
Implementing OpenSHMEM

Using MPI-3 One-Sided Communication�

Jeff R. Hammond1, Sayan Ghosh2, and Barbara M. Chapman2

1 Argonne National Laboratory
Argonne IL, 60439

jhammond@alcf.anl.gov
2 Dept. of Computer Science

University of Houston
Houston, Texas

{sgo,chapman}@cs.uh.edu

Abstract. This paper reports the design and implementation of Open-
SHMEM over MPI using new one-sided communication features in MPI-
3, which include not only new functions (e.g. remote atomics) but also a
newmemory model that is consistent with that of SHMEM.We use a new,
non-collective MPI communicator creation routine to allow SHMEM col-
lectives to use their MPI counterparts. Finally, we leverage MPI shared-
memory windows within a node, which allows direct (load-store) access.
Performance evaluations are conducted for shared-memory and InfiniBand
conduits using microbenchmarks.

Keywords: SHMEM, MPI-3, RMA, one-sided communication.

1 Introduction

SHMEM [1,10] is a one-sided communication interface originally developed for
Cray systems but subsequently adopted by numerous vendors (SGI, Quadrics,
IBM, Mellanox, etc.) for use in high-performance computing. OpenSHMEM [7]
represents a community effort to standardize SHMEM in order to enable portable
applications and grow the user base. There are essentially two kinds of SHMEM
implementations: (1) platform-specific, proprietary i.e. closed-source, highly op-
timized implementations and (2) portable (at least to some extent), open-source
reference implementations. Examples of the former include SGI-SHMEM and
CraySHMEM, while the latter includes the OpenSHMEM reference implemen-
tation from University of Houston, based upon widely portable GASNet [5] and

� This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DEAC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 44–58, 2014.
c© Springer International Publishing Switzerland 2014

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 45

SHMEM based upon Portals4 [4], which is portable to the most common com-
modity networks. MVAPICH2-X [14] is not proprietary in the sense that it is
freely available and not distributed by any platform vendor, but it is currently
closed-source and only supports InfiniBand, for which it is highly optimized.

Among the current reference implementations – that is, the ones based upon
GASNet and Portals4, respectively – are limited in portability only by their
underlying conduits. GASNet has broad support of both commodity and HPC
networks; we are not aware of any widely used platform that is not supported.
Despite the wide portability of GASNet, it is not supported directly by vendors
nor is it shipped in binary form for commodity systems (in part due to the dif-
ferent ways PGAS compilers use it, which require different configurations) and
it lacks explicit support for atomic operations, which prevents the use of na-
tive hardware implementations when available. On the other hand, the Portals4
implementation is itself a reference implementation of the Portals4 specifica-
tion [3], which aims to have optimized implementations where at least some
of the features have customized hardware support. The Portals4 reference im-
plementation currently supports shared memory, TCP/IP and InfiniBand. In
contrast to the aforementioned conduits, MPI is supported on the widest vari-
ety of platforms, is supported by all major HPC vendors and can be trivially
installed via the appropriate package management system on the most common
platforms. Broad portability and vendor support are not the only advantages
of an MPI-based implementation. The MPI ecosystem includes powerful perfor-
mance and debugging tools as well as parallel math and I/O libraries (as just
two examples), all of which are now available for use in SHMEM applications.
Finally, because GASNet nor Portals4 provide collective operations, any imple-
mentation of these must be implemented on top of point-to-point operations
inside of the SHMEM library. On the other hand, an MPI-based implementa-
tion immediately leverages many years of algorithm and software development
of MPI collectives. The relatively recent release of the MPI-3 standard has made
possible – for the first time – a direct implementation of SHMEM and PGAS
programming models using the one-sided functionality therein. Prior to MPI-3,
lack of important atomic operations (e.g. fetch-and-add and compare-and-swap),
inconvenient memory model (designed to support non-cache coherent systems),
and awkward synchronization functions made MPI one-sided communication an
inadequate conduit for models like SHMEM. Additional criticism and analysis
of the MPI-2 one-sided communication in the context of PGAS can be found
in Bonachea and Duell [6] and Dinan, et al. [8]. With the features provided in
MPI-3, it is possible to implement SHMEM relatively efficiently since essentially
all SHMEM calls map directly to one or two MPI calls and the synchronization
modes in MPI-3 are not excessive relative to SHMEM semantics. Given this, the
limiting factor in SHMEM performance when implemented using MPI-3 is the
quality of the MPI implementation. The purpose of this paper is to demonstrate
the first implementation of OpenSHMEM using MPI-3 as the conduit. We leave
performance analysis/profiling and discussion on RMA implementation quality
for future work. We refer to our implementation of OpenSHMEM over MPI-3

46 J.R. Hammond, S. Ghosh, and B.M. Chapman

as OSHMPI. We compare our implementation to existing implementations for
shared memory and InfiniBand, which include those based upon GASNet and
Portals4 as well as the optimized MVAPICH2-X implementation. We also com-
pare OSHMPI with a vendor implementation of OpenSHMEM from Mellanox,
called Mellanox-ScalableSHMEM which works with the OpenFabrics RDMA for
Linux stack (OFED).

