the rest of 
the application. Context provides an additional criterion for message selection, and 
hence permits the construction of independent  tag spaces. 

If communication contexts are not used there are two ways in which a call to a 
library routine can lead to unintended behavior. In the first case the processes 
enter a library routine synchronously when a send has been initiated for which the 
matching receive is not posted until after the library call. In this case the message 
may be incorrectly received in the library routine. The second possibility arises 
when different processes enter a library routine asynchronously, as shown in the 
example in Fig. 2, resulting in nondeterministic behavior. If the program behaves 
correctly processes 0 and 1 each receive a message from process 2, using a 
wildcarded selection criterion to indicate that they are prepared to receive a 
message from any process. The three processes then pass data around in a ring 
within the library routine. If communication contexts are not used this program 
may intermittently fail. Suppose we delay the sending of the second message sent 
by process 2, for example, by inserting some computation, as shown in Fig. 3. In 
this case the wildcarded receive in process 0 is satisfied by a message sent from 
process 1, rather than from process 2, and deadlock results. By supplying a 
different communication context to the library routine we can ensure that the 

Process 0 Process 1 Process 2 
Irecv(anY)l Irecv(any)l_ I send(l) I 

psend(2) i 1 I :,::si:n !!:!".~:!:::i 

Fig. 2. Use of contexts. Time increases down the page. Numbers in parentheses indicate the process to 
which data are being sent or received. The gray shaded area represents the library routine call. In this 
case the program behaves as intended. Note that the second message sent by process 2 is received by 
process 0, and that the message sent by process 0 is received by process 2. 
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Process 0 Process 1 Process 2 
recv(any) I I recv(anY) l: I send(l) I 

I c°r"pute I 

recv(1) 1 ~ _ ,,,,:, S e n.d.,.0..,!,,,:,:, recv(0) 

Fig. 3. Unintended behavior of program. In this case the message from process 2 to process 0 is never 
received, and deadlock results. 

program is executed correctly, regardless of when the processes enter the library 
routine. 

3.1.3. Communicator objects 
The 'scope' of a communication operation is specified by the communication 

context used, and the group, or groups, involved. In a collective communication, or 
in a point-to-point communication between members of the same group, only one 
group needs to be specified, and the source and destination processes are given by 
their rank within this group. In a point-to-point communication between processes 
in different groups, two groups must be specified to define the scope. In this case 
the source and destination processes are given by their ranks within their respec- 
tive groups. In MPI abstract opaque objects called 'communicators'  are used to 
define the scope of a communication operation. In intragroup communication 
involving members of the same group a communicator can be regarded as binding 
together a context and a group. The creation of intergroup communicators for 
communicating between processes in different groups is still under discussion 
within the MPI Forum, and so will not be discussed here. 

3.2. Application topologies 

In many applications the processes are arranged with a particular topology, such 
as a two- or three-dimensional grid. MPI provides support for general application 
topologies that are specified by a graph in which processes that communicate a 
significant amount are connected by an arc. If the application topology is an 
n-dimensional Cartesian grid then this generality is not needed, so as a conve- 
nience MPI provides explicit support for such topologies. For a Cartesian grid 
periodic or nonperiodic boundary conditions may apply in any specified grid 
dimension. In MPI a group either has a Cartesian or graph topology, or no 
topology. 

In MPI, application topologies are supported by an initialization routine, 
MPI M A K E _ G R A P H  or M P I _ M A K E _  CART, that specifies the topology of a 
given group, a function M P I _ C A R T _ R A N K  that determines the rank given a 
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location in the topology associated with a group, and the inverse function 
M P I _ C A R T  COORDS that determines where a process is in the topology. In 
addition, the routine MPI T O P O _ S T A T U S  returns the topology associated with 
a given group, and for a group with a Cartesian topology, the routine 
M P I  G E T  CARTDIM gives the size and periodicity of the topology. 

In addition to removing from the user the burden of having to write code to 
translate between process identifier, as specified by group and rank, and location 
in the topology, MPI also: 

(1) allows knowledge of the application topology to be exploited in order to 
efficiently assign processes to physical processors, 

(2) provides a routine MPI CART_ S U B for partitioning a Cartesian grid into 
hyperplane groups by removing a specified set of dimensions, 

(3) provides support for shifting data along a specified dimension of a Cartesian 
grid, and 

By dividing a Cartesian grid into hyperplane groups it is possible to perform 
collective communication operations within these groups. In particular, if all but 
one dimension is removed a set of one-dimensional subgroups is formed, and it is 
possible, for example, to perform a multicast in the corresponding direction. 

