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Abstract. Tasking in OpenMP 3.0 has been conceived to handle the dy-
namic generation of unstructured parallelism. New directives have been
added allowing the user to identify units of independent work (tasks) and
to define points to wait for the completion of tasks (task barriers). In
this paper we propose an extension to allow the runtime detection of de-
pendencies between generated tasks, broading the range of applications
that can benefit from tasking or improving the performance when load
balancing or locality are critical issues for performance. Furthermore the
paper describes our proof-of-concept implementation (SMP Superscalar)
and shows preliminary performance results on an SGI Altix 4700.

1 Introduction

OpenMP grew out of the need to standardize the directive languages of several
vendors in the 1990s. It was structured around parallel loops and was meant to
handle dense numerical applications. The simplicity of its original interface, the
use of a shared memory model, and the fact that the parallelism of a program
is expressed in directives that are loosely-coupled to the code, all have helped
OpenMP become well-accepted today.

The latest specification released includes tasking, which has been conceived to
handle the dynamic generation of unstructured parallelism. This allows program-
mers to parallelize program structures like while loops and recursive functions
more easily and efficiently. When a thread in a parallel team encounters a task
directive, the data environment is captured. That environment, together with
the code represented by the structured block, constitutes the generated task.
The data-sharing attribute clauses private, firstprivate, and shared determine
whether variables are private to the data environment, copied to the data en-
vironment and made private, or shared with the thread generating the task,
respectively. The task may be executed immediately or may be queued for ex-
ecution. All tasks created by a team in a parallel region are completed at the
next barrier. It is also possible to wait for all tasks generated by a given task
(whether implicit or explicit) using the taskwait directive.

The Intel work-queueing model [1] was an early attempt to add dynamic
task generation to OpenMP. This proprietary extension to OpenMP allows hi-
erarchical generation of tasks by nesting taskq constructs. Synchronization of
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descendant tasks is controlled by means of implicit barriers at the end of taskq
constructs. Tasks have to be defined in the lexical extent of a taskq construct.

The Nanos group at UPC proposed dynamic sections as an extension to the
standard sections construct to allow dynamic generation of tasks [2]. Direct
nesting of section blocks is allowed, but hierarchical synchronization of tasks
can only be attained by nesting parallel regions. The Nanos group also proposed
the pred and succ constructs to specify precedence relations among statically
named sections in OpenMP [3]. [4] also proposed an extension to define a name
for section and to specify that a section dependson another named section.

2 Motivation

Task parallelism in OpenMP 3.0 [5] gives programmers a way to express pat-
terns of concurrency that do not match the worksharing constructs defined in
the current OpenMP 2.5 specification. The extension in 3.0 addresses common
operations like complex, possibly recursive, data structure traversal, and situ-
ations which could easily cause load imbalance. However tasking, as currently
propose in 3.0, may still be too rigid too express all parallelism available in
some applications, specially when the scalability to a high number of cores is the
target.

1 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
2 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ i nner ) ;
3 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
4 void lu0 ( f loat ∗ diag ) ;
5

6 int sparseLU ( ) {
7 int i i , j j , kk ;
8

9 for ( kk=0; kk<NB; kk++) {
10 lu0 (A[ kk ] [ kk ] ) ;
11 /∗ fwd ph a s e ∗/
12 for ( j j=kk+1; j j <NB; j j++)
13 i f (A[ kk ] [ j j ] != NULL)
14 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
15 /∗ b d i v and bmod p h a s e s ∗/
16 for ( i i=kk+1; i i <NB; i i ++)
17 i f (A[ i i ] [ kk ] != NULL) {
18 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
19 for ( j j=kk+1; j j <NB; j j ++)
20 i f (A[ kk ] [ j j ] ! = NULL)
21 {
22 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
23 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
24 }
25 }
26 }
27 }

Fig. 1. Main code of the sequential SparseLU kernel

To motivate the proposal we use one of the examples that was used to test
the appropriateness and performance of the tasking proposal in OpenMP 3.0:
the sparseLU kernel shown in Figure 1. This kernel computes an LU matrix



Extending the OpenMP Tasking Model to Allow Dependent Tasks 113

1 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
2 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ inner ) ;
3 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
4 void lu0 ( f loat ∗ diag ) ;
5

