
ELSEVIER Parallel Computing 20 (1994) 657-673

P A R A L L E L
C O M P U T I N G

The design of a standard message passing interface
for distributed memory concurrent computers *

David W. Walker *

Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge,
TN 37831- 6367, USA

(Received 18 June 1993; revised 11 October, 8 December 1993)

Abstract

This paper presents an overview of MPI, a proposed standard message passing interface
for MIMD distributed memory concurrent computers. The design of MPI has been a
collective effort involving researchers in the United States and Europe from many organiza-
tions and institutions. MPI includes point-to-point and collective communication routines,
as well as support for process groups, communication contexts, and application topologies.
While making use of new ideas where appropriate, the MPI standard is based largely on
current practice.

Key words: Message passing; Distributed memory computers; Standards; Point-to-point
communication; Collective communication; Process groups; Communication contexts; Ap-
plication topologies

I. Introduct ion

This p a p e r gives an overview of MPI , a p r o p o s e d s t a n d a r d message pass ing
in te r face for d i s t r ibu ted m e m o r y concu r r en t compute r s . T h e ma in advan tages of
s t anda rd i z ing the message pass ing in te r face for such mach ines a re por tab i l i ty and
ease-of -use , and a s t a n d a r d message pass ing in te r face is a key c o m p o n e n t in
bu i ld ing a concu r r en t compu t ing env i ronmen t in which appl ica t ions , sof tware
l ibrar ies , and tools can be t r a n s p a r e n t l y p o r t e d b e t w e e n d i f fe ren t machines .
F u r t h e r m o r e , the def in i t ion of a message pass ing s t a n d a r d p rov ides vendor s with a

* Email: walker@msr.epm.ornl.gov
t This work was supported in part by ARPA under contract number DAAL03-91-C-0047 administered
by ARO.

0167-8191/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0167-8191(93)E0109-9

658 D. W Walker~Parallel Computing 20 (1994) 657-673

clearly defined set of routines that they can implement efficiently, or in some cases
provide hardware or low-level system support for, thereby enhancing scalability.

The functionality that MPI is designed to provide is based on current common
practice, and is similar to that provided by widely-used message passing systems
such as Express [12], N X / 2 [13], Vertex [11], PARMACS [8,9], and P4 [10]. In
addition, the flexibility and usefulness of MPI has been broadened by incorporat-
ing ideas from more recent and innovative message passing systems such as
CHIMP [4,5], Zipcode [14,15], and the IBM External User Interface [7]. The
general design philosophy followed by MPI is that while it would be imprudent to
include new and untested features in the standard, concepts that have been tested
in a research environment should be considered for inclusion. Many of the features
in MPI related to process groups and communication contexts have been investi-
gated within research groups for several years, but not in commercial or produc-
tion environments. However, their incorporation into MPI is justified by the
expressive power they bring to the standard.

The MPI standardization effort involves about 60 people from 40 organizations
mainly from the United States and Europe. Most of the major vendors of
concurrent computers are involved in MPI, along with researchers from universi-
ties, government laboratories, and industry. The standardization process began
with the Workshop on Standards for Message Passing in a Distributed Memory
Environment, sponsored by the Center for Research on Parallel Computing, held
April 29-30, 1992, in Williamsburg, Virginia [16]. At this workshop the basic
features essential to a standard message passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by Dongarra,
Hempel, Hey, and Walker in November 1992, and a revised version was completed
in February 1993 [3]. MPI1 embodies the main features that were identified at the
Williamsburg workshop as being necessary in a message passing standard. This
proposal was intended to initiate discussion of standardization issues within the
distributed memory concurrent computing community, and has served as a basis
for the subsequent MPI standardization process. Since MPI1 was primarily in-
tended to promote discussion and 'get the ball rolling', it focuses mainly on
point-to-point communications. MPI1 does not include any collective communica-
tion routines. MPI1 brought to the forefront a number of important standardiza-
tion issues, and has served as a catalyst for subsequent progress, however, its major
deficiency is that the management of resources is not thread-safe. Although MPI1
and the MPI draft standard described in this paper have many features in
common, they are distinct proposals, with MPI1 now being largely superseded by
the MPI draft standard.

In November 1992, a meeting of the MPI working group was held in Minneapo-
lis, at which it was decided to place the standardization process on a more formal
footing, and to generally adopt the procedures and organization of the High
Performance Fortran forum. Subcommittees were formed for the major compo-
nent areas of the standard, and an email discussion service established for each. In
addition, the goal of producing a draft MPI standard by the Fall of 1993 was set.

D.W. Walker~Parallel Computing 20 (1994) 657-673 659

To achieve this goal the MPI working group has met every 6 weeks for two days
throughout the first 9 months of 1993, and the draft MPI standard was presented
at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constitute the MPI forum, membership of which has
been open to all members of the high performance computing community.