Support for shift operations is provided by a routine, M P I _ C A R T  SHIFT, that 
returns the ranks of the processes that a process must send data to, and receive 
data from, when participating in the shift. Once the source and destination process 
are known for each process, the shift is performed by calling the routine 
M P I  SENDRECV that allows each process to send to one process while receiving 
from another. In a circular shift each process sends data to the process whose 
location in the given dimension is obtained by adding a specified integer (which 
may be negative) to its own location, modulo the number of processes in that 
dimension. In an end-off shift each process determines the rank of its destination 
process by adding a specified integer to its own rank, but if this exceeds the 
number of processes in the given dimension, or is less than zero, then no data are 
sent. If the Cartesian grid is periodic in the dimension in which the shift is done, 
then M P I _ C A R T _ S H I F T  returns source and destination processes appropriate 
for a circular shift. Otherwise MPI_ C A R T  SHIFT returns source and destination 
processes appropriate for an end-off shift. 

3.3. Point-to-point communication 

3.3.1. Message selectivity 
In MPI a process involved in a communication operation is identified by group 

and rank with that group. Thus, 

Process ID = (group, rank).  

In point-to-point communication, messages may be considered labeled by commu- 
nication context and message tag within that context. Thus, 

Message ID - (context, tag). 
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When sending or receiving a message the process and message identifiers must be 
specified. The group and context, which define the scope of the communication 
operation, are specified by means of a communicator object in the argument list of 
the send and receive routines. The rank and tag also appear in the argument list. A 
message sent in one scope can only be received in a different scope, so the 
communicator objects specified by the send and receive routines must match. The 
group and context components of a communicator may not be wildcarded. Within 
a given scope, message selectivity is by rank and tag. Either, or both, of these may 
be wildcarded by a receiving process to indicate that the corresponding selection 
criterion is to be ignored. The argument lists for the block send and receive 
routines are shown in Fig. 4. 

In Fig. 4, the last argument to M P I _ R E C V  is a handle to a return status object. 
This object may passed to an inquiry routine to determine the length of the 
message, or the actual source rank a n d / o r  message tag if wildcards have been 
used. The argument lists for the nonblocking send and receives are very similar, 
except that each returns a handle to an object that identifies the communication 
operation. This object is used subsequently to check for completion of the 
operation. In addition, the nonblocking receive does not return a return status 
object. Instead the return status object is returned by the routine that confirms 
completion of the receive operation. 

3.3.2. General datatypes 
All point-to-point message passing routines in MPI take as an argument the 

datatype of the data communicated. In the simplest case this will be a primitive 
datatype, such as an integer or floating point number. However, MPI also supports 

MPI_SEND ( 

IN start_of_buffer 

IN number_of_items 

IN dat atype_of_it ems 

IN destination-rank 

IN tag 

IN communicator) 

MPI_RECV ( 

0UT start_of_buffer 

IN max_number_of_items 

IN dat atype_of_it ems 

IN source_rank 

IN tag 

IN communicator 

OUT return_status_object) 

Fig. 4. Argument lists for the blocking send and receive routines. 
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more general datatypes, and thereby supports the communication of array sections 
and structures involving combinations of primitive datatypes. 

A general datatype is a sequence of pairs of primitive datatypes and integer byte 
displacements. Thus, 

Datatype = {(type0, disP0), (type1, diSPl) , . . .  , ( typen_l,  disPn_l) }. 

Together with a base address, a datatype specifies a communication buffer. 
General datatypes are built up hierarchically from simpler components. There are 
four basic constructors for datatypes, namely the contiguous, vector, indexed, and 
structure constructors. We will now discuss each of these in turn. 