2 Background

In order to motivate our design choices, we summarize the important semantics
of the SHMEM and MPI-3 models to understand how they must be reconciled
in the implementation and the performance effects associated therewith.

2.1 SHMEM

One-Sided Communication. SHMEM one-sided communication operations
are locally blocking, meaning they return once the local buffer is available for
reuse. Single-element, contiguous and strided variants of Put (remote write)
and Get (remote read) are provided. For each of these, the type is encoded in
the function name, which enables compiler type-checking (for example, this is
not available in MPI C code except via collaboration of compiler extensions
and metadata in the MPI header file [11]). SHMEM also supports the common
atomic operations of swap, compare-and-swap, add, fetch-and-add, increment
and fetch-and-increment, all of which block on local completion, which entails a
round trip in four of the six cases.

The synchronization primitives for one-sided operations are Fence and Quiet,
with the former corresponding to point-wise ordering and the latter to ordering
with respect to all remote targets. Some implementations specify that these or-
dering points correspond to remote completion, which is sufficient but not always
necessary to ensure ordering. In any case, we choose the conservative interpre-
tation - these functions enforce remote completion of one-sided operations.

Collective Communication. SHMEM provides Barrier, Broadcast, Reduc-
tion and Gather operations with type support encoded into the function names,
just as for one-sided operations. Subsets of processes (referred as PEs or Pro-
cessing Elements in SHMEM) are described using (PE start, logPE stride,

PE size) tuples, which is not fully general, but are still useful for some applica-
tions. With the exception of shmem barrier all, collectives take an argument
pSync, which presumably allows for the implementation to avoid additional in-
ternal state for collectives.

2.2 MPI-3

Barrett, et al. discussed MPI-3 RMA semantics in detail in Ref. [2]; we summarize
only the salient points related to SHMEM here.

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 47

One-Sided Communication. The MPI 3.0 standard [17] represents a signif-
icant change from previous iterations of MPI, particularly with respect to one-
sided communication (RMA). New semantics for memory consistency, ordering
and passive-target synchronization were introduced, all three of which have a
significant (positive) impact on an MPI-based implementation of SHMEM.

The unified memory model of MPI-3 RMA stipulates that direct local access
and RMA-based access to the memory associated with a window1 see the same
data (but not necessarily immediately) without explicit synchronization. This
model is not required, rather the user must query for it, but it should be possible
for implementations to support this on cache-coherent architectures.

Prior to MPI-3, RMA operations were specified as unordered and the only
means for ordering operations was to remote-complete them. This entails a rather
high overhead and so MPI-3 now specifies that accumulate operations are ordered
by default; these operations have always been specified as element-wise atomic,
unlike Put and Get. The user can inform the implementation that ordering is not
required but then the user is required to enforce ordering via remote completion
in the application.

In MPI-2, passive target synchronization was specified in the form of an epoch
delineated with calls to MPI Win lock and MPI Win unlock. Only upon return-
ing from the latter call was any synchronization implied and it implied global
visibility, i.e. remote completion. MPI-3 provides the user the ability to specify
local and remote completion separately and to do so without terminating an
epoch. These semantics are more consistent with SHMEM and ARMCI [18] as
well as many modern networks.

Collective Communication. MPI collective communication occurs on a
communicator, which is an opaque object associated with a group processes.
Communication on one communicator is independent of communication on an-
other, which enables strict separation of different sets of messages in the case of
point-to-point and allows for a well-defined semantic for collective operations on
overlapping groups of processes. In MPI-2, communicators could only be created
collectively on the parent communicator, meaning that a subcommunicator to be
derived from the default (world) communicator (containing all processes) could
not be created without the participation of all processes. This precluded their
use in SHMEM collectives unless all possible subcommunicators were created at
initialization, which is obviously unreasonable.