This paper is being written at a time when MPI is still in the process of being
defined, but when the main features have been agreed upon. The only major
exception concerns communication between processes in different groups. Some
syntactical details, and the language bindings for Fortran-77 and C, have not yet
been considered in depth, and so will not be discussed here. This paper is not
intended to give a definitive, or even a complete, description of MPI. While the
main design features of MPI will be described, limitations on space prevent
detailed justifications for why these features were adopted. For these details the
reader is referred to the MPI specification document, and the archived email
discussions, which are available electronically as described in Section 4.

2. An overview of MPI

MPI is intended to be a standard message passing interface for applications
running on MIMD distributed memory concurrent computers. We expect MPI also
to be useful in building libraries of mathematical software for such machines. MPI
is not specifically designed for use by parallelizing compilers. MPI does not contain
any support for fault tolerance, and assumes reliable communications. MPI is a
message passing interface, not a complete parallel computing programming envi-
ronment. Thus, issues such as parallel I / O , parallel program composition, and
debugging are not addressed by MPI. In addition, MPI does not provide explicit
support for active messages or virtual communication channels, although exten-
sions for such features are not precluded, and may be made in the future. Finally,
MPI provides no explicit support for multithreading, although one of the design
goals of MPI was to ensure that it can be implemented efficiently in a multi-
threaded environment.

The MPI standard does not mandate that an implementation should be interop-
erable with other MPI implementations. However, MPI does provide all the
datatype information needed to allow a single MPI implementation to operate in a
heterogeneous environment.

A set of routines that support point-to-point communication between pairs of
processes forms the core of MPI. Routines for sending and receiving blocking and
nonblocking messages are provided. A blocking send does not return until it is safe
for the application to alter the message buffer on the sending process without
corrupting or changing the message sent. A nonblocking send may return while the
message buffer on the sending process is still volatile, and it should not be changed
until it is guaranteed that this will not corrupt the message. This may be done by
either calling a routine that blocks until the message buffer may be safely reused,
or by calling a routine that performs a nonblocking check on the message status. A

660 D.W Walker~Parallel Computing 20 (1994) 657-673

SEND Blocking Nonblocking

Standard mpi_send rapi_isend.
Ready mpi_rsend mpi_irsend
Synchronous mpi_ssend mpi_issend

RECEIVE [Blocking Nonblocking

Standard I mpi_recv mpi_irecv

Fig. 1. Classification and names of the point-to-point send and receive routines.

blocking receive suspends execution on the receiving process until the incoming
message has been placed in the specified application buffer. A nonblocking receive
may return before the message has been received into the specified application
buffer, and a subsequent call must be made to ensure that this has occurred before
the application uses the data in the message.

In MPI a message may be sent in one of three communication modes. The
communication mode specifies the conditions under which the sending of a
message may be initiated, or when it completes. In ready mode a message may be
sent only if a corresponding receive has been initiated. In standard mode a
message may be sent regardless of whether a corresponding receive has been
initiated. Finally, MPI includes a synchronous mode which is the same as the
standard mode, except that the send operation will not complete until a corre-
sponding receive has been initiated on the destination process.

There are, therefore, 6 types of send operation and 2 types of receive, as shown
in Fig. 1. In addition, routines are provided that send to one process while
receiving from another. Different versions are provided for when the send and
receive buffers are distinct, and for when they are the same. The send/receive
operation is blocking, so does not return until the send buffer is ready for reuse,
and the incoming message has been received. The two send/receive routines bring
the total number of point-to-point message passing routines up to 10.

3. Details o f MPI

In this section we discuss the MPI routines in more detail. Since the point-to-
point and collective communication routines depend heavily on the approach
taken to groups and contexts, and to a lesser extent on process topologies, we shall
discuss groups, contexts, and topologies first. These three related areas have
generated much discussion within the MPI Forum, and a consensus has emerged
only very gradually. To some extent this difficulty in arriving at a consensus arises
because different commonly-used message passing interfaces generally handle
groups, contexts, and topologies differently, and offer varying levels of support.
The differing requirements in these three areas within the parallel computing
community have also contributed to the diversity of views.

D. W. Walker~Parallel Computing 20 (1994) 657-673 661

3.1. Groups, contexts, and communicators

Although it is now agreed within the MPI Forum that groups and contexts
should be bound together into abstract communicator objects, as described in
Section 3.1.3., the precise details have yet to be worked out, particularly in the case
of communicators for communication between groups. Thus, in this subsection we
will give an overview of groups, contexts, and communicators, without going into
specific details that may subsequently change. In particular, we will not discuss
communication between processes in different groups as at the time of writing the
precise details are still under discussion.