6 int sparseLU ( ) {
7 int i i , j j , kk ;
8

9 for ( kk=0; kk<NB; kk++) {
10 lu0 (A[ kk ] [ kk ] ) ;
11#pragma omp paral lel

12 {
13 /∗ fwd ph a s e ∗/
14#pragma omp for schedu le ( dynamic , 1 ) nowait

15 for ( j j=kk+1; j j <NB; j j++)
16 i f (A[ kk ] [ j j ] != NULL)
17 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
18

19 /∗ b d i v p h a s e ∗/
20#pragma omp for schedu le ( dynamic , 1 )
21 for ( i i=kk+1; i i <NB; i i ++)
22 i f (A[ i i ] [ kk ] != NULL)
23 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
24

25 /∗ bmod pha s e ∗/
26#pragma omp for schedu le ( dynamic , 1 ) private ( j j )
27 for ( i i=kk+1; i i <NB; i i ++)
28 i f (A[ i i ] [ kk ] != NULL)
29 for ( j j=kk+1; j j <NB; j j ++)
30 i f (A[ kk ] [ j j ] ! = NULL)
31 {
32 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
33 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
34 }
35 }
36 }
37 }

Fig. 2. Main code of the OpenMP 2.5 SparseLU kernel

factorization. The matrix is organized in blocks that may not be allocated. In
this kernel, once lu0 is computed (line 10), all instances of fwd and bdiv can be
executed in parallel (lines 14 and 18, respectively). Each pair of instances fwd
and bdiv allow the execution of an instance of bmod (line 23). Across consecutive
iterations of the kk loop there are dependences between each instance of bmod
and instances of lu0, fwd, bdiv and bmod in the next iteration.

With these data dependences in mind, the programmer could use the current
worksharing directives in 2.5 to partially exploit the parallelism available in the
kernel, for example using for to distribute the work in the loops on lines 15, 21
and 27 or 29 in Figure 2. Due to the sparseness of the matrix, a lot of imbalance
exists, forcing the programmer to use dynamic scheduling of the iterations to
have good load balance. For the bmod phase we have two options: parallelize the
outer (line 27) or the inner loop (line 29). If the outer loop is parallelized, the
overhead is lower but the imbalance is greater. On the other hand, if the inner
loop is parallelized the iterations are smaller which allows a dynamic schedule
to have better balance but the overhead of the worksharing is much higher.

Notice that it has been necessary to apply loop distribution to isolate the
loop that executes the multiple instances of function bdiv. The nowait clause
in the loop in line 14 allows the exploitation of the parallelism that exist among
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1 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
2 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ i nner ) ;
3 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
4 void lu0 ( f loat ∗ diag ) ;
5

6 int sparseLU ( ) {
7 int i i , j j , kk ;
8#pragma omp paral lel

9 for ( kk=0; kk<NB; kk++) {
10#pragma omp single

11 lu0 (A[ kk ] [ kk ] ) ;
12 /∗ fwd ph a s e ∗/
13#pragma omp for nowait

14 for ( j j=kk+1; j j <NB; j j++)
15 i f (A[ kk ] [ j j ] != NULL)
16#pragma omp task f irstprivate ( kk , j j )
17 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
18 /∗ b d i v p h a s e ∗/
19#pragma omp for

20 for ( i i=kk+1; i i <NB; i i ++)
21 i f (A[ i i ] [ kk ] != NULL)
22#pragma omp task f irstprivate ( kk , i i )
23 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
24

25 /∗ bmod pha s e ∗/
26#pragma omp for private ( j j )
27 for ( i i=kk+1; i i <NB; i i ++)
28 i f (A[ i i ] [ kk ] != NULL)
29 for ( j j=kk+1; j j <NB; j j ++)
30 i f (A[ kk ] [ j j ] ! = NULL)
31#pragma omp task f irstprivate ( kk , j j , i i )
32 {
33 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
34 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
35 }
36 }
37 }

Fig. 3. Main code of SparseLU with OpenMP 3.0 tasks

the instances of functions fwd and bdiv. The implicit barrier at the end of
worksharing in line 20 forces the dependences of fwd and bdiv with bmod.