MPI-3 introduced a new function for creating subcommunicators that is collec-
tive only on the group of processes that are included in the new communicator [9].
This enables subcommunicators associated with (PE start, logPE stride,

PE size) tuples to be created on the fly as necessary. Of course, creating subcom-
municators on the fly is potentially expensive relative to a particular collective
operation, so a high-quality implementation of SHMEM over MPI-3 would main-
tain a cache of these since it is reasonable to assume that they will be reused.
The MVAPICH2-X implementation of OpenSHMEM does this internally despite

1 A window is the opaque memory registration object of MPI RMA upon which all
one-sided operations act.

48 J.R. Hammond, S. Ghosh, and B.M. Chapman

not explicitly using the MPI-3 interface for collectives [16]. Another potential
bottleneck in this process is the translation of the root PE (necessary only for
broadcast operations) to a process in the subcommunicator, which is O(N) in
space and time [23]. However, we can avoid this translation routine if necessary
due to the restricted usage necessary in SHMEM collectives.

3 Implementation Design

In this section, we outline the design of the mapping from SHMEM to MPI-
3. The mapping of SHMEM functions to MPI-3 ones is mostly straightforward
due to the flexibility MPI-3 RMA, but there are a few key issues that must be
addressed.

Symmetric Heap: The use of symmetric variables is a unique concept in one-
sided communication that deserves special mention [20]. SHMEM communica-
tion operations act on virtual addresses associated with symmetric variables,
which include data in the symmetric heap (dynamically allocated) and statically
allocated data, such as global variables and variables declared with the static
attribute. Communication with stack variables is not supported within OpenSH-
MEM. On the other hand, the MPI window object is opaque and communication
operations act on data in the window specified via offsets relative to the window
base, which can be different on every PE. Whereas SHMEM requires all alloca-
tions from the symmetric heap be symmetric (i.e. uniform across all PEs), MPI
supports the general case where PEs can pass different sizes (including zero) to
the window constructor routine. Prior to MPI-3, the only window constructor
routine was MPI Win create, which was a registration routine that took local
memory buffers as input. This precluded the use of symmetric allocations for
scalable metadata; it had to be assumed that the base address was different
at every PE, thus requiring O(N) metadata in the window object. MPI-3 pro-
vides a new routine for constructing windows that includes memory allocation
(MPI Win allocate), hence permits the implementation to allocate symmetri-
cally. It also permits the use of shared memory segments for intranode optimiza-
tion. This is available explicitly to the user via MPI Win allocate shared and
implicitly in the case of MPI Win allocate. By explicit, we mean that the user
can query the virtual address associated with a window segment in another PE
on the same node and access it via load-store; the implicit case is where the
implementation uses shared memory to bypass the network interface when the
user makes MPI communication calls.

Put and Get: SHMEM performs communication against symmetric data, which
can be either global, static or symmetric heap (sheap) data. The latter is quite
easy to deal with; we allocate an MPI window of sufficient size (controlled by
an environment variable) and allocate memory out of it. To access this data
remotely, one merely translates the local address into a remote offset within
the sheap window, which is not expensive. Global data is registered with MPI
using MPI Win create at initialization using the appropriate operating system
mechanism to get the base address and size of this region. We use one window

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 49

for bss and data segments (global data can reside in both places) but two may
be required in some cases. The lookup function (shmem window offset) differ-
entiates between the two windows. We use a much simpler special case as that
of [8] because valid symmetric variables always fall within one of two windows.
Because the symmetric heap window is allocated rather than just registered,
it supports directly local access within a node, so for this case, we use direct
access when all PEs reside in a single node. This can be generalized to mul-
tiple nodes using overlapping windows – one each for internode and intranode
communication2 – but this has not yet been implemented.

void __shmem_put(MPI_Datatype type, int type_size, void *target,

const void *source, size_t len, int pe)

{

enum shmem_window_id_e win_id;

shmem_offset_t offset;

__shmem_window_offset(target, pe, &win_id, &offset));

if (world_is_smp && win_id==SHEAP_WINDOW) {

void * ptr = smp_sheap_ptrs[pe] + (target - sheap_base_ptr);

memcpy(ptr, source, len*type_size);

} else {

MPI_Win win = (win_id==SHEAP_WINDOW) ? sheap_win : text_win;

int n = (int)len; assert(len<(size_t)INT32_MAX);

MPI_Accumulate(source, n, type, pe, offset, n, type, MPI_REPLACE, win);

MPI_Win_flush_local(pe, win);

}

}

void shmem_int_put(int *target, const int *source, size_t len, int pe)

{ __shmem_put(MPI_INT, 4, target, source, len, pe); }

Fig. 1. The implementation of SHMEM put using MPI for one type-variant. The code
is modified from the original for presentation purposes.

Synchronization: The synchronization primitives shmem fence and
shmem quiet are both mapped to MPI Win flush all in order to ensure pair-
wise and global ordering of one-sided operations. Because shmem fence does
not take a specific PE as an argument, the implementation would like have to
maintain O(N) state to implement the minimum synchronization required. We
assume that the MPI implementation already tracks the remote processes and
only flushes those that are the the target of communication and thus it is redun-
dant for our implementation to do this. The assumption that MPI Win flush all

is an efficient way to implement shmem fence may not always be true, but it is
perhaps worth noting that the Portals4 implementation does something similar
to avoid O(N) state.