3.1.1. Process groups
The prevailing view within the MPI Forum is that a process group is an ordered

collection of processes, a n d each process is uniquely identified by its rank within
the ordering. For a group of n processes the ranks run from 0 to n - 1. This
definition of groups closely conforms to current practice.

Process groups can be used in two important ways. First, they can be used to
specify which processes are involved in a collective communication operation, such
as a broadcast. Second, they can be used to introduce task parallelism into an
application, so that different groups per form different tasks. If this is done by
loading different executable codes into each group, then we refer to this as M I M D
task parallelism. Alternatively, if each group executes a different conditional
branch within the same executable code, then we refer to this as SPMD task
parallelism (also known as control parallelism). Although MPI does not provide
mechanisms for loading executable codes onto processors, nor for creating pro-
cesses and assigning them to processors, each process may execute its own distinct
code. However, it is expected that many initial MPI implementat ions will adopt a
static process model, so that, as far as the application is concerned, a fixed number
of processes exist from program initiation to completion, each running the same
SPMD code.

Although the MPI process model is static, process groups are dynamic in the
sense that they can be created and destroyed, and each process can belong to
several groups simultaneously. However, the membership of a group bound within
a communicator cannot be changed asynchronously. For one or more processes to
join or leave such a group, a new communicator must be created which requires
the synchronization of all processes in the group so formed. In MPI a group is an
opaque object referenced by means of a handle. MPI provides routines for creating
new groups by listing the ranks (within a specified parent group) of the processes
making up the new group, or by partitioning an existing group using a key. The
group partitioning routine is also passed an index, the size of which determines the
rank of the process in the new group. This also provides a way of permuting the
ranks within a group, if all processes in the group use the same value for the key,
and set the index equal to the desired new rank. Additional routines give the rank
of the calling process within a given group, test whether the calling process is in a
given group, perform a barr ier synchronization with a group, and inquire about the

662 D.W. Walker~Parallel Computing 20 (1994) 657-673

size and membership of a group. Other routines concerned with groups may be
included in the final MPI draft.

3.1.2. Communication contexts
Communication contexts, first used in the Zipcode communication system

[14,15], promote software modularity by allowing the construction of independent
communication streams between processes, thereby ensuring that messages sent in
one phase of an application are not incorrectly intercepted by another phase.
Communication contexts are particularly important in allowing libraries that make
message passing calls to be used safely within an application. The point here is that
the application developer has no way of knowing if the tag, group, and rank
completely disambiguate the message traffic of different libraries and the rest of
the application. Context provides an additional criterion for message selection, and
hence permits the construction of independent tag spaces.

If communication contexts are not used there are two ways in which a call to a
library routine can lead to unintended behavior. In the first case the processes
enter a library routine synchronously when a send has been initiated for which the
matching receive is not posted until after the library call. In this case the message
may be incorrectly received in the library routine. The second possibility arises
when different processes enter a library routine asynchronously, as shown in the
example in Fig. 2, resulting in nondeterministic behavior. If the program behaves
correctly processes 0 and 1 each receive a message from process 2, using a
wildcarded selection criterion to indicate that they are prepared to receive a
message from any process. The three processes then pass data around in a ring
within the library routine. If communication contexts are not used this program
may intermittently fail. Suppose we delay the sending of the second message sent
by process 2, for example, by inserting some computation, as shown in Fig. 3. In
this case the wildcarded receive in process 0 is satisfied by a message sent from
process 1, rather than from process 2, and deadlock results. By supplying a
different communication context to the library routine we can ensure that the

Process 0 Process 1 Process 2
Irecv(anY)l Irecv(any)l_ I send(l) I

psend(2) i 1 I :,::si:n !!:!".~:!:::i

Fig. 2. Use of contexts. Time increases down the page. Numbers in parentheses indicate the process to
which data are being sent or received. The gray shaded area represents the library routine call. In this
case the program behaves as intended. Note that the second message sent by process 2 is received by
process 0, and that the message sent by process 0 is received by process 2.

D.W. Walker/Parallel Computing 20 (1994) 657-673 663

Process 0 Process 1 Process 2
recv(any) I I recv(anY) l: I send(l) I

I c°r"pute I

recv(1) 1 ~ _ ,,,,:, S e n.d.,.0..,!,,,:,:, recv(0)

Fig. 3. Unintended behavior of program. In this case the message from process 2 to process 0 is never
received, and deadlock results.

program is executed correctly, regardless of when the processes enter the library
routine.

3.1.3. Communicator objects
The 'scope' of a communication operation is specified by the communication

context used, and the group, or groups, involved. In a collective communication, or
in a point-to-point communication between members of the same group, only one
group needs to be specified, and the source and destination processes are given by
their rank within this group. In a point-to-point communication between processes
in different groups, two groups must be specified to define the scope. In this case
the source and destination processes are given by their ranks within their respec-
tive groups. In MPI abstract opaque objects called 'communicators' are used to
define the scope of a communication operation. In intragroup communication
involving members of the same group a communicator can be regarded as binding
together a context and a group. The creation of intergroup communicators for
communicating between processes in different groups is still under discussion
within the MPI Forum, and so will not be discussed here.