Using the task proposed in 3.0, the code restructuring is quite similar, as
shown in Figure 3; however tasks allow to only create work for non-empty ma-
trix blocks. We also create smaller units of work in the bmod phase with an
overhead similar to the outer loop parallelization. This reduces the load imbal-
ance problems. The nowait clause in line 13 allows the parallel execution of fwd
and bdiv instances. The implicit barriers at the end of loops in lines 19 and 16
force the dependences between pairs of fwd/bdiv with bmod inside a single kk
iteration and viceversa across consecutive iterations of loop kk.

Figure 4 shows an execution trace obtained from an instrumented run of the
kernel and visualized with Paraver [6]. The window represents time in horizontal
axis and per-thread activity in the vertical axis (in this case, each color identifies
the function that is being executed). The visualization corresponds to the end of
a kk iteration and the beginning of the next kk+1 iteration. Yellow lines represent
thread creation and thread execution points (in the window only for fwdand bdiv).

As we pointed at the beginning of this section, there exists more parallelism in
this kernel that can not be exploited with the current task definitions: parallelism
that exists between tasks created in lines 17 (fwd) and 23 (bdiv) and tasks
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Fig. 4. Paraver window with a portion of SparseLU execution: lu0 (blue), fwd (green),
bdiv (red) and bmod (orange) functions

created in line 34 (bmod) inside a single iteration . Also it would be interesting
to express the parallelism that exists across consecutive iterations of the kk loop.

3 Proposed Extension

In this section we describe the extensions we propose to the OpenMP tasking
model. We first describe them as part of the StarSs framework, a new program-
ming paradigm for task-based programming that targets homogeneous symmet-
ric multiprocessors (SMPSs) and the Cell/B.E. architecture [7] (CellSs [8]).

3.1 StarSs Pragmas and Execution Model

With StarSs the programmer identifies the functions that will be executed as
tasks, using a pragma annotation right before the function definition. In addition
the programmer specifies the directionality of each of the function parameters:
input, output or input/output.

#pragma smpss task [clause[[,]clause] ...]
{function-header|function-declaration}

where clauses can be:

– input(argument-list)
– output(argument-list)
– inout(argument-list)

Each element in argument-list is a block of contiguous memory locations
whose number of elements is specified either in the function header or in the
construct.

The following optional pragmas indicate a scope of the program where StarSs
is used:
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#pragma smpss start
#pragma smpss finish

When the start pragma is reached, the runtime initializes a worker thread
in each processing element, who will wait for tasks to execute. Only a single
thread (main thread) continues with the execution of the program, dynamically
creating the tasks that are stored in a task graph. Both the main thread and
the worker threads get tasks from the task graph once dependences are honored
and execute the function associated. The finish pragma finishes all idle threads
once the task graph is totally executed. Functions annotated with task have to
be called between these two pragmas. If they are not present in the user code,
the compiler will automatically insert the start pragma at the beginning of the
application and the finish pragma at the end.

Figure 5 shows the SparseLU kernel programmed with the SMPSs extensions.
The programmer identifies four tasks that correspond to the execution of func-
tions lu0, fwd, bdiv and bmod. For example, for function bmod the programmer
is specifying that the first and second arguments (row and col) are input pa-
rameters (they are only read during the execution of the function) and that the
third argument (inner) is inout since it is read and written during the exe-
cution of the function. Notice that the annotations are placed on the original

1#pragma smpss task input ( diag [B ] [B ] ) inout ( c o l [B ] [B ] )
2 void fwd ( f loat ∗ diag , f loat ∗ c o l ) ;
3

4#pragma smpss task input ( row [B ] [B] , c o l [B ] [B ] ) inout ( inner [B ] [B ] )
5 void bmod( f loat ∗ row , f loat ∗ co l , f loat ∗ inner ) ;
6

7#pragma smpss task input ( diag [B ] [B ] ) inout ( row [B ] [B ] )
8 void bdiv ( f loat ∗ diag , f loat ∗ row ) ;
9