Atomics. Atomic operations map from SHMEM to MPI similarly as with Put
and Get. Table 1 specifies how each SHMEM function translates to an MPI
function. Because shmem inc and shmem finc are just special cases of shmem add

and shmem fadd, respectively, we do not list them.

2 The need for two windows may be obviated in a future version of the MPI standard.

50 J.R. Hammond, S. Ghosh, and B.M. Chapman

Table 1. Correspondance between SHMEM and MPI atomic operations

SHMEM function MPI function Accumulate operation

shmem cswap MPI Compare and swap -
shmem swap MPI Fetch and op MPI REPLACE

shmem fadd MPI Fetch and op MPI SUM

shmem add MPI Accumulate MPI SUM

Collective Operations. We follow the same approach as [16] with respect to
non-collective communicator creation [9]. Figure 2 shows the code that is used
to translate a SHMEM PE group triplet to an MPI subcommunicator. Only
Broadcast requires the rank translation of the root; when an invalid rank (e.g.
-1) is passed to this function, translation is skipped. The use of a cache for
communicators is an obvious optimization but one that is not yet implemented
in OSHMPI.

Table 2 shows the mapping from SHMEM to MPI with respect to collective
operations. Because the shmem collect routine provides only the count at each
PE, the MPI implementation requires an MPI Allgather to form the vector of
counts. The translation from SHMEM reduction operators to their MPI coun-
terparts is trivial and is left as an exercise for the reader.

void __shmem_acquire_comm(int pe_start, int pe_logs, int pe_size,
MPI_Comm * comm, int pe_root, int * broot)

{
if (pe_start==0 && pe_logs==0 && pe_size==shmem_world_size) {

*comm = SHMEM_COMM_WORLD; *broot = pe_root;
} else {

MPI_Group strgrp;
int * pe_list = malloc(pe_size*sizeof(int)); assert(pe_list!=NULL);
int pe_stride = 1<<pe_logs;
for (int i=0; i<pe_size; i++) pe_list[i] = pe_start + i*pe_stride;
MPI_Group_incl(SHMEM_GROUP_WORLD, pe_size, pe_list, &strgrp);
MPI_Comm_create_group(SHMEM_COMM_WORLD, strgrp, pe_start, comm);
if (pe_root>=0) *broot = __shmem_translate_root(strgrp, pe_root);
MPI_Group_free(&strgrp);
free(pe_list);

}
}

Fig. 2. Code to create an MPI sub communicator associated with a PE subgroup

Table 2. Mapping of SHMEM collectives to MPI collective functions

SHMEM MPI

shmem barrier MPI Barrier

shmem broadcast MPI Bcast

shmem collect MPI Allgatherv

shmem fcollect MPI Allgather

shmem <op> to all MPI Allreduce(op)

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 51

4 Results

In this section, we evaluate the performance of OSHMPI versus other imple-
mentations of OpenSHMEM (GASNet, Portals4, MVAPICH2-X and Mellanox).
While these are not the only OpenSHMEM implementations available, they are
a representative set and sufficient to make a reasonable evaluation of the quality
of our implementation and of MPI-3 as a conduit. In particular, the comparison
of OSHMPI using the MPI-3 implementation found in MVAPICH2 to the Open-
SHMEM implementation in MVAPICH2-X is particularly useful, since this uses
at least some of the same implementation features and thus exposes more of the
semantic differences. However, as will be shown below, there appear to be imple-
mentation issues that prevent MPI-3 from achieving its full potential, i.e. not all
the differences are due to semantics. Most of the test cases are taken from pub-
licly available benchmarks or example codes packaged with the OpenSHMEM
reference API.

The evaluation platform used is a dual-socket AMD 6128 (8 cores/socket) clus-
ter with QDR InfiniBand from Mellanox and 64 GB of memory per node. We
use the latest release of each of the implementations considered. OSHMPI uses
MPICH 3.1b2 for SMP, and MVAPICH2 2.0a for distributed cases. The Open-
SHMEM reference implementation uses GASNet 1.20 configured for GASNet
“smp” and “ibv” conduits only; this implementation is referred to as GASNet.
For SHMEM-Portals and Portals4 (henceforth, Portals4), the repository trunk
is used, configured with --with-implementation=ib --enable-ib-shmem.

MVAPICH2-X 2.0a provides the OpenSHMEM implementation, which is de-
noted as MVAPICH2-X. Mellanox-ScalableSHMEM version 2.0 is also included
in our evaluation (configured with only --with-oshmem), denoted as MLNX.