3.2. Application topologies

In many applications the processes are arranged with a particular topology, such
as a two- or three-dimensional grid. MPI provides support for general application
topologies that are specified by a graph in which processes that communicate a
significant amount are connected by an arc. If the application topology is an
n-dimensional Cartesian grid then this generality is not needed, so as a conve-
nience MPI provides explicit support for such topologies. For a Cartesian grid
periodic or nonperiodic boundary conditions may apply in any specified grid
dimension. In MPI a group either has a Cartesian or graph topology, or no
topology.

In MPI, application topologies are supported by an initialization routine,
MPI M A K E _ G R A P H or M P I _ M A K E _ CART, that specifies the topology of a
given group, a function M P I _ C A R T _ R A N K that determines the rank given a

664 D.W. Walker~Parallel Computing 20 (1994) 657-673

location in the topology associated with a group, and the inverse function
M P I _ C A R T COORDS that determines where a process is in the topology. In
addition, the routine MPI T O P O _ S T A T U S returns the topology associated with
a given group, and for a group with a Cartesian topology, the routine
M P I G E T CARTDIM gives the size and periodicity of the topology.

In addition to removing from the user the burden of having to write code to
translate between process identifier, as specified by group and rank, and location
in the topology, MPI also:

(1) allows knowledge of the application topology to be exploited in order to
efficiently assign processes to physical processors,

(2) provides a routine MPI CART_ S U B for partitioning a Cartesian grid into
hyperplane groups by removing a specified set of dimensions,

(3) provides support for shifting data along a specified dimension of a Cartesian
grid, and

By dividing a Cartesian grid into hyperplane groups it is possible to perform
collective communication operations within these groups. In particular, if all but
one dimension is removed a set of one-dimensional subgroups is formed, and it is
possible, for example, to perform a multicast in the corresponding direction.

Support for shift operations is provided by a routine, M P I _ C A R T SHIFT, that
returns the ranks of the processes that a process must send data to, and receive
data from, when participating in the shift. Once the source and destination process
are known for each process, the shift is performed by calling the routine
M P I SENDRECV that allows each process to send to one process while receiving
from another. In a circular shift each process sends data to the process whose
location in the given dimension is obtained by adding a specified integer (which
may be negative) to its own location, modulo the number of processes in that
dimension. In an end-off shift each process determines the rank of its destination
process by adding a specified integer to its own rank, but if this exceeds the
number of processes in the given dimension, or is less than zero, then no data are
sent. If the Cartesian grid is periodic in the dimension in which the shift is done,
then M P I _ C A R T _ S H I F T returns source and destination processes appropriate
for a circular shift. Otherwise MPI_ C A R T SHIFT returns source and destination
processes appropriate for an end-off shift.

3.3. Point-to-point communication

3.3.1. Message selectivity
In MPI a process involved in a communication operation is identified by group

and rank with that group. Thus,

Process ID = (group, rank).

In point-to-point communication, messages may be considered labeled by commu-
nication context and message tag within that context. Thus,

Message ID - (context, tag).

D. W. Walker~Parallel Computing 20 (1994) 657-673 665

When sending or receiving a message the process and message identifiers must be
specified. The group and context, which define the scope of the communication
operation, are specified by means of a communicator object in the argument list of
the send and receive routines. The rank and tag also appear in the argument list. A
message sent in one scope can only be received in a different scope, so the
communicator objects specified by the send and receive routines must match. The
group and context components of a communicator may not be wildcarded. Within
a given scope, message selectivity is by rank and tag. Either, or both, of these may
be wildcarded by a receiving process to indicate that the corresponding selection
criterion is to be ignored. The argument lists for the block send and receive
routines are shown in Fig. 4.

In Fig. 4, the last argument to M P I _ R E C V is a handle to a return status object.
This object may passed to an inquiry routine to determine the length of the
message, or the actual source rank a n d / o r message tag if wildcards have been
used. The argument lists for the nonblocking send and receives are very similar,
except that each returns a handle to an object that identifies the communication
operation. This object is used subsequently to check for completion of the
operation. In addition, the nonblocking receive does not return a return status
object. Instead the return status object is returned by the routine that confirms
completion of the receive operation.

3.3.2. General datatypes
All point-to-point message passing routines in MPI take as an argument the

datatype of the data communicated. In the simplest case this will be a primitive
datatype, such as an integer or floating point number. However, MPI also supports

MPI_SEND (

IN start_of_buffer

IN number_of_items

IN dat atype_of_it ems

IN destination-rank

IN tag

IN communicator)

MPI_RECV (

0UT start_of_buffer

IN max_number_of_items

IN dat atype_of_it ems

IN source_rank

IN tag

IN communicator

OUT return_status_object)

Fig. 4. Argument lists for the blocking send and receive routines.