10#pragma smpss task inout ( diag [B ] [B ] )
11 void lu0 ( f loat ∗ diag ) ;
12

13 int sparseLU ( ) {
14 int i i , j j , kk ;
15

16#pragma smpss start

17 for ( kk=0; kk<NB; kk++) {
18 lu0 (A[ kk ] [ kk ] ) ;
19 /∗ fwd ph a s e ∗/
20 for ( j j=kk+1; j j <NB; j j++)
21 i f (A[ kk ] [ j j ] != NULL)
22 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
23 /∗ b d i v and bmod p h a s e s ∗/
24 for ( i i=kk+1; i i <NB; i i ++)
25 i f (A[ i i ] [ kk ] != NULL) {
26 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
27 for ( j j=kk+1; j j <NB; j j ++)
28 i f (A[ kk ] [ j j ] ! = NULL)
29 {
30 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e an b l o c k ( ) ;
31 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
32 }
33 }
34 }
35#pragma smpss finish

36 }

Fig. 5. Main code of SparseLU with StarSs tasks
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sequential version, with no transformations applied to allow the specification of
the inherent parallelism available.

When a call to a function annotated with the task construct is found, the main
thread creates a task for the associated function and adds information about data
dependencies in a task graph. For each task, the runtime dynamically computes
data dependencies by analyzing the direction (input, output or both), length and
address of each parameter against those of previous tasks in sequential order.
True data dependences (read-after-write) are honored by the runtime system by
deferring the execution of the task until all input and inout arguments have
been computed. The execution of the task can be done by any thread in the
current parallel team. Once a task finishes its execution, the runtime updates
the task graph to signal the modification of all output and inout arguments.

The runtime systemautomatically removes false dependencies (write-after-read
andwrite-after-write) usingmemory renaming, a technique borrowed fromthe idea
of register renaming in current out-of-order superscalar processors. For each vari-
able that needs to be renamed, the runtime allocates temporary memory space for
it. That is, if a task writes to an array, renaming can replace that array by a tempo-
rary one and redirect all following reads of that definition to the temporary array.

While the underlying runtime is capable of handling all inter-task related
data dependencies, it cannot handle dependencies with the code executed by
the master thread. To handle this, StarSs includes a data barrier:

#pragma smpss wait on (address-list)

At the wait on pragma, the master thread waits for all memory locations in
the address-list to be updated. Once this happens, the main thread continues
with the execution of the code.

3.2 StarSs and OpenMP

The StarSs pragmas and execution model fit well with the tasking definition in
OpenMP 3.0

#pragma omp task [clause[[,]clause] ...]
structured-block

In addition to the clauses supported in OpenMP 3.0:

– untied
– shared (variable-list)
– firstprivate (variable-list)
– private (variable-list)

our proposal is to include:

– input(variable-list)
– output(variable-list)
– inout(variable-list)
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1 int sparseLU ( ) {
2 int i i , j j , kk ;
3

4 for ( kk=0; kk<NB; kk++) {
5#pragma omp task inout (A[ kk ] [ kk ] )
6 lu0 (A[ kk ] [ kk ] ) ;
7 for ( j j=kk+1; j j <NB; j j ++)?
8 i f (A[ kk ] [ j j ] != NULL)?
9#pragma omp task input (A[ kk ] [ kk ] ) inout (A[ kk ] [ j j ] )

10 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
11

12 for ( i i=kk+1; i i <NB; i i ++) {
13 i f (A[ i i ] [ kk ] != NULL)?
14#pragma omp task input (A[ kk ] [ kk ] ) inout (A[ i i ] [ kk ] )
15 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
16 for ( j j=kk+1; j j <NB; j j ++)?
17 i f (A[ kk ] [ j j ] != NULL) {
18 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e a n b l o c k ( ) ;
19#pragma omp task input (A[ i i ] [ kk ] , A[ kk ] [ j j ] ) inout (A[ kk ] [ kk ] )
20 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
21 }
22 }
23 }

Fig. 6. Main code of SparseLU with the proposed dependent tasks, version 1

We also propose to include the

#pragma omp wait on (address-list)

in order to provide a more flexible version of taskwait.
The first difference wit StarSs is that our proposed clauses apply to an OpenMP

task, which is a structured block of code and not a function declaration or defi-
nition. The main implication of this is that the variable-list does not indicate
formal function arguments but variables used in the scope of the structured block
of code. Figure 6 shows the SparseLU example with the proposed extension in
OpenMP.