The contiguous constructor creates a new datatype from repetitions of a 
specified old datatype. This requires us to specify the old datatype and the number 
of repetitions, n. For example, if the old datatype is o t d type  = { (d oub l e ,  0 ) ,  
( c h a r ,  8) } and n = 3, then the new datatype would be, 

{(double, 0), (char, 8), (double, 16), (char, 24), 

(double, 32), (char, 40)} 

It should be noted how each repeated unit in the new datatype is aligned with a 
double word boundary. This alignment is dictated by the appearance of a doub l e 
in the old datatype, so that the extent of the old datatype is taken as 16 bytes, 
rather than 9 bytes.The vector constructor builds a new datatype by replicating an 
old datatype in blocks at fixed offsets. The new datatype consists of c o u n t blocks, 
each of which is a repetition of b l o c k l e n items of some specified old datatype. 
The starts of successive blocks are offset by s t r i de items of the old datatype. 
Thus, if c o u n t ---- 2, b l o c k l e n = 3, and s t r i d e = 4 then the new datatype would 
be, 

{(double, 0), (char, 8), (double, 16), (char, 24), 
(double, 32), (char, 40), (double, 64), (char, 72), 
(double, 80), (char, 88), (double, 96), (char, 104)}, 

Here the offset between the two blocks is 64 bytes, which is the stride multiplied 
by the extent of the old datatype. 

The indexed constructor is a generalization of the vector constructor in which each 
block has a different size and offset. The sizes and offsets are given by the entries 
in two integer arrays, a and I. The new datatype consists of c o u n t blocks, and 
the ith block is of length Br i ] items of the specified old datatype. The offset of 
the start of the ith block is I r i ] items of the old datatype. Thus, if count  = 2, 
B = {3,1}, and r = {64,0}, then the new datatype would be, 

{(double, 64), (char, 72), (double, 80), (char, 88), 
(double, 96), (char, 104), (double, 0), (char, 8)} 

The structure constructor is the most general of the datatype constructors. This 
constructor generalizes the indexed constructor by allowing each block to be of a 
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left right 
edge edge 

Fig. 5. Particle migration in a one-dimensional code. The left and right edges of a process domain are 
shown. We shall consider just the migration of particles across the righthand boundary. 

different datatype. Thus, in addition to specifying the number  of blocks, c o u n t, 
and the block length and offset arrays, B and I, we must also give the datatype of 
the replicated unit in each block. Let  us assume this is specified in an array V. The 
length of the ith block is B r i ] items of type r r i 3, and the offset of the start of the 
ith block is i r i ]  bytes. Thus, if count=3, T={MPI_FLOAT, oldtype, 
MPI_CHAR), I = {0, 16, 26}, and B = {2,1,3}, then the new datatype would be, 

{(float, 0), (float, 4), (double, 16), (char, 24), (char, 26) 

(char, 27) (char, 28)} 

In addition to the constructors described above, there is a variant of the vector 
constructor in which the stride is given in bytes instead of the number  of items. 
There  is also a variant of the indexed constructor in which the block offsets are 
given in bytes. 

To bet ter  understand the use of general data structures consider the example of 
an application in which particles move on a one-dimensional domain. We assume 
that each process is responsible for a different section of this domain. In each time 
step particles may move from the subdomain of one process to that of another,  and 
so the data for such particles must be communicated between processes. We shall 
just consider here the task of migrating particles across the righthand boundary of 
a process, as shown in Fig. 5. The particle data are stored in an array of structures, 
with each entry in this structure consisting of the particle position, x, velocity, v, 
and type, k: 

struct Pstruct {double x; double v; int k;}; 

The C code for migrating particles across the righthand boundary is shown in Fig. 
6. 

In Fig. 6 the code in the first box creates a datatype, P type ,  that represents the 
P s t r u c t structure for a single particle. This datatype is, 

Ptype={(double,O). (double,8), (int,16)} 

In the second code box the particles that have crossed the righthand boundary 
are identified, and their index in the p a r t i c l e  array is stored in Pindex.  It is 
assumed that no more than 100 particles cross the boundary. The call to 
M P I _ t y p e _ i  ndexed uses an indexed constructor to create a new datatype, z t ype ,  
that references all the migrating particles. Before sending the data, the z t y p e  
datatype must be committed. This is done to allow the system to use a different 
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internal representation for z t y pe, and to optimize the communicat ion operation. 
Committing a datatype is most  likely to be advantageous when reusing a datatype 
many times, which is not the case in this example. Finally, the migrating particles 
are sent to their destination process, d e s t, by a call to M P I s e n d. The offsets in 
the z t y p e  datatype are interpreted relative to the address of  the start of  the 
particle array. 

