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Abstract. The Partitioned Global Address Space (PGAS) model is a
promising approach to combine programmability and performance in
an architecture-independent way. Well-known representatives of PGAS
languages include Chapel and X10. Both languages incorporate object
orientation, but fundamentally differ in their way of accessing remote
memory as well as in synchronization constructs and other issues of lan-
guage design.

This paper reports on and compares experiences in using the lan-
guages. We concentrate on the interplay between object orientation and
parallelism/distribution, and other issues of coding task parallelism. In
particular, we discuss the realization of patterns such as objects that
internally contain distributed arrays, and suggest improvements such as
support for activity-local and place-local data, as well as scalar variable-
based reduction. Our study is based on Unbalanced Tree Search (UTS),
a well-known benchmark that uses task pools.
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1 Introduction

The goal of high-productivity parallel programming has led to the Partitioned
Global Address Space (PGAS) programming model and its concretization in a
number of languages/systems such as Chapel and X10. PGAS languages expose
to the programmer a shared memory that is split into disjoint partitions. Each
partition comprises distinct computing resources that have faster access to local
than to remote memory.

Chapel and X10 have similar goals and a similar level of maturity, but dif-
fer in many other aspects. Chapel was introduced by Cray, and X10 by IBM,
both at the beginning of this century and with funding from the DARPA “High
Productivity Computing Systems” project. The paper refers to Chapel version
1.8.0, and X10 version 2.4. A brief survey of the languages is given in Sect. 2.
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We base our comparison on Unbalanced Tree Search (UTS), a benchmark for
studying issues such as load balancing or characteristics of the implementation
language [6]. Unlike previous Chapel and X10 implementations of UTS [3,13],
our programs use both multiple nodes and multiple threads per node. UTS is
implemented with task pools, deploying a fixed number of long-running workers
and a distributed data structure for mutual access. The benchmark and this
setting were selected to study communication, synchronization, and the interplay
between object-orientation and parallelism/distribution in a simple framework.
They may set Chapel at some disadvantage by not appreciating its rich set of
built-in data parallel features.

Our focus is expressiveness of the languages, moreover some preliminary per-
formance numbers are included. We report on our experiences in deploying the
available language constructs, discuss variants for coding common patterns such
as objects that internally contain distributed arrays, and suggest improvements
such as support for activity-local and place-local data as well as scalar variable-
based reduction. Moreover, we touch on diverse issues such as objects vs. records
and locality optimization.

The paper starts with background on Chapel, X10, task pools and UTS in
Sect. 2. That section also details the task pool variant that we selected. Section 3
gives an overview of our implementations, and then organizes language assess-
ment along various topics. Thereafter, Sects. 4, 5 and 6 are devoted to perfor-
mance, related work and conclusions, respectively.

2 Background and Benchmark

2.1 Chapel

The following introduction is by necessity brief, for further information see [2].
A Chapel program runs on some number of locales, each of which comprises

processors and a memory partition. The on statement places a code block on
a particular locale. Within the block, all variables in scope may be read and
written, although accesses to remote locales are more expensive.

Parallel tasks are created with, e.g., begin or coforall. Task creation can
be combined with code placement, for an example see Sect. 3.4. Chapel does not
expose threads, but tasks are transparently mapped to threads by a configurable
tasking layer.

In Chapel, synchronization is almost exclusively based on synchronization
variables, which are declared with type qualifier sync or single. The former
hold a value of some primitive type, and additionally have state full or empty. A
write to a full sync variable blocks the calling task, as does a read from an empty
one. When the variable changes state, one of the waiting tasks may proceed.

The base language has C-like syntax. Arrays are defined over multidimen-
sional domains and may be distributed, e.g. blockwise or cyclic. Constants may
be marked as configurable, in this case they may be overwritten at the command
line.
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Chapel programs are composed of modules, which contain data, functions,
classes etc. Classes have the usual functionality, including constructors, inheri-
tance, nesting, and generics. Records resemble classes, but variables of this type
directly hold the values of all fields.

2.2 X10

Many Chapel concepts have an analogue in X10 [17], except for using different
terminology:

Chapel locale domain on task begin record sync statement

X10 place region at activity async struct finish

The concrete realization differs, e.g. X10 structs are less flexible than Chapel
records. Unlike in Chapel, variables may only be accessed if they are stored at
the current place, are globally accessible through a GlobalRef, or have been
copied with at.

at copying rules are complex, yet in general single-assignment variables (spec-
ified with val) are copied, whereas normal variables (specified with var) are not.
The X10 standard library supports place-local data, which are accessed through
a PlaceLocalHandle that may be communicated and resolved at any particular
place.