6 6 6 D.W Walker~Parallel Computing 20 (1994) 657-673

more general datatypes, and thereby supports the communication of array sections
and structures involving combinations of primitive datatypes.

A general datatype is a sequence of pairs of primitive datatypes and integer byte
displacements. Thus,

Datatype = {(type0, disP0), (type1, diSPl) , . . . , (typen_l, disPn_l) }.

Together with a base address, a datatype specifies a communication buffer.
General datatypes are built up hierarchically from simpler components. There are
four basic constructors for datatypes, namely the contiguous, vector, indexed, and
structure constructors. We will now discuss each of these in turn.

The contiguous constructor creates a new datatype from repetitions of a
specified old datatype. This requires us to specify the old datatype and the number
of repetitions, n. For example, if the old datatype is o t d type = { (d oub l e , 0) ,
(c h a r , 8) } and n = 3, then the new datatype would be,

{(double, 0), (char, 8), (double, 16), (char, 24),

(double, 32), (char, 40)}

It should be noted how each repeated unit in the new datatype is aligned with a
double word boundary. This alignment is dictated by the appearance of a doub l e
in the old datatype, so that the extent of the old datatype is taken as 16 bytes,
rather than 9 bytes.The vector constructor builds a new datatype by replicating an
old datatype in blocks at fixed offsets. The new datatype consists of c o u n t blocks,
each of which is a repetition of b l o c k l e n items of some specified old datatype.
The starts of successive blocks are offset by s t r i de items of the old datatype.
Thus, if c o u n t ---- 2, b l o c k l e n = 3, and s t r i d e = 4 then the new datatype would
be,

{(double, 0), (char, 8), (double, 16), (char, 24),
(double, 32), (char, 40), (double, 64), (char, 72),
(double, 80), (char, 88), (double, 96), (char, 104)},

Here the offset between the two blocks is 64 bytes, which is the stride multiplied
by the extent of the old datatype.

The indexed constructor is a generalization of the vector constructor in which each
block has a different size and offset. The sizes and offsets are given by the entries
in two integer arrays, a and I. The new datatype consists of c o u n t blocks, and
the ith block is of length Br i] items of the specified old datatype. The offset of
the start of the ith block is I r i] items of the old datatype. Thus, if count = 2,
B = {3,1}, and r = {64,0}, then the new datatype would be,

{(double, 64), (char, 72), (double, 80), (char, 88),
(double, 96), (char, 104), (double, 0), (char, 8)}

The structure constructor is the most general of the datatype constructors. This
constructor generalizes the indexed constructor by allowing each block to be of a

D. W. Walker~Parallel Computing 20 (1994) 657-673 667

left right
edge edge

Fig. 5. Particle migration in a one-dimensional code. The left and right edges of a process domain are
shown. We shall consider just the migration of particles across the righthand boundary.

different datatype. Thus, in addition to specifying the number of blocks, c o u n t,
and the block length and offset arrays, B and I, we must also give the datatype of
the replicated unit in each block. Let us assume this is specified in an array V. The
length of the ith block is B r i] items of type r r i 3, and the offset of the start of the
ith block is i r i] bytes. Thus, if count=3, T={MPI_FLOAT, oldtype,
MPI_CHAR), I = {0, 16, 26}, and B = {2,1,3}, then the new datatype would be,

{(float, 0), (float, 4), (double, 16), (char, 24), (char, 26)

(char, 27) (char, 28)}

In addition to the constructors described above, there is a variant of the vector
constructor in which the stride is given in bytes instead of the number of items.
There is also a variant of the indexed constructor in which the block offsets are
given in bytes.

To bet ter understand the use of general data structures consider the example of
an application in which particles move on a one-dimensional domain. We assume
that each process is responsible for a different section of this domain. In each time
step particles may move from the subdomain of one process to that of another, and
so the data for such particles must be communicated between processes. We shall
just consider here the task of migrating particles across the righthand boundary of
a process, as shown in Fig. 5. The particle data are stored in an array of structures,
with each entry in this structure consisting of the particle position, x, velocity, v,
and type, k:

struct Pstruct {double x; double v; int k;};

The C code for migrating particles across the righthand boundary is shown in Fig.
6.