3.3.3. Communication completion 
Following a call to a nonblocking send or receive routine there are a number of  

ways in which the handle returned by the call can he used to check the complet ion 
status of  the communicat ion operation, or to suspend further execution until the 
operation is complete.  MPI WAIT does not return until the communicat ion 
operation referred to by the input handle is complete.  M P I _ T E S T  does not wait 
until the operation identified by the input handle is complete,  but instead returns a 
logical variable that is T R U E  if the operation is complete,  and FALSE otherwise. 
If the input handle refers to a receive operation, then M P I _ W A I T  and M P I _ T E S T  
both return a handle to a return status object that can subsequently be passed to a 
query routine to determine the actual source, tag, and length of  the message 
received. 

An  additional two routines exist for waiting for the complet ion of  any or all of  
the handles in a list o f  handles. Similarly, there are variants of  the test routine that 
check if all, or at least one,  of  the communicat ion operations identified by a list of  
handles is complete.  

struct Pstruct particle[lO00]; 
MPI_datatype Ptype, Ztype; 
MPI_datatype Stype [3] ={MPI_double, MPI_double, MPI_int} ; 
int Sblock[3]={1, I, I}; 
int Sindex[3] ; 
int Pindex[lOO] ; 
int Pblock[lOO] ; 

Sindex[O] = O; 
Sindex[l] = sizeof(double); 
Sindex[2] = 2*sizeof(double); 
MPI~ype_struct (3, Stype, Sindex, Sblock, &Ptype); 

j=O; 
for (i=O;i<lO00;i++) 

if (x[i] > right_edge) { 
Pindex[j] = i; 
Pblock[j] = 1; 
j++;) 

MPI~ype_indexed (j, Ptype, Pindex, Pblock, ~Ztype); 

MPI_type_commit (Ztype) ; 
MPI_send (particle, i, Ztype, dest, tag, comm); 

Fig. 6. Fragment of C code for migrating particles across the righthand process boundary. 
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3.3.4. Persistent communication objects 
MPI also provides a set of routines for creating communication objects that 

completely describe a send or receive operation by binding together all the 
parameters of the operation. A handle to the communication object so formed is 
returned, and may subsequently be passed to the routine MPI_ START to actually 
initiate the communication. The M P I _ W A I T  routine, or a similar completion 
routine, must be called to ensure completion of the operation, as discussed in 
Section 3.3.3. 

Persistent communication objects may be used to optimize communication 
performance, particularly when the same communication pattern is repeated many 
times in an application. For example, if a send routine is called within a loop, 
performance may be improved by creating a communication object that describes 
the parameters of the send prior to entering the loop, and then calling 
MPI_ START inside the loop to send the data on each pass through the loop. 

There  are four routines for creating communication objects: three for send 
operations, corresponding to the standard, ready, and synchronous modes, and one 
for receive operations. A persistent communication object must be deallocated 
when no longer needed. 

3.4. Collective communication 

Collective communication routines provide for coordinated communication 
among a group of processes [1,2]. The process group is given by the communicator 
object that is input to the routine. The MPI collective communication routines 
have been designed so that their syntax and semantics are consistent with those of 
the point-to-point routines. The collective communication routines may, but do not 
have to be, implemented using the MPI point-to-point routines. Collective commu- 
nication routines do not have message tag arguments, though an implementation in 
terms of the point-to-point routines may need to make use of tags. A collective 
communication routine must be called by all members of the group with consistent 
arguments. As soon as a process has completed its role in the collective communi- 
cation it may continue with other  tasks. Thus, a collective communication is not 
necessarily a barrier synchronization for the group. MPI does not include non- 
blocking forms of the collective communication routines. MPI collective communi- 
cation routines are divided into two broad classes: data movement routines, and 
global computation routines. 

3.4.1. Collective data movement routines 
There  are 3 basic types of collective data movement routine: broadcast, scatter, 

and gather. There  are two versions of each of these three routines: in the one-all 
case data are communicated between one process and all others; in the all-all case 
data are communicated between each process and all others. Fig. 7 shows the 
one-all and all-all versions of the broadcast, scatter, and gather routines for a 
group of six processors. 
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Fig. 7. One-all and all-all versions of the broadcast, scatter, and gather routines for a group of six 
processes. In each case, each row of boxes represents data locations in one process. Thus, in the one-aU 
broadcast, initially just the first process contains the data Ao, but after the broadcast all processes 
contain it. 