The major synchronization construct, atomic, encloses a critical section and
operates intra-place. All read and write accesses to shared variables must be
protected, and all critical sections at a place are mutually exclusive.

In many respects, the base language resembles Java. We used the most ele-
mentary type of arrays, called rails. There is no equivalent of a Chapel module,
but classes may have static fields, and support inheritance, nesting, and generics.

2.3 Task Pools

Many irregular applications are composed of sub-computations (tasks) that vary
in size. Task pools are a well-known pattern to map these tasks to execution
resources at runtime, and thereby achieve load balancing. Task Pools may be
implemented in either the user program or the runtime system, and come in var-
ious forms. In the following, we only describe the variant that we implemented,
which resembles the one in [10]. Note that the task pool literature uses the term
task different from PGAS languages. To avoid confusion, we denote the execution
resources, which will correspond to X10 activities or Chapel tasks, as workers.

A task pool is a data structure from which idle workers repeatedly take a
task, compute it, possibly insert new tasks, take the next task etc., until the
pool is empty. The data structure is distributed. Each worker maintains a split
queue [10], which is a kind of circular buffer that comprises a private and a public
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portion. It is double-ended, such that head denotes the first free position of the
private part, and tail the last filled position of the public part. The elements
in-between head and tail are divided into nprivate elements in the private
pool, followed by npublic elements in the public pool.

The task pool is accessed by push and pop operations: push inserts a task
at position head, and pop takes a task out from the same end. If the private
pool holds 2k elements, for some constant k, push additionally releases k ele-
ments to the public pool. Analogously, if pop discovers an empty private pool,
it acquires k elements from the public pool. Operations acquire and release
do not move tasks, but shift the division line between the private and public
portions. Synchronization is required for the public pool only.

When acquire fails, the worker tries to steal k tasks from some other worker.
Therefore, it first cycles through all workers of its own place, and then through
those of the others. When no victim is found after one global cycle, the worker
terminates. Termination detection is actually more complex [11], but we rely on
the simple scheme for brevity.

2.4 UTS

A task pool may either be provided as a reusable component, e.g. by a library,
or be used as a pattern to implement a particular algorithm. We considered the
second scenario with the Unbalanced Tree Search (UTS) benchmark [6].

UTS consists in extracting a tree and counting the number of nodes. For
given tree shape parameters, a node holds all information about the subtree
rooted in it, and thus may be deleted after having been expanded. The informa-
tion is encoded in a 20-byte node descriptor, using some cryptographic method.
Naturally, a task corresponds to the expansion of one node, and is represented
by this node descriptor.

Open-source implementations of UTS are available for various systems,
among them Chapel and X10 [3,6,13–15]. They will be discussed in Sect. 5. We
reused parts of the implementations [3,15], chiefly the respective native inter-
faces to the C cryptographic tools, and the deployment of place local handles
from [15]. Our own code can be obtained from the first author’s homepage.

3 Language Assessment

3.1 Overview of Implementations

In both languages, we implemented UTS with the task pool variant described in
Sect. 2.3. Our implementation uses both multiple places and multiple activities
per place. Workers are realized by long-running activities/Chapel tasks that
are started after the task pool has been filled with initial tasks. The functional
components of all program variants are similar:

– setting parameters of the tree
– generating and initializing the distributed data structure for the task pool
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– expanding the root and inserting initial tasks into the task pool
– managing the workers that process the tasks
– managing the split queues with push, pop, release and acquire
– realizing the steal operation, including definition of the cyclic order and

moving tasks to another place
– computing the result number of nodes by reduction
– invoking C functions for initializing the root and decoding node descriptors.

The X10 standard library includes basic local data structures, but neither
Chapel nor X10 provide split queues, which therefore had to be implemented
manually. For simplicity, we assume that the public pools never overflow.

3.2 Object-Orientation and Parallelism

The Encapsulation Problem. In object-oriented programming, data struc-
tures are often coded as classes, such that each instance of the class represents
an instance of the data structure. The reference to this instance is stored in a
variable, and operations are invoked by method calls on this variable. Thus, the
variable provides a single access point to the data structure, abstracting away
all details of the internal representation at the caller site:

var s: Stack = new Stack();
s.push(elem);

When the data structure is distributed and accessed from different places, such
as our task pool, there is currently no equivalent for this convenient notation,
since a single access point s, located in a single place, hurts performance.

To solve the problem, we distributed the data structure across places and
addressed the local portions. We implemented several variants of this
“distributed-first” approach, which all share the drawback that they provide
less encapsulation than the above “objects-first” approach. In particular, they
do not hide, at the caller site, the fact that the task pool is distributed. Thus,
a programmer must decide between either the well-structured but inefficient
“objects-first”, or the more efficient but less modular “distributed-first” app-
roach.