The second difference is that StarSs forces dependent tasks to be generated
in sequential order (or at least in an order that guarantees that the source
is generated before the target of the dependence). In addition, only the main
thread can generate tasks for the worker threads. In OpenMP is it possible to
have multiple task generators (by having task inside a worksharing or by nesting
task). This needs to be considered in the implementation of the extensions in
the prototype OpenMP implementation, but in any case, it is the programmer
responsibility to ensure the appropriate order of task generation.

Clauses Input,output and inoutprovide additional information to the shared
data clause. This information is used by the runtime to dynamically build and
update the task graph and schedule tasks for execution as soon as all their input
variables are generated. A variable in a shared data clause, but not in a input,
output or inout clause, indicates that the variable is accessed inside the task but
it is not affected by any data dependence in the current scope of execution (or is
protected by another one). Firstprivate variables could also be affected with an
input clause, meaning that the per-task private copy of the variable should be
initialized with the value generated by another task (in its output clause) instead
of the value at creation time.
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1 int sparseLU ( ) {
2 int i i , j j , kk ;
3 int lu0done , fwddone [NB] , bdivdone [NB] , bmoddone [NB] [NB] ;
4

5 for ( kk=0; kk<NB; kk++) {
6#pragma omp task input ( bmoddone [ kk ] [ kk ] ) output ( lu0done )
7 lu0 (A[ kk ] [ kk ] ) ;
8 for ( j j=kk+1; j j <NB; j j ++)?
9 i f (A[ kk ] [ j j ] != NULL)?

10#pragma omp task input ( lu0done , bmoddone [ kk ] [ kk ] ) output ( fwddone [ j j ] )
11 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
12

13 for ( i i=kk+1; i i <NB; i i ++) {
14 i f (A[ i i ] [ kk ] != NULL)?
15#pragma omp task input ( lu0done , bmoddone [ kk ] [ kk ] ) output ( bdivdone [ i i ] )
16 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
17 for ( j j=kk+1; j j <NB; j j ++)?
18 i f (A[ kk ] [ j j ] != NULL) {
19 i f (A[ i i ] [ j j ]==NULL) A[ i i ] [ j j ]= a l l o c a t e c l e a n b l o c k ( ) ;
20#pragma omp task input ( bdivdone [ i i ] , fwddone [ j j ] ) inout (bmoddone [ kk ] [ kk ] )
21 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
22 }
23 }
24 }

Fig. 7. Main code of SparseLU with the proposed dependent tasks, version 2

Previous proposals based on providing a name to each section or task [3,4] can
also be implementedusing theproposed extensions in this paper, as shown inFigure
7. In this case, a dependence is encapsulated in a variable that should be declared
by the programmer and used in an output clause (in the source task) and and in a
input clause (in the target task). This synchronization variable can be subject of
reuse and therefore, false dependences; the automatic renaming mechanism in the
runtime avoids these false dependences and avoids its scalar (or vector) expansion.

4 Additional Runtime Features

The prototype task implementation for OpenMP 3.0 enqueues new created tasks
in a team pool of tasks. Any thread of the team can access this pool a execute the
tasks from there. Threads have also a local pool in which they place those tasks
that have been suspended by them if those tasks are tied tasks. Other threads are
not allowed to steal tasks from this pool. But the OpenMP specification allows for
other forms of scheduling (with certain restrictions related to tied/untied tasks).
For example, it would be possible to implement a work-first scheduler (like Cilk
[9] does) where tasks are executed as soon as they are created and the parent
task is suspended and stored in a per task pool of tasks. Dependence restrictions
would need to be considered in this case. To avoid starvation (because all tasks
go to the local pools) work-stealing is allowed.

In the implementation of SMPSs each thread has a local pool of ready tasks.
The main thread is responsible of running the main program by going through
the non task user code, analyzing the data dependencies and adding the tasks
to the task graph. New tasks that have no input dependencies are added to the
main thread task pool; any worker thread can steal from the pool of the main
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thread. When the main thread stops task generation (because the task pool is
full or he is waiting for tasks to finish) it also execute tasks from its own pool.