The all-all broadcast, and both varieties of the scatter and gather routines, 
involve each process sending distinct data to each process, and/or  receiving 
distinct data from each process. In these routines each process may send to 
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a n d / o r  receive from each other process a different number  of data  items, but the 
send and receive datatypes must be consistent. To illustrate this point consider the 
following example in which process 0 gathers data from processes 1 and 2. Suppose 
the receive datatype in process 0, and the send datatypes in processes 1 and 2 are 
as follows, 

In process 0: r e c v t y p e = { ( i n t ,  
In process 1: s e n d t y p e = { ( i n t ,  

(int, 
(int, 

In process 2: sendtype={(int, 

0), (float, 4)} 
0), (float, 4), 
96), (float, 100), 
32), (float, 36)} 
16), (float, 20), 

(int, 48), (float, 52)}, 

Such a situation could arise in a C program in which an indexed datatype 
constructor has been applied to an array of structures, each element  of which 
consists of an integer and a floating-point number.  Although the datatypes are 
different in each process, they are type consistent, since each consists of repetitions 
of an integer followed by a float. 

The one-all broadcast  routine broadcasts data from one process to all other 
processes in the group. The  all-all broadcast  broadcasts data from each process to 
all others, and on completion each has received the same data. Thus, for the all-all 
broadcast  each process ends up with the same output  data, which is the concatena- 
tion of the input data of all processes, in rank order. 

The one-all scatter routine sends distinct data from one process to all processes 
in the group. This is also known as 'one-to-all  personalized communication' .  In the 
all-all scatter routine each process scatters distinct data to all processes in the 
group, so the processes receive different data from each process. This is also 
known as 'all-to-all personalized communication' .  

The communication patterns in the gather routines are the same as in the 
scatter routines, except that the direction of flow of data is reversed. In the one-all 
gather routine one process (the root) receives data from every process in the 
group. The root process receives the concatenation of the input buffers of all 
processes, in rank order. There  is no separate  all-all gather routine since this 
would just be identical to the all-all scatter routine, so there are 5 basic data 
movement  routines. 

In addition, MPI  provides versions of all these 5 routines, except the one-all 
broadcast,  in which the send and receive datatypes are type consistent as discussed 
above, but in which each process is allocated a ftxed size portion of the communi- 
cation buffer. These bring the total number  of data movement  routines to 9. 

3.4.2. Global computation routines 
There  are two basic global computat ion routines in MPI: reduce and scan. The 

reduce and scan routines both require the specification of an input function. One 
version is provided in which the user selects the function from a predefined list; in 
the second version the user supplies (a pointer  to) a function that is associative and 
commutative; in the third version the user supplies (a pointer  to) a function that is 
associative, but not necessarily commutative. In addition, there are three variants 
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of the reduction routines. In one variant the reduced results are returned to a 
single specified process; in the second variant the reduced results are returned to 
all processes involved; and, in the third variant the reduced results are scattered 
across the processes involved. This latter variant is a generalization of the f o t d 
routine described in Chapter  21 of [6]. Thus, there are 12 global computation 
routines, and a total of 21 collective communication routines (or 22 if we include 
the routine for performing a barrier synchronization over a process group). 

The reduce routines combine the values provided in the input buffer of each 
process using a specified function. Thus, if D i is the data in the process with rank i 
in the group, and • is the combining function, then the following quantity is 
evaluated, 

~ = D o ~ D  ~ ~ D 2 ~  "'" ~ D n _  1, (1) 

where n is the size of the group. Common reduction operations are the evaluation 
of the maximum, minimum, or sum of a set of values distributed across a group of 
processes. 

The scan routines perform a parallel prefix with respect to an associative 
reduction operation on data distributed across a specified group. On completion 
the output  buffer of the process with rank i contains the result of combining the 
values from the processes with rank 0,1 . . . . .  i - 1, i.e. 

~i = D o  @ D 1 0 D 2  ~ "'" ~ D i - 1  (2) 

It should be noted that segmented scans can be performed by first creating 
distinct subgroups for each segment. 

4. Summary 

This paper  has given an overview of the main features of MPI, but has not 
described the detailed syntax of the MPI routines, or discussed language binding 
issues. These will be fully discussed in the MPI specification document, a draft of 
which was made available at the Supercomputing 93 conference in November 
1993. 

The design of MPI has been a cooperative effort involving about 60 people. 
Much of the discussion has been by electronic mail, and has been archived, along 
with copies of the MPI draft and other  key documents. Copies of the archives and 
documents may be obtained by netlib. For  details of what is available, and how to 
get it, please send the message 'send index from mpi' to n e t t i b ao r n L. g ov. 
The netlib repository contains the current version of the MPI draft which may 
differ slightly from that described here. 
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