X10 Implementation. We start the discussion of“distributed-first” variants
with X10, since X10 provides some library support with its PlaceLocalHandle
(PLH). As explained in Sect. 2.2, a PLH supports access to place-local data, and
thus simplifies addressing the local portion when invoking task pool operations.
Nevertheless, declaration and initialization of the distributed structure remain
the responsibility of the user:

val tp = PlaceLocalHandle.make[InfosPerPlace](...)

In this code fragment, InfosPerPlace is a user-defined class which, as illustrated
in Fig. 1(a), chiefly contains a rail of split queues. As can be seen in the figure,
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(a) Pool structure in X10 (b) Pool structure in Chapel

Fig. 1. Implementation variants

use of the PLH requires a two-level addressing scheme, in which the PLH resolves
to place-local information, and then a particular split queue is selected.

A split queue object encapsulates all data of a worker and the respective
methods, which has the advantage that split queue methods can directly access
the local data through instance fields. Access to remote queues goes through
variable tp, which is stored in the split queue object.

Chapel Variant. As Chapel does not support a PLH-like construct, we had
to explicitly work with a distributed (or replicated) array. We use a one-level
addressing scheme, i.e., we have one entry per worker (as opposed to per locale).
The Chapel variant is illustrated in Fig. 1(b). Access to remote queues is enabled
by declaring the distributed array at module scope.

Place-Local and Activity-Local Data. Comparing the two variants, the
PLH concept is appealing since it eliminates the need for explicit indexing. When
place-internal indexing is needed instead, the advantage is, however, lost. For
our application, PLH-like support for activity-local data would have been most
useful. It would have enabled a similar program structure as in Fig. 1(b), but
with simpler addressing. While our use of activity-local data is to some degree
application-specific, long-running activities reduce the overhead, e.g. for initial-
izing data structures, and may therefore be valuable beyond our application.
As an application may mix place-local and activity-local data, we suggest to
support both in both languages.

3.3 References, Values, and Copying

In both languages, a tree node may be represented by either an object, or a
record (struct). From a performance point of view, records may be cheaper as
they do not incur the typical indirection and method resolution costs of objects.
Moreover, memory allocation is cheaper if one large block is allocated for all
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records in the task pool, as compared to allocating pieces of memory for each
node object. At the backside, record assignment and parameter passing by value,
e.g. in push, involve expensive copying and should therefore be avoided.

In addition to class-based versions, we implemented record-based versions
that avoid copying by expanding children directly into their task pool entry.
A problem arises during the generation of initial tasks, when a child is to be
expanded into a remote queue. Chapel calls a C function to decode a node
descriptor, which takes as arguments pointers to both the parent and future
child descriptors, but it is not possible to pass a pointer to remote memory to
this function. Therefore, the parent descriptor is first copied to a remote variable,
and then the C function is called. This shows up limits of native code integration
with Chapel.

In the X10 program, remote access to native code was easier. Since the reused
code from [15] represents a node by a C++ object, that object is automati-
cally copied to the remote place when its native code is required. The approach
appears easier but less efficient, especially as X10 generates a deep copy and
inclusion of fields can not be controlled at the C++ side.

3.4 Worker Management and Initialization

The base functionality for starting worker tasks is obvious, e.g.:

coforall loc in Locales do on loc
coforall tid in 0..#numWorkersPerLoc do runWorker(tid);

The corresponding X10 code is slightly longer, as there is no equivalent of
coforall, and async must be ended by finish. Activity-local data would help
managing the task identifier tid.

To allow stealing, the above coforall loop may only be entered after the
task pool has been initialized, especially references to the remote split queues
must have been set. Task pool initialization is by itself distributed, but the pool
must not be used before initialization has finished. This can be achieved, e.g.,
by a barrier. There are various opportunities to implement this barrier, e.g. in
Chapel pairwise synchronization before a worker’s first steal access to a victim
locale can be implemented with synchronization variables.

3.5 Reduction

Reduction is a well-known pattern to combine multiple values. It can be effi-
ciently parallelized, in our setting by first combining the values within each
worker, then within each place, and finally within the overall program. UTS
uses reduction to compute the result number of nodes.

Chapel and X10 provide language support for reduction only on the assump-
tion that the values are stored in an array, which has several drawbacks:

– The values must be kept in an array even if it does not match the application’s
structure. In our Chapel variant, e.g., a local value would logically belong to
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the Worker class, and thus the array needs to be defined and filled just for
the purpose of reduction.

– In the array, false sharing between neighbored values is likely.

OpenMP defines reduction differently [7]: A user program declares a scalar vari-
able with some keyword for reduction, and specifies the operator. The system
transparently defines local copies, collects values locally, and synchronizes the
update of the global result. At least in Chapel, a similar scheme should be pos-
sible and would be desirable from a user’s point of view.