In Fig. 6 the code in the first box creates a datatype, P type , that represents the
P s t r u c t structure for a single particle. This datatype is,

Ptype={(double,O). (double,8), (int,16)}

In the second code box the particles that have crossed the righthand boundary
are identified, and their index in the p a r t i c l e array is stored in Pindex. It is
assumed that no more than 100 particles cross the boundary. The call to
M P I _ t y p e _ i ndexed uses an indexed constructor to create a new datatype, z t ype ,
that references all the migrating particles. Before sending the data, the z t y p e
datatype must be committed. This is done to allow the system to use a different

668 D.W Walker~Parallel Computing 20 (1994) 657-673

internal representation for z t y pe, and to optimize the communicat ion operation.
Committing a datatype is most likely to be advantageous when reusing a datatype
many times, which is not the case in this example. Finally, the migrating particles
are sent to their destination process, d e s t, by a call to M P I s e n d. The offsets in
the z t y p e datatype are interpreted relative to the address of the start of the
particle array.

3.3.3. Communication completion
Following a call to a nonblocking send or receive routine there are a number of

ways in which the handle returned by the call can he used to check the complet ion
status of the communicat ion operation, or to suspend further execution until the
operation is complete. MPI WAIT does not return until the communicat ion
operation referred to by the input handle is complete. M P I _ T E S T does not wait
until the operation identified by the input handle is complete, but instead returns a
logical variable that is T R U E if the operation is complete, and FALSE otherwise.
If the input handle refers to a receive operation, then M P I _ W A I T and M P I _ T E S T
both return a handle to a return status object that can subsequently be passed to a
query routine to determine the actual source, tag, and length of the message
received.

An additional two routines exist for waiting for the complet ion of any or all of
the handles in a list o f handles. Similarly, there are variants of the test routine that
check if all, or at least one, of the communicat ion operations identified by a list of
handles is complete.

struct Pstruct particle[lO00];
MPI_datatype Ptype, Ztype;
MPI_datatype Stype [3] ={MPI_double, MPI_double, MPI_int} ;
int Sblock[3]={1, I, I};
int Sindex[3] ;
int Pindex[lOO] ;
int Pblock[lOO] ;

Sindex[O] = O;
Sindex[l] = sizeof(double);
Sindex[2] = 2*sizeof(double);
MPI~ype_struct (3, Stype, Sindex, Sblock, &Ptype);

j=O;
for (i=O;i<lO00;i++)

if (x[i] > right_edge) {
Pindex[j] = i;
Pblock[j] = 1;
j++;)

MPI~ype_indexed (j, Ptype, Pindex, Pblock, ~Ztype);

MPI_type_commit (Ztype) ;
MPI_send (particle, i, Ztype, dest, tag, comm);

Fig. 6. Fragment of C code for migrating particles across the righthand process boundary.

D. W. Walker/Parallel Computing 20 (1994) 657-673 669

3.3.4. Persistent communication objects
MPI also provides a set of routines for creating communication objects that

completely describe a send or receive operation by binding together all the
parameters of the operation. A handle to the communication object so formed is
returned, and may subsequently be passed to the routine MPI_ START to actually
initiate the communication. The M P I _ W A I T routine, or a similar completion
routine, must be called to ensure completion of the operation, as discussed in
Section 3.3.3.

Persistent communication objects may be used to optimize communication
performance, particularly when the same communication pattern is repeated many
times in an application. For example, if a send routine is called within a loop,
performance may be improved by creating a communication object that describes
the parameters of the send prior to entering the loop, and then calling
MPI_ START inside the loop to send the data on each pass through the loop.

There are four routines for creating communication objects: three for send
operations, corresponding to the standard, ready, and synchronous modes, and one
for receive operations. A persistent communication object must be deallocated
when no longer needed.

3.4. Collective communication

Collective communication routines provide for coordinated communication
among a group of processes [1,2]. The process group is given by the communicator
object that is input to the routine. The MPI collective communication routines
have been designed so that their syntax and semantics are consistent with those of
the point-to-point routines. The collective communication routines may, but do not
have to be, implemented using the MPI point-to-point routines. Collective commu-
nication routines do not have message tag arguments, though an implementation in
terms of the point-to-point routines may need to make use of tags. A collective
communication routine must be called by all members of the group with consistent
arguments. As soon as a process has completed its role in the collective communi-
cation it may continue with other tasks. Thus, a collective communication is not
necessarily a barrier synchronization for the group. MPI does not include non-
blocking forms of the collective communication routines. MPI collective communi-
cation routines are divided into two broad classes: data movement routines, and
global computation routines.

3.4.1. Collective data movement routines
There are 3 basic types of collective data movement routine: broadcast, scatter,

and gather. There are two versions of each of these three routines: in the one-all
case data are communicated between one process and all others; in the all-all case
data are communicated between each process and all others. Fig. 7 shows the
one-all and all-all versions of the broadcast, scatter, and gather routines for a
group of six processors.