4.1 OpenSHMEM versus MPI-3 – Implementation Effects

Figure 3 compares the message rate for messages from 8 byte to 8 MB us-
ing tests written for the MPI-3 and OpenSHMEM interfaces and implemented
with MVAPICH2 and MVAPICH2-X, respectively. The purpose of this test is
to elucidate differences in the implementation of the two protocols within a pre-
sumably similar implementation. The differences need not necessarily be so large
but MVAPICH2 inherits an implementation design for one-sided that is not tar-
geting one-sided networks, whereas the OpenSHMEM implementation clearly
exploits the one-sided nature of InfiniBand in a direct way.

4.2 Latency and Message-Rate Evaluation

In this section, we evaluate the performance of the OSHMPI, Portals4, GASNet,
Mellanox-ScalableSHMEM and MVAPICH2-X implementations using the OSU
microbenchmarks [15]. These tests measures the message rate, average latencies
for varying message sizes and types of one-sided operations. Figures 4a, 4b, 4c
and 4d show the average latencies on a shared memory system or across the
network on distributed nodes with increasing data sizes from 1 to 220 bytes.

52 J.R. Hammond, S. Ghosh, and B.M. Chapman

102

103

104

105

106

107

20 25 210 215 220 225

Lo
g

M
es

sa
ge

 R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

MPI-3
OpenSHMEM

102

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

M
es

sa
ge

 R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

MPI-3
OpenSHMEM

Fig. 3. Internode and intranode (both with 2 PEs) message rate (long puts) of MPI-3
and OpenSHMEM interfaces as implemented with MVAPICH2 and MVAPICH2-X,
respectively

Figure 5 shows aggregate unidirectional put injection rate with message size
varying from 1 to 222 bytes on shared-memory and distributed nodes.

The shared-memory performance of OSHMPI is generally superior as com-
pared to others, which is due to the use of MPI-3 shared memory windows
that allows direct load-store access on the target memory without any addi-
tional overhead. Portals4 cannot do this due to the lack of XPMEM support
and GASNet appears to require additional overhead, either due to locking or
copying through shared segments. Mellanox-ScalableSHMEM has performance
close to GASNet for distributed nodes, the sharp drop/rise in the performance
plot (Figure 5) suggests message-transfer protocol crossover at certain sizes. On
the other hand, OSHMPI suffers from poor message rate/latency on distributed
nodes. This is mostly due to the implementation quality but a small portion of
the overhead can be attributed to the requirement of two MPI function calls to
implement a blocking Put operation – since MPI Put is nonblocking, it must be
followed by MPI Win flush local – which may entail more software overhead
than implementations that use only a single call to the conduit API.

The operation rate test for OpenSHMEM atomic routines are similar to the
Put message-rate test. The benchmark measures the performance of atomic
fetch-operate routines supported in OpenSHMEM by issuing back-to-back atomic
operations of a type from the origin to the target PE. Figure 6 shows the aver-
age latency and aggregate message rate per atomic operation for all the atomic
operations between two PEs on two nodes.

4.3 SHMEM Barrier Performance

Barriers are used extensively in parallel programs, perhaps unnecessarily in some
cases, but they are nonetheless an essential collective operation that needs to be
efficient. Figure 7 shows barrier latencies for the shared memory and distributed
cases (on 2, 4, 8, and 16 PEs). OSHMPI and MVAPICH2-X have nearly identi-
cal performance, indicating the same underlying implementation (using the MPI
collective infrastructure in MVAPICH2). The OSHMPI routine shmem barrier

also performs local and remote synchronization, meaning a memory barrier and a

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 53

 0.01

 0.1

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(a) Get latency (SMP)

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(b) Get latency (Dist)

 0.01

 0.1

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(c) Put latency (SMP)

 0.1

 1

 10

 100

 1000

20 25 210 215 220

Lo
g

La
te

nc
y

(u
s)

Message size (bytes)

GASNet
MVAPICH2-X

OSHMPI
Portals4

MLNX

(d) Put latency (Dist)

Fig. 4. Get/Put latencies on 2 PEs of one node (SMP) and two nodes (Dist)

remote flush of all outstanding communication operations, which is not explicitly
required by the OpenSHMEM specification but is implied by examples programs
therein. Barrier illustrates a significant benefit of using MPI as a conduit for
SHMEM; collective operations are heavily optimized in MPI implementations
and often use the best available algorithms. Building collectives on top of point-
to-point operations in a SHMEM-oriented conduit may make it difficult or even
impossible to achieve the same performance as MPI. For example, MPI leverages
hardware implementations of collectives on systems such as IBM Blue Gene. Al-
ternatively, a SHMEM-oriented conduit may not provide the most appropriate
point-to-point operations for implementing synchronous collectives, thereby re-
quiring the SHMEM collective implementation to poll on memory locations or
use other inefficient protocols.