3.6 Diverse Language Issues

Split Queue Synchronization. Synchronization is required for the public pool. The
steal critical section, e.g., includes checking npublic, modifying npublic/tail,
and copying the tasks out of the pool. It is kept short by first making a local
copy of the tasks, and sending it to the remote place after the critical section.
X10 critical sections are coded with atomic, whereas our Chapel programs use
a synchronization variable that holds npublic.

Remote Access. A Chapel programmer may inadvertently access remote vari-
ables. Tool support might help and, unlike X10’s at, not impose any restric-
tions. When using a PLH, a similar problem occurs when the user forgets at as
in for <allPlaces> { tp().init(); }, where tp is always evaluated at the
origin. An X10 at only copies val’s. When they need to be computed before
being sent, both a var and a val variable for the same purpose are needed,
which blows up the code and requires copying.

Constants and Parameters. In Chapel, tree parameters are naturally stored in
configurable variables that can be easily overwritten on the command line. Para-
meter passing in X10 is more complicated.

In Chapel, val-like variables may be declared with single, i.e., there is some
redundancy between const and single. Possibly, const may be removed if the
config label is extended to single, and single values are replicated across
places.

Language vs. Library. By releasing central functionality to the library, chances
for integration may be dismissed. In X10, for instance, a language construct such
as at(allPlaces) would appear elegant.

4 Performance

We run experiments on a cluster of 8-core Intel Xeon E5–2670 processors, with
2 processors per node and Infiniband network. For X10, compiler option -O
was used, and for Chapel gasnet/ibv for multi-node and none for single-node
execution.

Table 1 shows running times for the T1L sample of UTS [14], which is a
geometric tree with branching factor 4 and maximum depth 13. The results
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Table 1. Running times of different program versions (averaged over 3 runs).

Chapel class Chapel struct X10 class X10 struct

1 Place 1 Thread 72.8 365.5 44.8 36.4
1 Place 4 Threads 26.6 138.8 16.9 12.6
1 Place 16 Threads 23.5 65.7 7.3 4.5
4 Places 4 Threads 143.0 1286.0 6.1 5.4

suggest a performance advantage of X10 over Chapel. In X10, the struct-based
variant was slightly faster than the class-based one, while in Chapel the record-
based variant were inferior.

The results can only be considered a snapshot, as the current versions of
the languages do not yet exhaust their performance potential. For instance, the
release notes state that Chapel 1.8.0 is not suitable for in-depth performance
comparisons, and the X10 atomic sections induce unneeded serialization. Most
of all, we did not tune the performance, and therefore there is likely much room
for improvements in all versions.

5 Related Work

As mentioned in Sect. 2.4, UTS has already been implemented with Chapel and
X10. The previous Chapel implementation [3] starts with one task queue. As
soon as it has reached a certain size, it is split into two queues, and a new
Chapel task is started to process the second queue. The program runs within
a single place only. The previous X10 implementation [13] focuses on termi-
nation detection, and performance tuning includes low-level functionality such
as IndexedMemoryChunk. This way, it achieves excellent and scalable perfor-
mance. In contrast, we took the position of a high productivity programmer and
did not tune the performance. The previous X10 implementation deploys only
one activity per place and a cooperative work stealing algorithm that does not
require synchronization. Unlike these implementations, we closely followed the
traditional task pool pattern.

Beyond UTS, several experience reports on coding applications with Chapel
and X10 have been published. Referring to older language versions, Shet et
al. [12] discuss experiences with a quantum chemistry kernel. Their work includes
a central task pool, which is simpler than ours. Weiland [16] presents a nice
comparative survey of language features in earlier language versions. Khaldi
et al. [4] compare six parallel languages and discuss aspects of expressiveness
such as synchronization constructs with the Mandelbrot example. Several recent
papers report on experiences in coding applications such as constraint-based
local search and the fast multipole method in X10 [9].

While we have used task pools as a benchmark for language design, Chapel
and X10 also deploy task pools in the runtime system, to map activities/tasks
to threads, see e.g. [5]. Problems of combining object orientation and parallelism
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have been discussed since a long time [1,8]. This paper focused on encapsulation,
and was specific to the PGAS setting.

6 Conclusions

This paper has evaluated Chapel and X10 from a user’s perspective, working out
both differences and common grounds such as difficulties in integrating object
orientation and parallelism. We suggested several modifications to strengthen the
languages such as support for place-local and activity-local data, scalar variable-
based reduction, and the omission of const.

Our work was based on a single benchmark, with focus on task parallelism
and object orientation. Before drawing conclusions on the usability of the lan-
guages in general, one needs to consider more benchmarks and put a stronger
emphasis on performance.
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