670 D.W. Walker~Parallel Computing 20 (1994) 657-673

(1) ¢d)
¢.t)

o o
Q.

t

Jata -

A 0

one-all broadcast

, >

A o

A 0

A 0

A 0

A 0

A 0

A 0

B o

C O

D O

E o

F o

all-all broadcast

, >

A o B o C O D O E o F o

A 0 B 0 C O D O E 0 F 0

A 0 B 0 C 0 ! D 0 E 0 F 0

A 0 B 0 C O D O E 0 F 0

A 0 B 0 C O D O E 0 F 0

A 0 B 0 C O D O E 0 F 0

A 0 i
one-all scatter A1

I > A 2

I %
one-all gather A4

A 5

A 0 A 1 A 2 A 3 A 4 A 5 A 0 B01

B 0 B 1 B 2 B31B 4 B 5 A 1 B1;
all-all scatter

G 0 C 1 C 2 C 3 C 4 C 5 ~ A2 B 2

D0 D1 D2 D3 D4 D5 I ~ A3i B 3

E 0 E 1 E 2 E 3 E 4 E 5 A 4 B4i

F 0 F 1 F 2 F 3 F 4 F 5 A 5 B51

C O D O E 0 F 0

C 1 D 1 E 1 F 1

C 2 D 2 E 2 F 2

C 3 D 3 E 3 F 3

C 4 D 4 E 4 F 4

C 5 D 5 E 5 F 5

Fig. 7. One-all and all-all versions of the broadcast, scatter, and gather routines for a group of six
processes. In each case, each row of boxes represents data locations in one process. Thus, in the one-aU
broadcast, initially just the first process contains the data Ao, but after the broadcast all processes
contain it.

The all-all broadcast, and both varieties of the scatter and gather routines,
involve each process sending distinct data to each process, and/or receiving
distinct data from each process. In these routines each process may send to

D.W Walker/Parallel Computing 20 (1994) 657-673 671

a n d / o r receive from each other process a different number of data items, but the
send and receive datatypes must be consistent. To illustrate this point consider the
following example in which process 0 gathers data from processes 1 and 2. Suppose
the receive datatype in process 0, and the send datatypes in processes 1 and 2 are
as follows,

In process 0: r e c v t y p e = { (i n t ,
In process 1: s e n d t y p e = { (i n t ,

(int,
(int,

In process 2: sendtype={(int,

0), (float, 4)}
0), (float, 4),
96), (float, 100),
32), (float, 36)}
16), (float, 20),

(int, 48), (float, 52)},

Such a situation could arise in a C program in which an indexed datatype
constructor has been applied to an array of structures, each element of which
consists of an integer and a floating-point number. Although the datatypes are
different in each process, they are type consistent, since each consists of repetitions
of an integer followed by a float.

The one-all broadcast routine broadcasts data from one process to all other
processes in the group. The all-all broadcast broadcasts data from each process to
all others, and on completion each has received the same data. Thus, for the all-all
broadcast each process ends up with the same output data, which is the concatena-
tion of the input data of all processes, in rank order.

The one-all scatter routine sends distinct data from one process to all processes
in the group. This is also known as 'one-to-all personalized communication' . In the
all-all scatter routine each process scatters distinct data to all processes in the
group, so the processes receive different data from each process. This is also
known as 'all-to-all personalized communication' .

The communication patterns in the gather routines are the same as in the
scatter routines, except that the direction of flow of data is reversed. In the one-all
gather routine one process (the root) receives data from every process in the
group. The root process receives the concatenation of the input buffers of all
processes, in rank order. There is no separate all-all gather routine since this
would just be identical to the all-all scatter routine, so there are 5 basic data
movement routines.

In addition, MPI provides versions of all these 5 routines, except the one-all
broadcast, in which the send and receive datatypes are type consistent as discussed
above, but in which each process is allocated a ftxed size portion of the communi-
cation buffer. These bring the total number of data movement routines to 9.

3.4.2. Global computation routines
There are two basic global computat ion routines in MPI: reduce and scan. The

reduce and scan routines both require the specification of an input function. One
version is provided in which the user selects the function from a predefined list; in
the second version the user supplies (a pointer to) a function that is associative and
commutative; in the third version the user supplies (a pointer to) a function that is
associative, but not necessarily commutative. In addition, there are three variants

672 D.W. Walker ~Parallel Computing 20 (1994) 657-673

of the reduction routines. In one variant the reduced results are returned to a
single specified process; in the second variant the reduced results are returned to
all processes involved; and, in the third variant the reduced results are scattered
across the processes involved. This latter variant is a generalization of the f o t d
routine described in Chapter 21 of [6]. Thus, there are 12 global computation
routines, and a total of 21 collective communication routines (or 22 if we include
the routine for performing a barrier synchronization over a process group).