4.4 Solving 2D Heat Equation

The 2D heat benchmark predicts the heat distribution, resulting from conduction
in a 2D domain and could be solved iteratively using - Jacobi, Gauss-Seidel and
Successive Over-relaxation methods. The benchmark code (shmem 2dheat.c) is
available with the OpenSHMEM reference API package. In the 2D heat bench-
mark, data is distributed evenly across PEs (plus one or more rows to facilitate
”ghost” transfers from neighbors). Rows of data are communicated between ad-
jacent PEs, with the communication overhead of (2∗npes−1) per iteration. The
results of the 2D heat benchmark on 128, 256, 512, and 1024 PEs for OSHMPI,

54 J.R. Hammond, S. Ghosh, and B.M. Chapman

102

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(a) n=1, ppn=2(SMP)

102

103

104

105

106

107

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(b) n=2, ppn=1

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(c) n=8, ppn=1

103

104

105

106

107

108

20 25 210 215 220 225

Lo
g

R
at

e
(M

es
sa

ge
s/

s)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

(d) n=16, ppn=1

Fig. 5. Unidirectional Put message-rate on 2, 8, and 16 PEs within a node (top-left)
and across nodes

MVAPICH2-X, GASNet, Mellanox-ScalableSHMEM and Portals4 on a (32K ×
32K) matrix are shown in Figure 8. For this particular benchmark, some of the
GASNet runs terminated with a segmentation fault, hence we are unable to show
GASNet results beyond 256 PEs.

5 Observations

For shared memory systems, the performance of OSHMPI and MVAPICH2-
X is comparable, which is not surprising given that the implementations are
documented to use the same optimizations. The Portals4 intranode performance
is not surprisingly slow given that XPMEM could not be used due to the inability
to install this kernel module because it requires elevated privileges. 3 Additional
performance artifacts are seen in Portals4 for messages between 1 and 64 KiB
in internode tests, which may be the result of protocol crossover effects.

In distributed case however, both in terms of latency and message rate,
OSHMPI is noticeably worse than other implementations. One can only as-
sume that the MPI-3 implementation in MVAPICH2 is not as optimized as the
SHMEM implementation in MVAPICH2-X (see Figure 3). For larger messages,
however, both the direct and indirect (that is, via MPI-3) performance is similar,

3 XPMEM is a Linux kernel module (originally developed by SGI) that enables a
process to attach memory segments from another process to it’s address space.

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 55

1

 10

 100

shm
em

_int_fadd
shm

em
_int_finc

shm
em

_int_add
shm

em
_int_inc

shm
em

_int_csw
ap

shm
em

_int_sw
ap

shm
em

_longlong_fadd
shm

em
_longlong_finc

shm
em

_longlong_add
shm

em
_longlong_inc

shm
em

_longlong_csw
ap

shm
em

_longlong_sw
ap

Lo
g

La
te

nc
y

(u
s)

MVAPICH2-X
OSHMPI

Portals4
GASNet

MLNX

 0.01

 0.1

 1

shm
em

_int_fadd
shm

em
_int_finc

shm
em

_int_add
shm

em
_int_inc

shm
em

_int_csw
ap

shm
em

_int_sw
ap

shm
em

_longlong_fadd
shm

em
_longlong_finc

shm
em

_longlong_add
shm

em
_longlong_inc

shm
em

_longlong_csw
ap

shm
em

_longlong_sw
ap

Lo
g

M
ill

io
n

op
s/

s

Fig. 6. Atomic latency and operations rate between 2 PEs across 2 nodes

 0.1

 1

 10

 100

 1000

 10000

 100000

GASNet

PORTALS4

OSHM
PI

M
VAPICH2-X

M
LNX

Lo
g

La
te

nc
y

(u
s)

Implementations

npes = 2
npes = 4
npes = 8

npes = 16

 1

 10

 100

 1000

GASNet

PORTALS4

OSHM
PI

M
VAPICH2-X

M
LNX

Lo
g

La
te

nc
y

(u
s)

Implementations

npes = 2
npes = 4
npes = 8

npes = 16

Fig. 7. Barrier latencies on 2, 4, 8, and 16 PEs within a node (left) and across nodes
(right). n=1,ppn=npes for SMP and n=npes,ppn=1 for Dist.

so the MPI-3 implementation appears to be related to the short-message imple-
mentation, which one hopes will be optimized in future releases of MVAPICH2.
GASNet performs the best for short-to-medium messages but is not as robust
as the others when a larger number of PEs are used; we were unable to run the
2D heat test for 256 PEs or larger with this implementation.