Worker threads look for ready tasks first in their own pool, then on the main
thread pool and then on the other thread pools. When a thread finishes running
a task, it puts all the task successors that have become ready into its task pool.
While worker threads consume tasks from their pool in LIFO order, they steal
them from other threads in FIFO order. That is, they consume the graph in a
depth first order as long as they can can get ready tasks, and then steal tasks
from other threads in a breadth first order when their task pools become empty.

The idea behind this design is that each thread will be executing tasks in a
different region of the graph and have little interference with other threads as
long as there are ready tasks in that region or there are unexplored zones in the
graph. Otherwise they will steal work from other threads in a way that tries to
minimize the effect on the cache locality of that thread.

5 Preliminary Evaluation

In order to test the proposal in terms of expressiveness and performance, we have
developed the StarSs runtime for SMP (named SMPSs) and used the Mercurium
compiler (source-to-source restructuring tool) [2]. For comparison purposes we
also use the reference implementation [10] of the tasking proposal in OpenMP
3.0 based on the Nanos runtime and the same source-to-source restructuring
tool. and the workqueueing implementation available in the Intel compiler.
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Weevaluatehowtheproposedextension improvesthescalabilityoftheSparseLU
benchmark that has been used to motivate the proposal. All the executions have
been done on an SGI Altix 4700 using up to 32 processors in a cpuset (to avoid in-
terference with other running applications).

Figure 8 shows the speed-up with respect to the sequential execution time.
Notice that up to 16 threads the three versions (taskq, task and smpss) be-
have similarly. When more threads are used, load unbalancing starts to be more
noticeable and the overheads of tasking are not compensated with the parallel
execution. Task barriers between fwd/bdiv and bmod phases (inside iteration
kk) and between bmod and fwd/bdiv phases (in consecutive iterations of kk) in-
troduce this load unbalance and overheads. However, smpss is able to overcome
these two limitations by overlapping tasks in these computational phases inside
and across iterations of the kk loop.

The implementation of SMPSs has overheads. Table 1 shows a breakdown
of the execution time of the SMPSs version of SparseLU. The table shows the
percentage of time that each thread is in each phase (worker threads ’ information
has been summarized due to space limitations). For this example, the main thread
invests around the 30% of its time in the maintenance of the task graph, and
around 65 % of its time is left for execution of tasks. The worker threads also
suffer of some overheads (around 5%), not only due to the maintenance of the
task graph but also to the time the threads are waiting for tasks ready to be
executed and the time invested in getting the tasks description. Depending on the
application and on the number of threads, these overheads will have more or less
impact in the performance, but we are looking for more efficient implementations
of the task graph to reduce them.

Table 1. Breakdown of SMPSs overheads for the SparseLU with 16 threads

Thread phase Main Thread Max Worker th. Min Worker th. Avg. Worker th.
User code 5.12 %

Initialisation 0.13 %
Adding task 10.51 %
Remove tasks 19.67 % 2.41 % 0.86 % 1.46 %

Waiting for tasks 0.46 % 1.95 % 1.04 % 1.47 %
Getting task descr. 0.36 % 1.28 % 0.56 % 1.10 %
Tasks’ execution 63.76 % 97.43 % 94.97 % 95.97 %

6 Conclusions

This paper proposed an extension to the OpenMP 3.0 tasking model: data depen-
dent tasks. Data dependencies among tasks are indirectly expressed by specifying
the input and output direction of the arguments used in a task. This is a key
difference with respect to previous proposals that were based on the specification
of named tasks and dependson relationships.

The paper uses one of the application kernels used to demonstrate the expres-
siveness of tasking in OpenMP 3.0: SparseLU. We motivate the proposal with
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this kernel and show how its scalability improves with a prototype implementa-
tion of the proposal (SMP Superscalar – SMPSs).

The possibility of expressing input and output direction for the data used by the
task provides extra benefits for other multicore architectures, such as for example
the Cell/B.E. processor [7] (Cell Superscalar [8]). In this case, the information pro-
vided by the programmer allows the runtime system to transparently inject data
movement (DMA transfers) between SPEs or between SPEs and main memory.
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