The reduce routines combine the values provided in the input buffer of each
process using a specified function. Thus, if D i is the data in the process with rank i
in the group, and • is the combining function, then the following quantity is
evaluated,

~ = D o ~ D ~ ~ D 2 ~ "'" ~ D n _ 1, (1)

where n is the size of the group. Common reduction operations are the evaluation
of the maximum, minimum, or sum of a set of values distributed across a group of
processes.

The scan routines perform a parallel prefix with respect to an associative
reduction operation on data distributed across a specified group. On completion
the output buffer of the process with rank i contains the result of combining the
values from the processes with rank 0,1 i - 1, i.e.

~i = D o @ D 1 0 D 2 ~ "'" ~ D i - 1 (2)

It should be noted that segmented scans can be performed by first creating
distinct subgroups for each segment.

4. Summary

This paper has given an overview of the main features of MPI, but has not
described the detailed syntax of the MPI routines, or discussed language binding
issues. These will be fully discussed in the MPI specification document, a draft of
which was made available at the Supercomputing 93 conference in November
1993.

The design of MPI has been a cooperative effort involving about 60 people.
Much of the discussion has been by electronic mail, and has been archived, along
with copies of the MPI draft and other key documents. Copies of the archives and
documents may be obtained by netlib. For details of what is available, and how to
get it, please send the message 'send index from mpi' to n e t t i b ao r n L. g ov.
The netlib repository contains the current version of the MPI draft which may
differ slightly from that described here.

5. Acknowledgments

Many people have contributed to MPI, so it is not possible to acknowledge them
all individually. However, many of the ideas presented in this paper are due to the
MPI subcommittee chairs: James Cownie, Jack Dongarra, AI Geist, William

D.W. Walker~Parallel Computing 20 (1994) 657-673 673

Gropp, Rolf Hempel, Steve Huss-Lederman, Anthony Skjellum, Marc Snir, and
Steven Zenith. Lyndon Clarke, Bob Knighten, Rik Littlefield, and Rusty Lusk have
also made important contributions, as has also Steve Otto, the editor of the MPI
specification document.

6. References

[1] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis and M. Snir, CCL: A
portable and tunable collective communication library for scalable parallel computers, Technical
report, IBM T.J. Watson Research Center, 1993, preprint.

[2] J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis and M. Snir, A proposal for
common group structures in a collective communication library, Technical report, IBM Almaden
Research Center, 1993, preprint.

[3] J.J. Dongarra, R. Hempel, A.J.G. Hey and D.W. Walker, A proposal for a user-level, message
passing interface in a distributed memory environment, Technical Report TM-12231, Oak Ridge
National Laboratory, Feb. 1993.

[4] Edinburgh Parallel Computing Centre, University of Edinburgh, CHIMP Concepts (June 1991).
[5] Edinburgh Parallel Computing Centre, University of Edinburgh, CHIMP Version 1.0 Interface (May

1992).
[6] G.C. Fox, M.A. Johnson, G.A. Lyzenga, S.W. Otto, J.K. Salmon and D.W. Walker, Solving

Problems on Concurrent Processors, vol. 1 (Prentice Hall, Englewood Cliffs, NJ, 1988).
[7] D. Frye, R. Bryant, H. Ho, R. Lawrence and M. Snir, An external user interface for scalable

parallel systems, Technical report, IBM, May 1992.
[8] R. Hempel, The ANL/GMD macros (PARMACS) in Fortran for portable parallel programming

using the message passing programming model - user's guide and reference manual, Technical
report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, Nov. 1991.

[9] R. Hempel, H.-C. Hoppe and A. Supalov, A proposal for a PARMACS library interface, Technical
report, GMD, Postfach 1316, D-5205 Sankt Augustin 1, Germany, Oct. 1992.

[10] E. Lusk, R. Overbeek, et al., Portable Programs for Parallel Processors (Holt, Rinehart and
Winston, 1987).

[11] nCUBE Corporation, nCUBE 2 Programmers Guide, r2.0 (Dec. 1990).
[12] Parasoft Corporation, Express Version 1.0: A Communication Environment for Parallel Computers

(1988).
[13] P. Pierce, The NX/2 operating system, in: Proc. Third Conf. on Hypercube Concurrent Computers

and Applications (ACM Press, 1988) 384-390.
[14] A. Skjellum and A. Leung, Zipcode: a portable multicomputer communication library atop the

reactive kernel, in: D.W. Walker and O.F. Stout, eds., Proc. Fifth Distributed Memory Concurrent
Computing Conf. (IEEE Press, 1990) 767-776.

[15] A. Skjellum, S. Smith, C. Still, A. Leung and M. Morari, The Zipcode message passing system,
Technical report, Lawrence Livermore National Laboratory, Sep. 1992.

[16] D. Walker, Standards for message passing in a distributed memory environment, Technical Report
TM-12147, Oak Ridge National Laboratory, Aug. 1992.