The atomic latency and message rate performance of MVAPICH2-X and
OSHMPI for distributed nodes are found to be very similar, as evident from
Figure 6, suggesting that the MVAPICH2 SHMEM and MPI-3 implementations
are of similar quality.

We notice significant latency variations across SHMEM implementations of
barrier routines (shown in Figure 7). Particularly, GASNet and Portals4 latencies
are a minimum ∼10x to that of OSHMPI and MVAPICH2-X on two nodes.
GASNet performance significantly degrades for 16 distributed PEs.

We had also performed other collective tests – broadcast, reduce and col-
lect – and observed that GASNet performance was substantially worse for col-
lect/reduce (for both SMP and distributed nodes). On the other hand, OSHMPI
and MVAPICH2-X have identical performance for both shared and distributed
cases, which is not surprising given their use of the same infrastructure internally.

56 J.R. Hammond, S. Ghosh, and B.M. Chapman

103

104

M
VAPICH2-X

OSHM
PI

GASNet

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

(a) n=16, ppn=8

103

104

105

M
VAPICH2-X

OSHM
PI

GASNet

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

JACOBI GAUSS-SEIDEL SOR

(b) n=16, ppn=16

103

104

M
VAPICH2-X

OSHM
PI

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

(c) n=64, ppn=8

103

104

M
VAPICH2-X

OSHM
PI

PORTALS4

M
LNX

Lo
g

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Implementations

(d) n=64, ppn=16

Fig. 8. 2D-Heat benchmark performance of SHMEM implementations on
128/256/512/1024 PEs for 32K × 32K matrix

6 Related Work

Since the introduction of SHMEM for Cray T3D, there have been several other
implementations, including QSHMEM [21], HP-SHMEM [12], SGI-SHMEM [24],
GPSHMEM [19], and IBM TurboSHMEM [13], each with distinct API specifica-
tions. In addition to MVAPICH2-X and Portals-SHMEM, Gator-SHMEM [25]
and Mellanox ScalableSHMEM [22] are additional implementations of the Open-
SHMEM API.

7 Conclusions and Future Work

This paper describes the initial design and implementation of an OpenSHMEM
implementation using MPI-3 as a communication conduit. With the recent im-
provements in the MPI-3 specification, particularly related to RMA, MPI is now
a suitable conduit for PGAS programming models like SHMEM. The simplicity
of our implementation indicates a good semantic match between the two models.
Additionally, the performance is similar to existing PGAS runtimes such as GAS-
Net, Portals4, Mellanox-ScalableSHMEM and MVAPICH2-X for many cases, al-
though clearly there is room for improvement for distributed memory. On the
other hand, the intranode, i.e. shared-memory, performance was excellent and in

Implementing OpenSHMEM Using MPI-3 One-Sided Communication 57

many cases better than the others, suggesting that MPI shared-memory windows
are an effective way to optimize one-sided communication within a node.

The performance of collective operations was excellent with the MPI imple-
mentation, as one might expect given the substantial investment in these over
the last 20 years. While SHMEM is primarily about one-sided communication,
SHMEM applications may rely upon collective operations, particularly in certain
mathematical procedures (e.g. Krylov solvers), where dot products are essential.

In the future, we will generalize our intranode optimizations to work in the
general case where PEs are spread across multiple nodes, i.e. shared-memory
access will be used within a node while MPI operations will be used between
nodes. This usage is permitted using the unified memory model of MPI-3 that
can be supported on cache-coherent systems. OSHMPI currently lacks intranode
optimizations for atomics and strided operations but it is straightforward to add
these, the former using compiler intrinsics instead of inline assembly to maintain
a high degree of portability. MPI datatypes will be used to support SHMEM
operations on more than 231 elements, which may be required on 64-bit systems
with abundant memory.

Acknowledgment. This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357. We are thankful to all the anonymous reviewers who helped us
improve the paper.

References

1. Bariuso, R., Knies, A.: Shmem user’s guide (1994)

2. Barrett, B., Hoefler, T., Dinan, J., Thakur, R., Balaji, P., Gropp, B., Underwood,
K.D.: Remote memory access programming in MPI-3. Preprint, Argonne National
Laboratory (April 2013)

3. Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K., Under-
wood, K., Riesen, R., Maccabe, A.B., Hudson, T.: The Portals 4.0 message passing
interface (SAND2013-3181) (April 2013)

4. Barrett, B.W., Brigthwell, R., Scott Hemmert, K., Pedretti, K., Wheeler, K., Un-
derwood, K.D.: Enhanced support for OpenSHMEM communication in Portals.
In: Symposium on High-Performance Interconnects, pp. 61–69 (2011)

5. Bonachea, D.: GASNet specification, v1.1. Technical Report UCB/CSD-02-1207,
U.C. Berkeley (2002)

6. Bonachea, D., Duell, J.: Problems with using MPI 1.1 and 2.0 as compilation tar-
gets for parallel language implementations. Int. J. High Perform. Comput. Netw. 1,
91–99 (2004)

7. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
p. 2. ACM (2010)

58 J.R. Hammond, S. Ghosh, and B.M. Chapman

8. Dinan, J., Balaji, P., Hammond, J.R., Krishnamoorthy, S., Tipparaju, V.: Sup-
porting the Global Arrays PGAS model using MPI one-sided communication. In:
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS) (May 2012)

9. Dinan, J., Krishnamoorthy, S., Balaji, P., Hammond, J.R., Krishnan, M., Tippa-
raju, V., Vishnu, A.: Noncollective communicator creation in MPI. In: Cotronis,
Y., Danalis, A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS,
vol. 6960, pp. 282–291. Springer, Heidelberg (2011)

10. Feind, K.: Shared memory access (shmem) routines. In: Cray User Group, CUG
2005 (1995)

11. Gribenko, D., Zinenko, A.: Enabling Clang to statically check MPI type safety. In:
International Conferences on High Performance Computing (HPC-UA) (October
2012)

12. HP. HP Alphaserver SC 40, http://h18002.www1.hp.com/alphaserver/archive/
sc/sys_sc40_features.html

13. IBM. HPC Toolkit, https://computing.llnl.gov/mpi/klepacki.pdf (2004)
14. Jose, J., Kandalla, K., Luo, M., Panda, D.K.: Supporting hybrid MPI and Open-

SHMEM over InfiniBand: Design and performance evaluation. In: 2012 41st Inter-
national Conference on Parallel Processing (ICPP), pp. 219–228 (2012)

15. Jose, J., Kandalla, K., Luo, M., Panda, D.K.: Supporting hybrid MPI and Open-
SHMEM over InfiniBand: Design and performance evaluation. In: 2012 41st Inter-
national Conference on Parallel Processing (ICPP), pp. 219–228. IEEE (2012)

16. Jose, J., Kandalla, K., Zhang, J., Potluri, S., Panda, D.K.: Optimizing collective
communication in OpenSHMEM (October 2013)

17. MPI Forum. MPI: A message-passing interface standard. Version 3.0 (November
2012)

18. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. In: Rolim, J., et al.
(eds.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 533–546. Springer,
Heidelberg (1999)

19. Parzyszek, K., Nieplocha, J., Kendall, R.A.: A generalized portable SHMEM li-
brary for high performance computing. Technical report, Ames Lab., Ames, IA,
US (2000)

20. Poole, S.W., Hernandez, O., Kuehn, J.A., Shipman, G.M., Curtis, A., Feind, K.:
OpenSHMEM - toward a unified RMA model. In: Encyclopedia of Parallel Com-
puting, pp. 1379–1391. Springer (2011)

21. Quadrics. Quadrics/SHMEM programming manual (2001)
22. Shainer, G., Wilde, T., Lui, P., Liu, T., Kagan, M., Dubman, M., Shahar, Y.,

Graham, R., Shamis, P., Poole, S.: The co-design architecture for exascale sys-
tems, a novel approach for scalable designs. In: Computer Science-Research and
Development, pp. 1–7 (2013)

23. Träff, J.L.: Compact and efficient implementation of the MPI group operations,
pp. 170–178 (2010)

24. Woodacre, M., Robb, D., Roe, D., Feind, K.: The SGI AltixTM 3000 global shared-
memory architecture (2005)

25. Yoon, C., Aggarwal, V., Hajare, V., George, A.D., Billingsley III, M.: GSHMEM:
A portable library for lightweight, shared-memory, parallel programming. In: Pro-
ceedings of Partitioned Global Address Space, Galveston, Texas (2011)

http://h18002.www1.hp.com/alphaserver/archive/sc/sys_sc40_features.html
http://h18002.www1.hp.com/alphaserver/archive/sc/sys_sc40_features.html
https://computing.llnl.gov/mpi/klepacki.pdf

	Implementing OpenSHMEM Using MPI-3 One-Sided Communication

	1 Introduction
	2 Background
	2.1 SHMEM
	2.2 MPI-3

	3 Implementation Design
	4 Results
	4.1 OpenSHMEM versus MPI-3 – Implementation Effects
	4.2 Latency and Message-Rate Evaluation
	4.3 SHMEM Barrier Performance
	4.4 Solving 2D Heat Equation

	5 Observations
	6 Related Work
	7 Conclusions and Future Work
	References

